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Abstract. Feature selection refers to the problem of selecting those in-
put features that are most predictive of a given outcome; a problem en-
countered in many areas such as machine learning, pattern recognition
and signal processing. In particular, solution to this has found success-
ful application in tasks that involve datasets containing huge numbers of
features (in the order of tens of thousands), which would be impossible to
process further. Recent examples include text processing and web con-
tent classification. Rough set theory has been used as such a dataset
pre-processor with much success, but current methods are inadequate at
finding minimal reductions, the smallest sets of features possible. This
paper proposes a technique that considers this problem from a proposi-
tional satisfiability perspective. In this framework, minimal subsets can
be located and verified. An initial experimental investigation is conduc-
ted, comparing the new method with a standard rough set-based feature
selector.

1 Introduction

Many problems in machine learning involve high dimensional descriptions of in-
put features. It is therefore not surprising that much research has been carried
out on dimensionality reduction [4]. However, existing work tends to destroy
the underlying semantics of the features after reduction or require additional
information about the given data set for thresholding. A technique that can
reduce dimensionality using information contained within the dataset and that
preserves the meaning of the features (i.e. semantics-preserving) is clearly de-
sirable. Rough set theory (RST) can be used as such a tool to discover data
dependencies and to reduce the number of attributes contained in a dataset
using the data alone, requiring no additional information [10, 11].

Over the past ten years, RST has indeed become a topic of great interest
to researchers and has been applied to many domains. Given a dataset with
discretized attribute values, it is possible to find a subset (termed a reduct) of the
original attributes using RST that are the most informative; all other attributes
can be removed from the dataset with very little information loss. However,
current methods such as heuristic and stochastic-based search are inadequate
at finding minimal reductions. By reformulating the rough set reduction task
in a propositional satisfiability (SAT) framework, solution techniques from SAT



may be applied that should be able to discover such subsets, guaranteeing their
minimality.

The rest of this paper is structured as follows. Section 2 details the main
concepts involved in rough set feature selection, with an illustrative example.
The third section introduces propositional satisfiability and how the problem of
finding rough set reducts can be formulated in this way. The initial experimental
results of the application of the new method is presented in section 4. Section 5
concludes the paper, with a discussion of some of the future work in this area.

2 Rough Set-based Feature Selection

Rough set theory [10] is an extension of conventional set theory that supports
approximations in decision making. The rough set itself is the approximation
of a vague concept (set) by a pair of precise concepts, called lower and upper
approximations, which are a classification of the domain of interest into disjoint
categories. The lower approximation is a description of the domain objects which
are known with certainty to belong to the subset of interest, whereas the upper
approximation is a description of the objects which possibly belong to the subset.

There are two main approaches to finding rough set reducts: those that con-
sider the degree of dependency and those that are concerned with the discernibil-
ity matrix. This section describes the fundamental ideas behind both approaches.
To illustrate the operation of these, an example dataset (table 1) will be used.

x ∈ U a b c d ⇒ e

0 1 0 2 2 0
1 0 1 1 1 2
2 2 0 0 1 1
3 1 1 0 2 2
4 1 0 2 0 1
5 2 2 0 1 1
6 2 1 1 1 2
7 0 1 1 0 1

Table 1. An example dataset

2.1 Rough Set Attribute Reduction

Central to Rough Set Attribute Reduction (RSAR) [3, 7] is the concept of indis-
cernibility. Let I = (U,A) be an information system, where U is a non-empty
set of finite objects (the universe) and A is a non-empty finite set of attributes
such that a : U → Va for every a ∈ A. Va is the set of values that attribute a
may take. With any P ⊆ A there is an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U2 | ∀ a ∈ P, a(x) = a(y)} (1)

The partition of U, generated by IND(P) is denoted U/IND(P) (or U/P) and
can be calculated as follows:



U/IND(P ) = ⊗{a ∈ P : U/IND({a})}, (2)

where
A⊗B = {X ∩ Y : ∀X ∈ A,∀Y ∈ B,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P . The
equivalence classes of the P -indiscernibility relation are denoted [x]P .
Let X ⊆ U. X can be approximated using only the information contained within
P by constructing the P-lower and P-upper approximations of X:

PX = {x | [x]P ⊆ X} (4)

PX = {x | [x]P ∩X 6= ∅} (5)

Let P and Q be equivalence relations over U, then the positive region can be
defined as:

POSP (Q) =
⋃

X∈U/Q

PX (6)

The positive region contains all objects of U that can be classified to classes
of U/Q using the information in attributes P. For example, let P = {b,c} and Q
= {e}, then

POSP (Q) =
⋃
{∅, {2, 5}, {3}} = {2, 3, 5}

Using this definition of the positive region, the rough set degree of dependency
of a set of attributes Q on a set of attributes P is defined in the following way:

For P, Q ⊂ A, it is said that Q depends on P in a degree k (0 ≤ k ≤ 1),
denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U|

(7)

In the example, the degree of dependency of attribute {e} from the attributes
{b,c} is:

γ{b,c}({e}) = |POS{b,c}({e})|
|U|

= |{2,3,5}|
|{0,1,2,3,4,5,6,7}| = 3

8

The reduction of attributes is achieved by comparing equivalence relations
generated by sets of attributes. Attributes are removed so that the reduced set
provides the same predictive capability of the decision feature as the original.
A reduct is defined as a subset of minimal cardinality Rmin of the conditional
attribute set C such that γR(D) = γC(D).

The QuickReduct algorithm given in figure 1, attempts to calculate a re-
duct without exhaustively generating all possible subsets. It starts off with an
empty set and adds in turn, one at a time, those attributes that result in the



QuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}
(2) do
(3) T ← R
(4) ∀x ∈ (C−R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) == γC(D)
(9) return R

Fig. 1. The QuickReduct Algorithm

greatest increase in the rough set dependency metric, until this produces its
maximum possible value for the dataset.

According to the QuickReduct algorithm, the dependency of each attribute
is calculated, and the best candidate chosen. Attribute d generates the highest
dependency degree, so that attribute is chosen and the sets {a, d}, {b, d} and
{c, d} are evaluated. This process continues until the dependency of the reduct
equals the consistency of the dataset (1 if the dataset is consistent). In the ex-
ample, the algorithm terminates after evaluating the subset {b, d}. The generated
reduct shows the way of reducing the dimensionality of the original dataset by
eliminating those conditional attributes that do not appear in the set.

This, however, is not guaranteed to find a minimal subset. Using the depend-
ency function to discriminate between candidates may lead the search down a
non-minimal path. It is impossible to predict which combinations of attributes
will lead to an optimal reduct based on changes in dependency with the addi-
tion or deletion of single attributes. It does result in a close-to-minimal subset,
though, which is still useful in greatly reducing dataset dimensionality.

2.2 Discernibility Matrix-based Selection

Many applications of rough sets to feature selection make use of discernibility
matrices for finding reducts. A discernibility matrix [12] of a decision table D =
(U,C ∪ D) is a symmetric |U| × |U| matrix with entries defined:

dij = {a ∈ C|a(xi) 6= a(xj)} i, j = 1, ..., |U| (8)

Each dij contains those attributes that differ between objects i and j. For find-
ing reducts, the decision-relative discernibility matrix is of more interest. This
only considers those object discernibilities that occur when the corresponding
decision attributes differ. Returning to the example dataset, the decision-relative



discernibility matrix found in table 2 is produced. For example, it can be seen
from the table that objects 0 and 1 differ in each attribute. Although some at-
tributes in objects 1 and 3 differ, their corresponding decisions are the same so
no entry appears in the decision-relative matrix. Grouping all entries containing
single attributes forms the core of the dataset (those attributes appearing in
every reduct). Here, the core of the dataset is {d}.

x ∈ U 0 1 2 3 4 5 6 7

0
1 a, b, c, d
2 a, c, d a, b, c
3 b, c a, b, d
4 d a, b, c, d b, c, d
5 a, b, c, d a, b, c a, b, d
6 a, b, c, d b, c a, b, c, d b, c
7 a, b, c, d d a, c, d a, d

Table 2. The decision-relative discernibility matrix

From this, the discernibility function can be defined. This is a concise nota-
tion of how each object within the dataset may be distinguished from the oth-
ers. A discernibility function fD is a boolean function of m boolean variables
a∗1, ..., a

∗
m (corresponding to the attributes a1, ..., am) defined as below:

fD(a∗1, ..., a
∗
m) = ∧{∨c∗ij |1 ≤ j ≤ i ≤ |U|, cij 6= ∅} (9)

where c∗ij = {a∗|a ∈ cij}. By finding the set of all prime implicants of the discern-
ibility function, all the minimal reducts of a system may be determined. From
table 2, the decision-relative discernibility function is (with duplicates removed):

fD(a, b, c, d) = {a ∨ b ∨ c ∨ d} ∧ {a ∨ c ∨ d} ∧ {b ∨ c}
∧{d} ∧ {a ∨ b ∨ c} ∧ {a ∨ b ∨ d}
∧{b ∨ c ∨ d} ∧ {a ∨ d}

Further simplification can be performed by removing those sets (clauses) that
are supersets of others:

fD(a, b, c, d) = {b ∨ c} ∧ {d}

The reducts of the dataset may be obtained by converting the above expres-
sion from conjunctive normal form to disjunctive normal form (without nega-
tions). Hence, the minimal reducts are {b, d} and {c, d}. Although this is guar-
anteed to discover all minimal subsets, it is a costly operation rendering the
method impractical for even medium-sized datasets.

For most applications, a single minimal subset is required for data reduction.
This has led to approaches that consider finding individual shortest prime im-
plicants from the discernibility function. A common method is to incrementally



add those attributes that occur with the most frequency in the function, re-
moving any clauses containing the attributes, until all clauses are eliminated [9].
However, even this does not ensure that a minimal subset is found - the search
can proceed down non-minimal paths.

3 RSAR-SAT

The Propositional Satisfiability (SAT) problem [5] is one of the most studied NP-
complete problems because of its significance in both theoretical research and
practical applications. Given a boolean formula (typically in conjunctive normal
form (CNF)), the SAT problem requires an assignment of variables/features
so that the formula evaluates to true, or a determination that no such assign-
ment exists. In recent years search algorithms based on the well-known Davis-
Logemann-Loveland algorithm (DPLL) [5] are emerging as some of the most
efficient methods for complete SAT solvers. Such solvers can either find a solu-
tion or prove that no solution exists.

Stochastic techniques have also been developed in order to reach a solution
quickly. These pick random locations in the space of possible assignments and
perform limited local searches from them. However, as these techniques do not
examine the entire search space, they are unable to prove unsatisfiability.

A CNF formula on n binary variables x1, ..., xn is the conjunction of m clauses
C1, ..., Cm each of which is the disjunction of one or more literals. A literal is the
occurrence of a variable or its negation. A formula denotes a unique n-variable
boolean function f(x1, ..., xn). Clearly, a function f can be represented by many
equivalent CNF formulas. The satisfiability problem is concerned with finding
an assignment to the arguments of f(x1, ..., xn) that makes the function equal to
1, signalling that it is satisfiable, or proving that the function is equal to 0 and
hence unsatisfiable [14]. By viewing the selection problem as a variant of SAT,
with a bound on true assignments, techniques from this field can be applied to
reduct search.

3.1 Finding Rough Set Reducts

The problem of finding the smallest feature subsets using rough set theory can be
formulated as a SAT problem. Rough sets allows the generation from datasets of
clauses of features in conjunctive normal form. If after assigning truth values to
all features appearing in the clauses the formula is satisfied, then those features
set to true constitute a valid subset for the data. The task is to find the smallest
number of such features so that the CNF formula is satisfied. In other words,
the problem here concerns finding a minimal assignment to the arguments of
f(x1, ..., xn) that makes the function equal to 1. There will be at least one
solution to the problem (i.e. all xis set to 1) for consistent datasets. Preliminary
work has been carried out in this area [1], though this does not adopt a DPLL-
style approach to finding solutions.



The DPLL algorithm for finding minimal subsets can be found in figure 2,
where a search is conducted in a depth-first manner. The key operation in this
procedure is the unit propagation step, unitPropagate(F ), in lines (6) and (7).
Clauses in the formula that contain a single literal will only be satisfied if that
literal is assigned the value 1 (for positive literals). These are called unit clauses.
Unit propagation examines the current formula for unit clauses and automat-
ically assigns the appropriate value to the literal they contain. The elimination
of a literal can create new unit clauses, and thus unit propagation eliminates
variables by repeated passes until there is no unit clause in the formula. The
order of the unit clauses within the formula makes no difference to the results
or the efficiency of the process.

Branching occurs at lines (9) to (12) via the function selectLiteral(F ). Here,
the next literal is chosen heuristically from the current formula, assigned the
value 1, and the search continues. If this branch eventually results in unsatis-
fiability, the procedure will assign the value 0 to this literal instead and continue
the search. The importance of choosing good branching literals is well known
- different branching heuristics may produce drastically different sized search
trees for the same basic algorithm, thus significantly affecting the efficiency of
the solver. The heuristic currently used within RSAR-SAT is to select the vari-
able that appears in the most clauses in the current set of clauses. Many other
heuristics exist for this purpose [14], but are not considered here.

A degree of pruning can take place in the search by remembering the size of
the currently considered subset and the smallest optimal subset encountered so
far. If the number of variables currently assigned 1 equals the number of those in
the presently optimal subset, and the satisfiability of F is still not known, then
any further search down this branch will not result in a smaller optimal subset.

DPLL(F ).
F , the formula containing the current set of clauses.

(1) if (F contains an empty clause)
(2) return unsatisfiable
(3) if (F is empty)
(4) output current assignment
(5) return satisfiable
(6) if (F contains a unit clause {l})
(7) F ′ ← unitPropagate(F )
(8) return DPLL(F ′)
(9) x ← selectLiteral(F )
(10) if ( DPLL(F ∪ {x}) is satisfiable)
(11) return satisfiable
(12) else return DPLL(F ∪ {−x})

Fig. 2. The definition of the DPLL algorithm



Although stochastic methods have been applied to SAT problems [6], these
are not applicable here as they provide no guarantee of solution minimality. The
DPLL-based algorithm will always find the minimal optimal subset. However,
this will come at the expense of time taken to find it.

3.2 Pre-processing Clauses

The discernibility function can be simplified by replacing those variables that
are simultaneously either present or absent in all clauses by single representative
variables. For instance, in the formula below, variables a and f can be replaced
by a single variable.

{a ∨ b ∨ c ∨ f} ∧ {b ∨ d} ∧ {a ∨ d ∨ e ∨ f} ∧ {d ∨ c}

The first and third clauses may be considered to be {{a ∨ f} ∨ b ∨ c} and {{a ∨
f} ∨ d ∨ e} respectively. Replacing {a ∨ f} with g results in

{g ∨ b ∨ c} ∧ {b ∨ d} ∧ {g ∨ d ∨ e} ∧ {d ∨ c}

If a reduct resulting from this discernibility function contains the new variable g,
then this variable may be replaced by either a or f . Here, {g, d} is a reduct and so
{a, d} and {f, d} are reducts of the original set of clauses. Hence, fewer attributes
are considered in the reduct-determining process with no loss of information [13].
The complexity of this (optional) pre-processing step is O(a ∗ c + a2), where a
is the number of attributes and c is the number of clauses.

From the generation of the discernibility matrix, the core attributes are im-
mediately determined (as discussed in section 2.2). These may then be removed
from the discernibility function as they will appear in every rough set reduct.
Hence, if the union of the core attributes for a dataset results in a reduct, no
search is required as this will be the minimal subset.

4 Evaluation

Initial experimentation has been carried out using the algorithm outlined pre-
viously. The datasets have been obtained from [2]. Table 3 shows the average
time taken for the preprocessing of each dataset. For RSAR, this involves con-
structing partitions for each attribute. For RSAR-SAT, the discernibility matrix
is calculated and simplified. It can be seen from the table that RSAR-SAT re-
quires more pre-processing time. Included in this table are the number of clauses
appearing in the resultant discernibility function for the RSAR-SAT method.

The average times of the execution of these algorithms are also presented
in table 3. The time taken for RSAR-SAT is split into two columns. The first
indicates the average length of time taken to find the minimal subset, the second
how long it takes to verify that this is indeed minimal. For RSAR, an asterisk
next to the time indicates that it found a non-minimal reduct.



Dataset No. of No. of RSAR SAT RSAR SAT: Minimal SAT: Full
clauses Features setup (s) setup (s) (s) (s) (s)

M-of-N 6 13 0.164 2.333 0.171* 0.001 0.007
Exactly 6 13 0.146 2.196 0.304* 0.001 0.008
Exactly2 10 13 0.136 1.898 0.823* 0.001 0.008

Heart 12 13 0.085 0.380 0.207* 0.002 0.009
Vote 12 16 0.076 0.333 0.170* 0.004 0.009

Credit 200 20 0.148 3.873 1.988* 0.077 0.094
LED 167 24 0.125 68.20 0.097* 0.041 0.051

Letters 57 25 0.019 0.074 0.067* 0.024 0.116
Derm 1126 34 0.187 11.31 0.758* 0.094 0.456
Derm2 1184 34 0.133 6.796 0.897* 0.104 0.878

WQ 6534 38 0.168 87.85 9.590* 0.205 116.1
Lung 171 56 0.032 0.125 0.059 0.023 0.786
DNA 3861 58 0.139 30.40 1.644* 0.227 53.81

Table 3. Runtimes for RSAR and RSAR-SAT

The results show that RSAR-SAT is comparable to RSAR in the time taken
to find reducts. However, RSAR regularly fails to find the smallest optimal sub-
set, being misled in the search process. For larger datasets, the time taken for
RSAR-SAT verification exceeds that of RSAR. Note that the verification stage
involves simple chronological backtracking. There are ways in which this can be
made more effective and less time-consuming.

5 Conclusion

This paper has presented a new DPLL-based technique for locating and verifying
minimal subsets in the rough set context. The initial experimentation has shown
that the method performs well in comparison to RSAR, which often fails to find
the smallest subsets. Additional investigations to be carried out here include
evaluating the proposed work against further well established heuristic-based
approaches to reduct finding other than RSAR. Typical methods can be found
in [7–9, 13].

DPLL resorts to chronological backtracking if the current assignment of vari-
ables results in the unsatisfiability of F . Much research has been carried out in
developing solution techniques for SAT that draws on related work in solvers
for constraint satisfaction problems (CSPs). Indeed the SAT problem can be
translated to a CSP by retaining the set of boolean variables and their {0, 1}
domains, and to translate the clauses into constraints. Each clause becomes a
constraint over the variables in the constraint. Unit propagation can be seen to
be a form of forward checking.

In CSPs, more intelligent ways of backtracking have been proposed such as
backjumping, conflict-directed backjumping and dynamic backtracking. Many
aspects of these have been adapted to the SAT problem solvers. In these solvers,
whenever a conflict (dead-end) is reached, a new clause is recorded to prevent



the occurrence of the same conflict again during the subsequent search. Non-
chronological backtracking backs up the search tree to one of the identified causes
of failure, skipping over irrelevant variable assignments.

With the addition of intelligent backtracking, RSAR-SAT should be able to
handle datasets containing large numbers of features. As seen in the preliminary
results, the bottleneck in the process is the verification stage - the time taken to
confirm that the subset is indeed minimal. This requires an exhaustive search of
all subtrees containing fewer variables than the current best solution. Much of
this search could be avoided through the use of more intelligent backtracking.
This would result in a selection method that can cope with many thousands
of features, whilst guaranteeing resultant subset minimality - something that is
particularly sought after in feature selection.
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