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Abstract— Feature Selection (FS) is a technique for dimen-
sionality reduction. Its aims are to select a subset of the
original features of a dataset which are rich in the most
useful information. The benefits include improved data visu-
alisation, transparency, a reduction in training and utilisation
times and potentially, improved prediction performance. Many
approaches based on rough set theory have employed the de-
pendency function which is based on the information contained
in the lower approximation as an evaluation step in the FS
process with much success. This paper presents a novel rough
set FS technique which uses the information of both the lower
approximation dependency value and a distance metric for the
consideration of objects in the boundary region. The use of
this measure in rough set feature selection can result in smaller
subset sizes than those obtained using the dependency function
alone.

I. INTRODUCTION

The principal aim of feature selection is to choose a subset
of the original features present in a given dataset which
provide the most useful information. Following selection, the
most important information of the dataset should still remain.
In fact, efficient FS techniques should be able to detect and
ignore noisy and misleading features. As a result, the dataset
quality may even increase through feature selection.

Classifier accuracy can be increased as a result of fea-
ture selection, through the removal of noisy or misleading
features. Also in domains where features correspond to
measurements (the water treatment plant in [11] demonstrates
this well), fewer features obviously offer advantages such
as mimimising the expense and time consumed taking such
measurements. For those datasets, which are smaller in
size the runtimes of learning algorithms can be improved
significantly. This is equally applicable to both training and
application (e.g. classification) phases. Reduction of the data
to fewer dimensions, also leads to the easy identification
of trends within the data. This becomes evident where few
features have an influence on data outcomes.

Methods which extract knowledge from data (e.g. rule
induction) may also benefit from the use of FS and show
improvement in the readability of the discovered knowledge.
When induction algorithms are applied to reduced data, the
resulting rules are more compact. A good feature selection
process will remove unnecessary attributes which may affect
both rule comprehension and rule prediction performance.

The work on rough set theory (RST) [9] offers a for-
mal methodology that can be employed to reduce the di-
mensionality of datasets, as a preprocessing step to assist
any chosen modelling method for learning from data. It
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assists in selecting the most information-rich features in
a dataset. This is achieved without transforming the data,
whilst simultaneously attempting to minimise information
loss during the selection process. In terms of computational
effort, this approach is highly efficient, and based on simple
set operations, which makes it suitable as a preprocessor
for techniques that are much more complex. In contrast to
statistical correlation-reduction approaches [4], RST requires
no human input or domain knowledge other than the given
datasets. Perhaps most importantly though, it retains the
underlying semantics of the data, which results in models
that are more transparent to human scrutiny.

Most existing rough set-based FS approaches such as
rough-set attribute reduction (RSAR) [2] rely on the in-
formation gathered from the lower approximation of a set
to minimise data. These approaches although successful,
ignore the information that is contained in the boundary
region, or region of uncertainty. Whilst there are also some
existing RST approaches which consider the boundary region
information [3], [5], they adopt an approach which examines
the upper approximation as a whole rather than examining
the lower approximation and boundary region as conceptu-
ally separate entities. This paper presents a method which
examines both the information in the lower approximation
and the information contained in the boundary region for the
selection of feature subsets.

The remainder of this paper is structured as follows. Sec-
tion 2 summarises the theoretical basis and ideas of RSAR,
along with a look at the rough set QUICKREDUCT algorithm.
Section 3 describes a distance-metric assisted approach to
RSAR (DMRSAR) and corresponding algorithm. Section 4
shows the results of applying fuzzy-rough feature selection
FRFS [6], and DMRSAR approaches to a number of datasets,
along with a comparison of run times, classification accura-
cies (using a fuzzy classifier), and dimensionality reduction.
Section 5 concludes the paper along with some suggestions,
as well as a discussion of future work.

II. ROUGH SET ATTRIBUTE REDUCTION

The principal focus of this paper lies in distance metric-
assisted rough set attribute reduction (DMRSAR), however
an in-depth view of the current RSAR methodology is
necessary to appreciate the DMRSAR approach fully.

At the heart of the RSAR approach is the concept of
indiscernibility. Let I = (U,A) be an information system,
where U is a non-empty set of finite objects (the universe)
and A is a non-empty finite set of attributes so that a : U →
Va for every a ∈ A. Va is the set of values that a can take. For



any P ⊆ A, there exists an associated equivalence relation
IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (1)

The partition generated by IND(P ) is denoted
U/IND(P ) and is calculated as follows:

U/IND(P ) = ⊗{a ∈ P : U/IND({a})} (2)

where,

A⊗B = {X ∩ Y : ∀X ∈ A,∀Y ∈ B,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible
by attributes from P . The equivalence classes of the P-
indiscernibility relation are denoted [x]p. Let X ⊆ U . X can
be approximated using only the information contained in P
by constructing the P-lower and P-upper approximations of
X:

PX = {x|[x]p ⊆ X} (4)

PX = {x|[x]p ∩X 6= ∅} (5)

Let P and Q be equivalence relations over U, then the
positive, negative and boundary regions can be defined:

POSP (Q) =
⋃

X∈U/Q

PX (6)

NEGP (Q) = U −
⋃

X∈U/Q

PX (7)

BNDP (Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (8)

By employing this definition of the positive region it is
possible to calculate the rough set degree of dependency of
a set of attributes Q on a set of attributes P . This can be
achieved as follows: For P ,Q ⊆ A, it can be said that Q
depends on P in a degree k (0 ≤ k ≤ 1), this is denoted
(P ⇒k Q) if:

k = γP (Q) =
|POSP (Q)|
|U |

(9)

The reduction of attributes can be achieved through the
comparison of equivalence relations generated by sets of
attributes. Attributes are removed such that the reduced set
provides identical predictive capability of the decision feature
or features as that of the original or unreduced set of features.
A reduct can be defined as a subset of minimal cardinality
Rmin of the conditional attribute set where γR(D) = γC(D).

The QUICKREDUCT algorithm shown in Fig.1 searches
for a minimal subset without exhaustively generating all
possible subsets. The search begins with an empty subset,
attributes which result in the greatest increase in the rough
set dependency value are added iteratively. This process

continues until the search produces its maximum possible
dependency value for that dataset (γc(D)). Note that this
type of search does not guarantee a minimal subset and may
only discover a local minimum.

QUICKREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}
(2) do
(3) T ← R
(4) ∀x ∈ (C −R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) == γC(D)
(9) return R

Fig. 1. The QUICKREDUCT algorithm

A. Rough Set Extensions

Variable precision rough sets (VPRS) [15] attempts to
introduce an element of ’fuzziness’ to the rough set model
and hence (although indirectly) utilise the boundary region
information. The VPRS model allows the relaxation of the
subset operator, and objects can then be classified with
an error smaller than a certain predefined threshold level.
However, the introduction of this threshold is contrary to
the rough set ideology of operating only on the information
contained within the data itself. A similar approach in some
respects to VPRS is the tolerance rough set model (TRSM)
[12]. TRSM employs a similarity relation to minimise data
as opposed to the indiscernibility relation used in classical
rough-sets. This allows a relaxation in the way equivalence
classes are considered.

Other hybrid approaches such as fuzzy-rough sets [6], [7],
have been proposed in order to improve the ability to deal
with uncertainty and vagueness present in data.

III. DISTANCE MEASURE ASSISTED ROUGH SET
ATTRIBUTE REDUCTION

As discussed previously, almost all techniques for rough
set attribute reduction adopt an approach to minimisation
that employs the information contained within the lower
approximation of a set. Very little work has been carried out
where the information in the boundary region is considered
for the purpose of minimisation.

The approach described below uses both the information
contained in the lower approximation and the information
contained in the boundary region to search for reducts. The
positive region (as defined in section II) is the union of lower
approximations, and this is used as described previously for
the minimisation of data. The lower approximation is the set
of those objects which can be said with certainty to belong
to a set X . The upper approximation is the set of objects



which either definitely or possibly belong to the set X . The
difference between the upper and lower approximation is the
area known as the boundary region. The boundary region is
an area of uncertainty.

Currently there is no mechanism in rough set based meth-
ods to deal with the uncertainty of the boundary region. Any
useful information that may be contained in the boundary
region is therefore lost when only the lower approximation
is employed for minimisation. In order to address this, the
DMRSAR method uses a distance measure to determine the
proximity of objects in the boundary region to those in the
lower approximation and assign a significance value to these
distances.

A. Distance Metric and Mean Lower Approximation Defini-
tions

The distance metric attempts to qualify the objects in the
boundary region with regard to their proximity to the lower
approximation. Similar work although that which does not
specifically involve the lower approximation can be found
in [13]. Intuitively, the closer the proximity of an object
in the boundary region to the upper margin of the lower
approximation, the higher the likelihood that it belongs to
the set of interest. For the method detailed here, all of the
distances of objects in the boundary region are calculated.
From this the significance value for a set can be obtained.

Since calculating the margin of the lower approximation
for an n-dimensional space would involve considerable com-
putational effort, a more pragmatic solution is employed,
- the mean of all object attribute values in the P-lower
approximation is calculated. This can be defined as follows:

PXMEAN = {
∑

o∈PX a(o)

|PX|
: ∀a ∈ P} (10)

Using this definition of the mean of the P-lower approxi-
mation, the distance function for the proximity of objects in
the boundary region from the P-lower approximation mean
can be defined, δP (PXMEAN , y), y ∈ BNDP (Q).

The exact function is not defined here as a number of
strategies can be employed for the calculation of the distance
of objects in the boundary. In the worked example section a
Euclidean type distance metric is employed.

In order to measure the quality of the boundary region, a
significance value ω for subset P is calculated by obtaining
the sum of all object distances and inverting it such that:

ωP (Q) = (
∑

y∈BNDP (Q))

δP (PXMEAN , y))−1 (11)

This significance measure takes values from the interval
[0,1] and is used in conjunction with the rough set depen-
dency value to gauge the utility of attribute subsets in a
similar way to that of the rough set dependency measure.
As one measure only operates on the objects in the lower
approximation and the other only on the objects in the
boundary, both entities are considered separately and then
combined to create a new evaluation measure M:

M(X) =
ωX(Q) + γX(Q)

2
(12)

A mean of both values is obtained as both operate in
the range [0,1]. With this in mind, a new feature selection
mechanism can be constructed that uses both the significance
value and the rough dependency value to guide the search
for the best feature subset.

B. Distance Measure-based DMQUICKREDUCT

Figure 2 below shows a rough-set based
DMQUICKREDUCT algorithm based on the previously
described rough algorithm in Figure 1.

DMQUICKREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) T ← {}, R← {}
(2) do
(3) ∀x ∈ (C −R)
(4) if M(R ∪ {x}) > M(T )
(5) T ← R ∪ {x}
(6) R← T
(7) until γR(D) == γC(D)
(8) return R

Fig. 2. The rough-set distance metric-based QUICKREDUCT algorithm

DMQUICKREDUCT is similar to the RSAR algorithm but
uses a combined distance and rough-set dependency value
of a subset to guide the feature selection process. If the
combined value M of the current reduct candidate is greater
than that of the previous, then this subset is retained and
used in the next iteration of the loop. It is important to
point out that the subset is evaluated by examining the value
of M , termination only occurs when the addition of any
remaining features results in the dependency function value
(γT ) reaching that of the unreduced dataset. The value of M
is therefore not used as a termination criterion.

The algorithm begins with an empty subset R. The
do-until loop works by examining the combined depen-
dency/significance value of a subset and incrementally
adding a single conditional feature at a time. For each
iteration, a conditional feature that has not already been
evaluated will be temporarily added to the subset R. The
combined measure of the subset currently being examined
(line 6) is then evaluated and compared with that of T (the
previous subset). If the combined measure of the current
subset is greater, then the attribute added in (line 5) is
retained as part of the new subset T (line 6).

The loop continues to evaluate in the above manner by
adding conditional features, until the dependency value of
the current reduct candidate (γR(D)) equals the consistency
of the dataset (1 if the dataset is consistent).



C. A Worked Example

To illustrate the operation of the new distance measure-
based algorithm, a small example dataset is considered, con-
taining discrete-valued conditional and decision attributes.
The data used in the experimentation section is real-valued,
however crisp data is used in this example to aid explanation
of the approach. Note also for brevity, that only the selection
of two subsets is shown here.

Table I contains seven objects. It has four crisp-valued
conditional attributes and a single crisp-valued decision at-
tribute.

Object a b c d e
0 1 0 2 2 0
1 0 1 0 0 2
2 1 0 0 1 1
3 1 0 0 2 2
4 1 2 0 0 1
5 1 2 0 2 0
6 0 1 2 0 1

TABLE I
EXAMPLE DATASET: CRISP ATTRIBUTES

If attribute d is considered for selection for example, the
lower and upper approximations must first be calculated:

{d} = {} (where e = 0)
{d} = {2} (where e = 1)
{d} = {} (where e = 2)

Similarly for the upper approximation:

{d} = {0,3,5} (where e = 0)
{d} = {1,2,4,6} (where e = 1)
{d} = {0,1,3,4,6} (where e = 2)

Having calculated the upper and lower approximations
for {d}, the positive and boundary regions can be shown to
be:

POS{d}({e}) =
⋃
{∅, {2}} = {2}

BND{d}({e}) =
⋃
{{0, 3, 5}, {2}

{1, 4, 6}, {1, 4, 6}} - {2}
= {0, 1, 3, 4, 5, 6}

The rough-set dependency, the lower approximation mean
and object distances can now all be calculated. As mentioned
in the previous section there are many distance metrics
which can be applied to measure the distance of the objects
in the boundary from the lower approximation mean. For
simplicity, a variation of Euclidean distance is used in the
approach documented here, and this is defined as:

δP (PXMEAN , y) =
√∑

a∈P

fa(PXMEAN , y)2 (13)

where:

fa(PXMEAN , y) = 1 ⇐⇒ a(PXMEAN ) 6= a(y)

= 0 otherwise

From this, the distances of all of the objects in the
boundary region in relation to the lower approximation mean
can now be calculated.

As there is only a single object in the lower approximation,
the mean of the lower approximation does not need to be
calculated in this case. The individual distances of objects
in the boundary of {d} can be shown to be:

obj 0
√

fd(PXMEAN , 0)2 = 1
obj 1

√
fd(PXMEAN , 1)2 = 1

obj 3
√

fd(PXMEAN , 3)2 = 1
obj 4

√
fd(PXMEAN , 4)2 = 1

obj 5
√

fd(PXMEAN , 5)2 = 1
obj 6

√
fd(PXMEAN , 6)2 = 1

Where there is more than one object in the potential reduct
lower approximation, calculating the PXMEAN object can
be achieved in the manner described in the previous section.
Examine all of those attribute values for each of the objects
that appear in the lower approximation of the considered
subset. For example considering the subset {a, d}, the lower
approximation and boundary regions are:

POS{a,d}({e}) =
⋃
{∅, {2}, {4}}

BND{a,d}({e}) =
⋃
{{0, 3, 5}, {0, 3, 5}{1, 6}, {1, 6}}

= {0, 1, 3, 5, 6}
The attribute values for {a, d} for objects {2, 4} can be

obtained by referring to Table I:

for {a} : object 2 = ′1′

object 4 = ′1′

for {d} : object 2 = ′1′

object 4 = ′0′

This results in: PXMEAN = {1, 0.5} for {a, d}

These real-valued numbers however, are not meaningful
when dealing with crisp-valued data (1 is considered as
different from 1.1 as it is from 100). The strategy employed
to address this problem was to examine all of the attribute
values for the attribute in question and assign it a value which
appears in that range of values to which it is closest in terms
of magnitude. So as the PXMEAN value for the attribute a
is an existing value, this does not need to be considered, the
PXMEAN value assigned to d however is not in the range
of values taken by the attribute d. Values of 0.5 or less are
considered to be closer to 0, thus approximated to ′0′, and
becomes PXMEAN = {1, 0}.

Again by utilisation of Euclidean distance and the new
PXMEAN , the distances of objects in the boundary region
can be calculated:

ob 0
√

(fa(PXMEAN , 0)2 + fd(PXMEAN , 0)2) = 1
ob 1

√
(fa(PXMEAN , 1)2 + fd(PXMEAN , 1)2) = 1

ob 3
√

(fa(PXMEAN , 3)2 + fd(PXMEAN , 3)2) = 1
ob 5

√
(fa(PXMEAN , 5)2 + fd(PXMEAN , 5)2) = 1

ob 6
√

(fa(PXMEAN , 6)2 + fd(PXMEAN , 6)2) = 1



It is perhaps worth noting at this point, that although a
form of Euclidean distance is used to calculate the distance of
the objects from the PXMEAN , in calculating that distance,
the difference between two values is always considered in
boolean terms for crisp data. The reason for this is that the
values are states rather than real-valued. This means that if
the value for a particular attribute in the PXMEAN happened
to be 1 and that of the corresponding attribute value of
an object in the boundary region was 1563, the difference
between these two states is (1− 1563) = 1.

Although the individual distances may be useful in iden-
tifying objects that are similar to those in the lower approx-
imation, they are not individually indicative of the subset
goodness. A method of achieving this measure is to calculate
the sum of all of the distances and invert it thus giving a
significance value to each subset considered for selection.
The significance value is real-valued and has membership in
the range [0,1] for the purpose of dealing with crisp data.

Thus for {a, d}:

ω{a,d}({e}) = (
∑

(1, 1, 1, 1, 1))−1 = 0.2

Although the significance measure alone can be used to
search for subsets, empirical results demonstrated that these
were not of equal quality as those returned by RSAR. So
the significance value was combined with the rough set
dependency value. This results in a combined metric in which
both dependency and significance have equal participation.

By calculating the change in combined significance and
dependency value (M) when an attribute is removed from
the set of considered conditional attributes, a measure of
the goodness of that attribute can be obtained. The greater
the change in M the greater the measure of goodness that
attribute has attached to it.

Using the previous examples of the DMRSAR method
the values for the combined metric can be calculated for all
considered subsets of C using DMRSAR:

M{b}({e}) = 0.0 M{b,d}({e}) = 0.3910
M{c}({e}) = 0.0 M{c,d}({e}) = 0.3026

M{d}({e}) = 0.342 M}a,b,d}({e}) = 0.3026
M{a,d}({e}) = 0.2425 M{b,c,d}({e}) = 1.0

It is obvious from the above example that the search
finds a subset in the manner {d} → {b, d} → {b, c, d}. As
{a, d} and {c, d} and also {a, b, d} do not result in the same
increase in combined metric these subsets are ignored.

IV. EXPERIMENTATION

This section presents the results of experimental studies
using the 8 real-valued datasets. It is important to note that
DMRSAR operates on discretised versions of the datasets
listed. These datasets are of the same format as that used
in the example in the previous section. They are small-to-
medium in size, with between 120 and 390 objects per dataset
and feature sets ranging from 5 to 39. All datasets have
been obtained from [1] and [8]. A comparison of the FRFS
algorithm and the distance-based dimensionality reduction

techniques is given based on subset size, classification accu-
racy, and time taken to discover subsets.

QSBA
Dataset Unreduced FRFS DMRSAR
water 2 57.940 61.282 61.282
water 3 48.971 38.710 43.330

cleveland 37.459 39.908 33.850
glass 43.650 37.010 39.696
heart 64.070 67.037 65.799

iris 80.670 86.000 78.667
olitos 64.166 59.106 50.833
wine 94.860 88.202 85.490

TABLE II
AVERAGE CLASSIFICATION ACCURACY

A. Classifier

In the generation of results for classification accuracies,
a single fuzzy classifier QSBA [10] was used, as this was
readily available, although other fuzzy classification systems
could be employed for this purpose.

QSBA works by generating fuzzy rules using the fuzzy
subsethood measure for each decision class and a threshold
to determine what appears in the rule for that decision class.
The fuzzy subsethood measure is then used to act as weights,
and the algorithm then modifies the weights to act as fuzzy
quantifiers.

B. Comparison of Classification Accuracy

The data presented in Table II shows the average clas-
sification accuracy as a percentage obtained using the 10-
fold cross validation method. The classification was initially
performed on the unreduced dataset, followed by the reduced
datasets which were obtained, by using both the FRFS and
DMRSAR dimensionality reduction techniques respectively.

It is interesting to note that where a decrease in clas-
sification accuracy is recorded for FRFS, with respect to
the unreduced data the same is also true for DMRSAR.
This fall in classification accuracy is small when comparing
both FRFS and DMRSAR approaches to the unreduced
data. Also when comparing classification results, where the
DMRSAR approach shows a fall in classification accuracy,
the corresponding reduction in dimensionality (shown in
Table III) is significantly better than that of FRFS.

C. Subset size, and Run times

Presented in Table III is a comparison of subset size,
and runtime data, for both FRFS and DMRSAR approaches.
There is an obvious and clear advantage to the DMRSAR
approach in relation to subset size. There are two datasets
where this is not the case water 2 and water 3. These
datasets are difficult to manipulate, however there has been
no effort to optimise the DMRSAR approach and it is
expected that gains could be made in this respect through
the implementation of such improvements.

It is clear also from the runtime figures that DMRSAR runs
considerably faster than FRFS, with all but water-2 running
in sub 1-second times. This primarily, can be attributed to



Original number of Subset size Time taken to locate subset
Dataset features objects FRFS DMRSAR FRFS DMRSAR
water 2 39 390 11 12 96.58 0.860
water 3 39 390 12 23 158.73 1.266

cleveland 14 297 11 9 24.11 0.219
glass 10 214 9 6 1.61 0.156
heart 14 270 11 10 11.84 0.158

iris 5 150 5 4 0.031 0.062
olitos 26 120 10 8 11.20 0.156
wine 14 178 10 8 1.42 0.125

TABLE III
COMPARISON OF SUBSET SIZE, DEPENDENCY VALUE, & RUN TIMES

the computational complexity of FRFS. Considering also that
no runtime optimisation has been performed for DMRSAR
these results are very encouraging.

V. CONCLUSIONS

Comparison of both FRFS and DMRSAR has shown that
the DMRSAR method is a good starting point for further
work based on the distance metric for investigating the
quality of reducts. The subset size results show that there
is still some additional optimisation required in order to
equal FRFS.Classification accuracy results have been shown
to be very similar to those of FRFS, and in some cases
the DMRSAR method has even shown an increase whilst
simultaneously demonstrating a reduction in dimensionality.
Where a decrease has been observed in relation to FRFS,
it has been small and, as discussed previously, the actual
decrease is not significant.

It is clear from the results obtained in the previous section
that an increase in the efficiency of the DMRSAR algorithm
is highly desirable. The experimental work detailed in this
paper did not take advantage of any optimisations that
are expected would improve the performance of DMRSAR
further.

Future work would include a re-evaluation of how the
mean lower approximation, is calculated. Implementation
of a more accurate calculation of the lower approximation
boundary would mean that distances of objects in the bound-
ary region could be more accurately measured.

The significance measure which is employed for DMR-
SAR is also very basic, and considers the boundary region as
a single significance value which is expressed as membership
value of a unary fuzzy set. By redefining this as a number
of fuzzy sets, the boundary region could be quantified more
accurately by expressing membership in terms of weights
of objects in the boundary in relation to distance from the
lower approximation. Apart from the use of extra fuzzy sets,
the way in which objects in the boundary are related is
another area which is worthy of investigation. By examining
the correlation of objects and their individual distances, it
may be possible to qualify the individual objects and their
information value.

Other areas worthy of investigation include the distance
metric and also the application area of the approach. For the

worked example described in this paper a Euclidean distance
metric is employed. Metrics such as Mahalanobis distance,
ellipsoid distance, and others could also be considered. Ad-
ditionally, the distance-based rough set approach, is equally
applicable to areas such as clustering.
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