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Abstract

Feature selection refers to the problem
of selecting those input features that
are most predictive of a given outcome;
a problem encountered in many areas
such as machine learning, pattern recog-
nition and signal processing. In partic-
ular, this has found successful applica-
tion in tasks that involve datasets con-
taining huge numbers of features (in the
order of tens of thousands), which would
be impossible to process further. Re-
cent examples include text processing and
web content classification. Rough set the-
ory has been used as such a dataset pre-
processor with much success, but current
methods are inadequate at finding min-
tmal reductions. This paper proposes a
new feature selection mechanism based on
Ant Colony Optimization to combat this
difficulty. It also presents a new entropy-
based modification of the original rough
set-based approach. These are applied to
the problem of finding minimal rough set
reducts, and evaluated experimentally.

1 Introduction

The main aim of feature selection (FS) is to de-
termine a minimal feature subset from a problem
domain while retaining a suitably high accur-
acy in representing the original features. In real
world problems FS is a must due to the abund-
ance of noisy, irrelevant or misleading features.
For instance, by removing these factors, learning
from data techniques can benefit greatly. Given
a feature set size n, the task of F'S can be seen as
a search for an “optimal” feature subset through
the competing 2" candidate subsets. The defin-
ition of what an optimal subset is may vary de-
pending on the problem to be solved. Although
an exhaustive method may be used for this pur-
pose, this is quite impractical for most datasets.

Usually FS algorithms involve heuristic or ran-
dom search strategies in an attempt to avoid this
prohibitive complexity. However, the degree of
optimality of the final feature subset is often re-
duced.

Swarm Intelligence (SI) is the property of
a system whereby the collective behaviours of
simple agents interacting locally with their en-
vironment cause coherent functional global pat-
terns to emerge [3]. SI provides a basis with
which it is possible to explore collective (or
distributed) problem solving without central-
ized control or the provision of a global model.
For example, ants are capable of finding the
shortest route between a food source and their
nest without the use of visual information and
hence possess no global world model, adapting
to changes in the environment. Those SI tech-
niques based on the behaviour of real ant colon-
ies used to solve discrete optimization problems
are classed as Ant Colony Optimization (ACO)
techniques. These have been successfully ap-
plied to a large number of difficult combinat-
orial problems like the quadratic assignment [8]
and the traveling salesman [5] problems, to rout-
ing in telecommunications networks, scheduling,
and other problems. This method is particularly
attractive for feature selection as there seems to
be no heuristic that can guide search to the op-
timal minimal subset every time. Additionally,
it should be the case that ants will discover best
feature combinations as they traverse the graph.

Rough set theory [9] has been used success-
fully as a selection tool to discover data depend-
encies and reduce the number of attributes con-
tained in a dataset by purely structural methods
[4, 6]. Given a dataset with discretized attribute
values, it is possible to find a subset (termed a
reduct) of the original attributes using rough sets
that are the most informative; all other attrib-
utes can be removed from the dataset with min-
imal information loss. Previous methods em-
ployed an incremental hill-climbing algorithm to
discover such reducts. However, this often led



to feature subsets of a non-minimal size. This
paper investigates how ant colony optimization
may be applied to this problem of finding min-
imal rough set reducts.

The rest of this paper is structured as fol-
lows. Section 2 discusses the fundamentals of
rough set theory, in particular focusing on di-
mensionality reduction, using an example to il-
lustrate the process. The third section describes
the new entropy-based feature selection method
and applies this to the example dataset. Section
4 introduces the main concepts of ACO and how
this framework can be used for feature selection
in general as well as for rough set feature selec-
tion in particular. Section five details the ex-
perimentation carried out and presents the dis-
covered results. The paper concludes with a dis-
cussion of the observations and highlights future
work in this area.

2 Rough Set Theory

Rough set theory [9] is an extension of con-
ventional set theory that supports approxima-
tions in decision making. It possesses many
features in common (to a certain extent) with
the Dempster-Shafer theory of evidence [13] and
fuzzy set theory [10]. The rough set itself is the
approximation of a vague concept (set) by a pair
of precise concepts, called lower and upper ap-
proximations, which are a classification of the
domain of interest into disjoint categories. The
lower approximation is a description of the do-
main objects which are known with certainty to
belong to the subset of interest, whereas the up-
per approximation is a description of the objects
which possibly belong to the subset.

Rough Set Attribute Reduction (RSAR) [4]
provides a filter-based tool by which knowledge
may be extracted from a domain in a concise
way; retaining the information content whilst re-
ducing the amount of knowledge involved. The
main advantage that rough set analysis has is
that it requires no additional parameters to op-
erate other than the supplied data. It works by
making use of the granularity structure of the
data only. This is a major difference when com-
pared with Dempster-Shafer theory and fuzzy
set theory which require probability assignments
and membership values respectively.

To illustrate the operation of RSAR, an ex-
ample dataset (table 1) will be used. Here,
the table consists of four conditional features
(a,b,c,d), one decision feature (e) and eight ob-
jects. The task of feature selection here is to
choose the smallest subset of these conditional

features so that the resulting reduced dataset
remains consistent with respect to the decision
feature.

xelU a b ¢ d = e
0 1 0 2 2 0
1 0 1 1 1 2
2 2 0 0 1 1
3 1 1 0 2 2
4 1 0 2 0 1
5 2 2 0 1 1
6 2 1 1 1 2
7 0 1 1 o0 1

Table 1: An example dataset

2.1 Theoretical Background

Central to RSAR is the concept of indiscernib-
ility. Let I = (U, A) be an information system,
where U is a non-empty set of finite objects (the
universe) and A is a non-empty finite set of at-
tributes such that a : U — V, for every a € A.
With any P C A there is an associated equival-
ence relation IND(P):

IND(P) = {(z,y) € U*|Va € Pa(z) = a(y)}
1)

The partition of U, generated by IND(P) is de-

noted U/P and can be calculated as follows:

U/P=®{a€ P:U/IND({a})}, (2)
where

AB={XNY :VX € A,VY € B, XNY # 0}
(3)
If (x,y) € IND(P), then x and y are indis-
cernible by attributes from P. The equivalence
classes of the P-indiscernibility relation are de-
noted [z]p. For the illustrative example, if P
= {b,c}, then objects 1, 6 and 7 are indiscern-
ible; as are objects 0 and 4. IND(P) creates the
following partition of U :

U/P=U/IND()®U/IND(c)
={{0,2,4},{1,3,6,7},{5}}®
{{2,3,5},{1,6,7},{0,4}}
= {{2}7 {0’ 4}7 {3}a {17 6, 7}7 {5}}
Let X C U, the P-lower approximation PX and

upper approximation PX of set X can now be
defined as:

PX = {a|[d]p C X} (4)



PX= {s|lpNX£0}  (5)

Let P and @ be equivalence relations over U,
then the positive, negative and boundary regions
can be defined as:

POSp(Q)= |J PX (6)
Xeu/Q

NEGp(Q)=U- |J PXx (7)
XeU/Q

BNDp(@Q = |J Px- |J PX (8

Xeu/Q Xeu/Q

The positive region contains all objects of U that
can be classified to classes of U/Q using the
knowledge in attributes P. For example, let P
={b,c} and @ = {e}, then

POSP(Q) - U{Qa {27 5}; {3}} = {27 3, 5}
NEGp(Q) =

U — U{{0.4}, {2,0,4,1,6,7,5}, {3,1,6,7}} = 0
BNDP(Q) =U- {2,3,5} = {0, 1,4,6, 7}

This means that objects 2, 3 and 5 can cer-
tainly be classified as belonging to a class in at-
tribute e, when considering attributes b and c.
The rest of the objects cannot be classified as the
information that would make them discernible is
absent.

An important issue in data analysis is dis-
covering dependencies between attributes. Intu-
itively, a set of attributes ) depends totally on
a set of attributes P, denoted P = (), if all at-
tribute values from @ are uniquely determined
by values of attributes from P. If there exists a
functional dependency between values of () and
P, then @ depends totally on P. Dependency can
be defined in the following way:

For P,() C A, it is said that @ depends on P
in a degree k (0 < k < 1), denoted P =, @, if

k=yp(@) = POPDL )
U]
If k=1, @ depends totally on P, if 0 < k <
1 @ depends partially (in a degree k) on P, and
if &k = 0 then @ does not depend on P. In the
example, the degree of dependency of attribute
{e} from the attributes {b,c} is:

POS c e
e ({e}) = %

{2,3,5}| 3

1{0,1,2,3,4,5,6,7} 8

2.2 Reduction Method

The reduction of attributes is achieved by com-
paring equivalence relations generated by sets of
attributes. Attributes are removed so that the
reduced set provides the same quality of classi-
fication as the original. A reduct is defined as a
subset R of the conditional attribute set C such
that vg(D) = 4¢c(D). A given dataset may have
many attribute reduct sets, so the set R of all
reducts is defined as:

R={X:XCCrx(D =1} (10)

The intersection of all the sets in R is called
the core, the elements of which are those attrib-
utes that cannot be eliminated without intro-
ducing more contradictions to the dataset. In
RSAR, a reduct with minimum cardinality is
searched for; in other words an attempt is made
to locate a single element of the minimal reduct
set Ryin C R :

Rmin = {X X € R7 VY € R) |X| S |Y|} (11)

The reduct and minimal reduct sets for the ex-
ample are:

R= {{aa b, d}v {(l, &) d}v {ba &) d}v {b7 d}, {Cv d}}
Rinin = {{b7 d}’7 {Ca d}}

The problem of finding a minimal reduct of
an information system has been the subject of
much research [1]. The most basic solution to
locating such a reduct is to simply generate all
possible reducts and choose any with minimal
cardinality. Obviously, this is an expensive solu-
tion to the problem and is only practical for very
simple datasets. Most of the time only one min-
imal reduct is required, so all the calculations
involved in discovering the rest are pointless.

To improve the performance of the above
method, an element of pruning can be intro-
duced. By noting the cardinality of any pre-
discovered reducts, the current possible reduct
can be ignored if it contains more elements.
However, a better approach is needed - one that
will avoid wasted computational effort.

The QUICKREDUCT algorithm given in fig-
ure 1, attempts to calculate a minimal reduct
without exhaustively generating all possible sub-
sets. It starts off with an empty set and adds in
turn, one at a time, those attributes that res-
ult in the greatest increase in dependency, until
this produces its maximum possible value for the
dataset. Note that an intuitive understanding of



QuickREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R<{}

(2) do

(3) T—R

(4) Ve € (C—R)

(5) if Yru(2} (D) > 7 (D)
(6) T— RU{z}

(7) R—T

(8) until yp(D) == yc(D)

(9) return R

Figure 1: The QuickREDUCT Algorithm.

QUICKREDUCT implies that, for a dimensional-
ity of n, (n?+n)/2 evaluations of the dependency
function may be performed for the worst-case
dataset.

According to the QUICKREDUCT algorithm,
the dependency of each attribute is calculated,
and the best candidate chosen. The next best
feature is added until the dependency of the
reduct candidate equals the consistency of the
dataset (1 if the dataset is consistent). In the
example, attribute d is initially chosen as its cor-
responding degree of dependency is the highest
(a value of 0.25). Next, the subsets {a,d}, {b,d}
and {c,d} are evaluated. The subset {b,d} pro-
duces a dependency degree of 1 and the al-
gorithm terminates as a reduct has been found.
The generated reduct shows the way of redu-
cing the dimensionality of the original dataset
by eliminating those conditional attributes that
do not appear in the set.

This process, however, is not guaranteed
to find a minimal reduct. Using the depend-
ency function to discriminate between candid-
ates may lead the search down a non-minimal
path. It is impossible to predict which combina-
tions of attributes will lead to an optimal reduct
based on changes in dependency with the addi-
tion or deletion of single attributes. It does res-
ult in a close-to-minimal reduct, though, which
is still useful in greatly reducing dataset dimen-
sionality.

3 Entropy-Based Data Reduction

A further technique for discovering rough set
reducts is entropy-based reduction (EBR), de-
veloped from work carried out in [6] and is based
on the entropy heuristic employed by machine
learning techniques such as C4.5 [11]. The mo-

tivation behind this approach is the observation
that when the rough set dependency measure
is maximized for a given subset, the entropy is
minimized. For consistent datasets, the result-
ing entropy is 0 when the dependency degree is
1.

EBR is concerned with examining a dataset
and determining those attributes that provide
the most gain in information. The entropy of
attribute A (which can take values a;...a,,) with
respect to the conclusion C (of possible values
C1...cp) is defined as:

m n
B(A) ==Y pla;) >_plcila;) loga plcilay)
j=1 i=1
(12)
This can be extended to dealing with sub-
sets of attributes instead of individual attrib-
utes only. Using this entropy measure, the al-
gorithm used in RSAR can be modified to that
shown in figure 2. Upon each iteration, the sub-
set with the lowest resulting entropy is chosen.
This algorithm requires no thresholds in order to
function - the search for the best feature subset
is stopped when the resulting subset entropy is
equal to the entropy of the full set of conditional
attributes.

EBR(C).
C, the set of all conditional features;

R—{}
do
T—R
Vz € (C—R)
if E(RU{z}) < E(T)
T — RU{z}
R—T
until F(R) == E(C)

1
2
3
4
5
6
7
8
9 return R

NN AN N N N N N
—

Figure 2: The Entropy-based Algorithm.

Returning to the example dataset, EBR
first evaluates the entropy of each individual
attribute:

Subset  Entropy
{a} 1.1887219
{b} 0.75
{c} 0.9387219
{d} 0.75

The subset with the lowest entropy here is
{b} or {d} so one of these is added to the



current feature subset. In this situation, the
first encountered subset is chosen, namely {b}.
The next step is to calculate the entropy of all
subsets containing b and one other attribute:

Subset Entropy
{a,b} 0.5
{b,c}  0.59436095
{b,d} 0

Here, the lowest entropy is achieved with the
subset {b,d}. This is the lowest possible en-
tropy for the dataset (it is consistent), resulting
in the algorithm terminating. The dataset can
now be reduced to these features only. As with
QuickREDUCT, O((n? 4+ n)/2) entropy evalu-
ations are performed in the worst case.

4 ACO for Feature Selection

The ability of real ants to find shortest routes
is mainly due to their depositing of pheromone
as they travel; each ant probabilistically prefers
to follow a direction rich in this chemical. The
pheromone decays over time, resulting in much
less pheromone on less popular paths. Given
that over time the shortest route will have the
higher rate of ant traversal, this path will be re-
inforced and the others diminished until all ants
follow the same, shortest path (the “system” has
converged to a single solution). It is also pos-
sible that there are many equally short paths -
this situation can be handled by ACO as well.
In this situation, the rates of ant traversal over
the short paths will be roughly the same, result-
ing in these paths being maintained while others
are ignored. Additionally, if a sudden change to
the environment occurs (e.g. a large obstacle
appears on the shortest path), the system re-
sponds to this and will eventually converge to a
new solution.

In general, an ACO algorithm can be applied
to any combinatorial problem as far as it is pos-
sible to define:

e Appropriate problem representation. The
problem must be described as a graph with
a set of nodes and edges between nodes.

o Heuristic desirability (n) of edges. A suit-
able heuristic measure of the “goodness” of
paths from one node to every other connec-
ted node in the graph.

o Construction of feasible solutions. A mech-
anism must be in place whereby possible
solutions are efficiently created.

e Pheromone updating rule. A suitable
method of updating the pheromone levels
on edges is required with a corresponding
evaporation rule. Typical methods involve
selecting the n best ants and updating the
paths they chose.

e Probabilistic transition rule. The rule that
determines the probability of an ant travers-
ing from one node in the graph to the next.

The feature selection task may be reformu-
lated into an ACO-suitable problem. ACO re-
quires a problem to be represented as a graph
- here nodes represent features, with the edges
between them denoting the choice of the next
feature. The search for the optimal feature sub-
set is then an ant traversal through the graph
where a minimum number of nodes are visited
that satisfies the traversal stopping criterion.
Figure 3 illustrates this setup - the ant is cur-
rently at node a and has a choice of which fea-
ture to add next to its path (dotted lines). It
chooses feature b next based on the transition
rule, then ¢ and then d. Upon arrival at d, the
current subset {a, b, ¢, d} is determined to satisfy
the traversal stopping criterion (e.g. a suitably
high classification accuracy has been achieved
with this subset). The ant terminates its tra-
versal and outputs this feature subset as a can-
didate for data reduction.

{a,b,c,d}

Figure 3: ACO problem representation for F'S

A suitable heuristic desirability of traversing
between features could be any subset evaluation
function - for example, an entropy-based meas-
ure [11] or the rough set dependency measure
[9]. The heuristic desirability of traversal and
edge pheromone levels are combined to form the
so-called probabilistic transition rule, denoting
the probability of an ant at feature ¢ choosing to
travel to feature j at time ¢:

_ [Tij(t)]a-[m‘j]ﬁ
e ()] [nal?
where k is the number of ants, JF the set of

ant k’s unvisited features, 7;; is the heuristic de-
sirability of choosing feature 7 when at feature ¢

Py () (13)



and 7;;(t) is the amount of virtual pheromone on
edge (i,7). The choice of o and f is determined
experimentally.

Depending on how optimality is defined for
the particular application, the pheromone may
be updated accordingly. For instance, subset
minimality and “goodness” are two key factors
so the pheromone update must be proportional
to “goodness” and inversely proportional to size.
There is also the possibility of allowing the re-
moval of features here. If feature h has been
selected already, an alternative transition rule
may be applied to determine the probability of
removing this attribute. However, this is an ex-
tension of the approach and is not necessary to
perform feature selection.

The overall process of ACO feature selection
can be seen in figure 4. The process begins by
generating a number of ants, k, which are then
placed randomly on the graph (i.e. each ant
starts with one random feature). Alternatively,
the number of ants to place on the graph may be
set equal to the number of features within the
data; each ant starts path construction at a dif-
ferent feature. From these initial positions, they
traverse edges probabilistically until a traversal
stopping criterion is satisfied. The resulting sub-
sets are gathered and then evaluated. If an op-
timal subset has been found or the algorithm
has executed a certain number of times, then
the process halts and outputs the best feature
subset encountered. If neither condition holds,
then the pheromone is updated, a new set of ants
are created and the process iterates once more.

To tailor this mechanism to find rough set
reducts, it is necessary to use the dependency
measure given in equation 9 as the stopping cri-
terion. This means that an ant will stop build-
ing its feature subset when the dependency of
the subset reaches the maximum for the data-
set (the value 1 for consistent datasets). The
dependency function may also be chosen as the
heuristic desirability measure, but this is not ne-
cessary. In fact, it may be of more use to employ
a non-rough set related heuristic for this purpose
to avoid the pitfalls of a QUICKREDUCT style
search.

5 Results

In order to evaluate several of the approaches to
rough set-based feature selection, an investiga-
tion into how these methods perform in terms
of resulting subset optimality has been carried
out. Several real and artificial datasets are
used for this purpose. In particular, it is inter-

esting to compare those methods that employ
an incremental-based search strategy with those
that adopt a more complex stochastic mechan-
ism.

5.1 Experimental Setup

Four techniques for finding crisp rough set re-
ducts are tested here on 13 datasets. These tech-
niques are: RSAR (using QUICKREDUCT), an
entropy based feature selector EBR (see section
3), GenRSAR (genetic algorithm-based), An-
tRSAR (ant-based). Before the experiments are
described, a few points must be made about the
final two approaches, GenRSAR and AntRSAR.

GenRSAR employs a genetic search strategy
in order to determine rough set reducts. The
initial population consists of 100 randomly gen-
erated feature subsets, the probability of muta-
tion and crossover set to 0.4 and 0.6 respectively,
and the number of generations is set to 100. The
fitness function considers both the size of subset
and its evaluated suitability, and is defined as
follows:

,lci- 1R

fitness(R) = vr(D) Tl

(14)

AntRSAR follows the mechanism described
in section 4. Here, the precomputed heuristic
desirability of edge traversal is the entropy meas-
ure, with the subset evaluation performed using
the rough set dependency heuristic (to guarentee
that true rough set reducts are found). The
number of ants used is set to the number of
features, with each ant starting on a different
feature. Ants construct possible solutions until
they reach a rough set reduct. To avoid fruit-
less searches, the size of the current best reduct
is used to reject those subsets whose cardinality
exceed this value. Pheromone levels are set at
0.5 with a small random variation added. Levels
are increased by only those ants who have found
true reducts. The global search is terminated
after 250 iterations, « is set to 1 and (3 is set to
0.1.

The experiments were carried out on 3 data-
sets from [12], namely m-of-n, exactly and ez-
actly2. The remaining datasets are from the
machine learning repository [2]. Those datasets
containing real-valued attributes have been dis-
cretized to allow all methods to be compared
fairly.
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Figure 4: ACO-based feature selection overview

5.2 Experimental Results

Table 2 shows the results of the methods on the
13 datasets. It shows the size of reduct found
for each method. RSAR and EBR produced the
same reduct every time, unlike AntRSAR which
often found different reducts and sometimes dif-
ferent reduct cardinalities. On the whole, it ap-
pears to be the case that AntRSAR outperforms
the other three methods. This is at the expense
of the time taken to discover these reducts; in
all experiments the rough ordering of techniques
with respect to time is: RSAR < EBR < An-
tRSAR < GenRSAR. The performance of the
ant-based and GA-based methods may well be
improved by fine-tuning the parameters to each
individual dataset.

From these results it can be seen that even for
small and medium-sized datasets, incremental
hill-climbing techniques often fail to find min-
imal reducts. For example, RSAR is misled early
in the search for the LED dataset, resulting in
it choosing 7 extraneous features. Although this
fault is due to the non-optimality of the guiding
heuristic, a perfect heuristic does not exist ren-
dering these approaches unsuited to problems
where a minimal subset is essential. However,
for most real world applications, the extent of
reduction achieved via such methods is accept-
able. For systems where the minimal subset
is required (perhaps due to the cost of feature

measurement), stochastic feature selection must
be used.

6 Conclusion

This paper has highlighted the shortcomings of
conventional hill-climbing approaches to feature
selection. These techniques often fail to find
minimal data reductions. Some guiding heur-
istics are better than others for this, but as no
perfect heuristic exists there can be no guarantee
of optimality. From the experimentation, it ap-
pears that the entropy-based measure is a more
useful hill-climbing heuristic than the rough set-
based one. However, the entropy measure is a
more costly operation than that of dependency
evaluation which may be an important factor
when processing large datasets.

Due to the failure of hill-climbing methods
and the fact that complete searches are not feas-
ible for even medium-sized datasets, stochastic
approaches provide a promising feature selec-
tion mechanism. This paper proposed a new
technique based on Ant Colony Optimization for
this purpose. The initial results are promising,
but more experimentation and further investig-
ation into its associated parameters is required.
Work is being carried out into the application of
this to fuzzy-rough set-based feature selection
[7], where the problem is further compounded
by the non-monotonicity of the fuzzy-rough de-



Dataset Features | RSAR | EBR | AntRSAR GenRSAR
M-of-N 13 8 6 6 6(6) 7(12)
Exactly 13 9 8 6 6(10) 7(10)
Exactly?2 13 13 11 |10 10(9) 11(11)
Heart 13 7 7| 6(18) 7(2) 6(18) 7(2)
Vote 16 9 9 |8 8(2) 9(18)
Credit 20 9 10 | 8(12) 9(4) 10(4) | 10(6) 11(14)
Mushroom 22 5 4 4 5(1) 6(5) 7(14)
LED 24 12 5 5(12) 6(4) 7(3) 6(1) 7(3) 8(16)
Letters 25 9 9 8 8(8) 9(12)
Derm 34 7 6 | 6(17) 7(3) 10(6) 11(14)
Derm2 34 10 10 | 8(3) 9(17) 10(4) 11(16)
wQ 38 14 14 | 12(2) 13(7) 14(11) | 16
Lung 56 4 4 4 6(8) 7(12)

Table 2: Reduct sizes found for four techniques

pendency measure.
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