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Abstract. Agent-oriented programming languages have gone a long way
in the level of sophistication offered to programmers, and there has also
been much progress in tools to support multi-agent systems development
using such languages. However, much work is still required in mechanisms
that can reduce the burden, typically placed on programmers, of ensur-
ing that agents behave rationally, hence being effective and as efficient as
possible. One such mechanisms is reasoning about declarative goals, which
is increasingly appearing in the agents literature; it allows agents to make
better use of resources, to avoid plans hindering the execution of other
plans, and to be able to take advantage of opportunities for reducing the
number of plans that have to be executed to achieve certain combina-
tions of goals. In this paper, we introduce a Petri net based approach
to such reasoning, and we report on experimental results showing that
this technique can have a significant impact in the agent’s behaviour
(even though these experiments do not yet cover reasoning about re-
source usage). Our long term goal is to provide a number of alternative
approaches for such reasoning, and incorporate them into interpreters
for agent-oriented programming languages in such a way that the most
appropriate approach is used at given circumstances.

1 Introduction

Recent years have seen an astonishing progress in the level of sophistication
and practical use of various different agent-oriented programming languages [3].
These languages provide constructs that were specifically created for the im-
plementation of systems designed on the basis of the typical abstractions used
in the area of autonomous agents and multi-agent systems, therefore of much
help for the development of large-scale multi-agent systems. However, the bur-
den of ensuring that an agent behaves rationally in a given application is left to
programmers (even though the languages do offer some support for that task).

Clearly, it would make the work of multi-agent systems developers much eas-
ier if we could provide (semi-) automatic mechanisms to facilitate the task of
ensuring such rationality, provided, of course, that they are sufficiently fast to
be used in practical agent programming languages. One important issue for a
rational agent is that of deliberation — that is, deciding which goals to adopt



in the first place (see [15, 9, 2] for some approaches to agent deliberation in the
context of agent programming languages). Besides, once certain goals have been
adopted, the particular choice of plans to achieve them can cause a significant
impact in the agent’s behaviour and performance, as particular plans may inter-
fere with one another (e.g., through the use of particular resources, or through
the effects they have in the environment). The general term for the reasoning
that is required to address these issues, which requires declarative goal represen-
tations [25, 24], has been called reasoning about goals.

Much work has been published recently introducing various approaches which
contribute to addressing this problem [7, 21–23, 11, 16]. In most cases, in partic-
ular in the work by Thangarajah et al. and Clement et al., the idea of “sum-
mary information” is used in the proposed techniques for reasoning about goals.
However, the size of such summary information can potentially grow exponen-
tially on the number of goals and plans the agent happens to be committed to
achieve/execute [8]. It remains to be seen how practical those approaches will
be for real-world problems.

In our work, we are interested in mechanisms for goal reasoning which do
not require such summary information. This, of course, does not guarantee that
they will be more efficient than the existing approaches. In fact, our approach
is to try and use well-known formalisms with which to attempt to model the
goal reasoning problem, then experimentally evaluating the various different ap-
proaches. We aim, in future work, to combine those approaches in such a way
that agents can use one mechanism or another in the circumstances where each
works best, if that turns out to be practically determinable.

So far, we have been able to model the goal reasoning problem using two
different approaches, neither of which requires summary information as in the
existing literature on the topic (the next section gives a detailed description of
such work). First, we have modelled goal-adoption decision making as a reach-
ability problem in a Petri net [14]. Then, using the idea and method suggested
in [18, 17] for translating a Hierarchical Task Network (HTN) plan into a Con-
straint Satisfaction Problem (CSP), we have also developed a method for, given
an agent’s current goals and plans (possibly including a goal the agent is con-
sidering adopting), generating an instance of a CSP which can produce a valid
ordering of plans — if one exists — to help the agent avoid conflicts (and take
advantage of opportunities) when attempting to achieve all its goals.

For reasons of space, in this paper we focus on presenting the Petri net
based technique only, and we also give initial experimental analysis of an agent’s
performance when using such goal reasoning in two different scenarios; the results
of the CSP-based technique will be reported in a separate paper. The remainder
of this paper is organised as follows. Section 2 gives an overview of the types
of goal reasoning and various approaches appearing in the literature. Then in
Section 3, we look at how such reasoning can be incorporated into a Petri net.
Section 4 provides an experimental analysis of the Petri-net based reasoning.
Finally, we give conclusions and a summary of future work in Section 5.



2 Reasoning About Goals

There are multiple types of conflicts that rational agents need to be aware of;
these can be internal to the individual agent, or external between two or more
agents [10]. While conflicts can occur in social interactions, when attempting to
delegate or collaborate over a set of given tasks [5], the main focus of this paper
is to look at conflicts between goals within an individual agent.

The conflicts arise within a single agent when it has taken on two or more
goals that are not entirely compatible [10]. The conflicts may be caused if there
is a limited amount of resources available [23, 16], or it may be due to the effects
the actions involved in achieving the goals have on the environment; the actions
in the plans being executed to achieve concurrent goals can cause effects which
can hinder, or even prevent altogether, the successful completion of some of those
plans [21, 22].

In all the work by Thangarajah et al. referred above, a Goal-Plan Tree (GPT)
is used to represent the structure of the various plans and sub-goals related to
each goal (see Figure 1). In order for a plan within the tree to be completed,
all of its sub-goals must first be completed. However, to achieve a goal or sub-
goal only one of its possible plans needs to be achieved. At each node on the
tree, summary information is used to represent the various constraints under
consideration. The reasoning done in their approach is solely internal to the
individual agent.

SG3: TransmitResults

P2: MoveToPlan(A)

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A)

P3: AnalyseSoilPlan(A) P5: TransmitResultsPlan2P4: TransmitResultsPlan1
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P6: TransmitDataPlan
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P8: TransmitDataPlan
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P1: SoilExpPlan

G1: PerformeSoilExpAt(A)

Fig. 1. Goal-Plan Tree for a Mars rover as used by Thangarajah et al. Goals and
sub-goals are represented by rectangles, while plans are represented by ovals.

Reasoning about effects of actions needs to consider both positive and nega-
tive impacts in relation to other plans, and causal links that may exist between
goals. In the first paper by Thangarajah et al. where reasoning about effects



is considered, they show how to detect and avoid negative interference between
goals [21]. By using additional types of summary information, similar to those
developed in [7], such as summaries for definite or potential pre-conditions and
in-conditions along with post-conditions or effects, they monitor the causal links
between effects produced by a plan which are used as pre-conditions of another
to ensure these are not interfered with. To derive these effects, a formal notation
based on set theory is defined, to allow the agent to produce the summary in-
formation in order to reason about conflicting actions between its current goals
and any new goals the agent might consider adopting.

When conflicts occur, often they can be handled by scheduling the plan
execution so as to protect the causal links until they are no longer required.
Also in [21], the authors determine a sequence of steps for an agent to schedule
plan execution so as to avoid interference, including checks that need to be
performed before an agent can accept to adopt a new goal. Empirical results
from experiments using the reasoning described in that paper are given in [19],
comparing the performance of an agent with and without such reasoning, varying
the level of interaction between goals and the amount of parallelism. The results
show the improvement in number of goals successfully achieved, and only slight
increase in time taken to perform the additional reasoning.

In [22], Thangarajah et al. focus on exploiting positive interaction between
goals. This is where two or more plans cause the same effect, so rather than
executing both, it might be possible to merge the two plans, thereby improving
the agents’ performance. To represent this form of reasoning, they again use the
goal-plan tree with summary information including the definite and potential
effects of the plans and goals; they also define a particular method to derive
such summaries. They then describe how an agent can decide if it is feasible
to merge the plans, and how to avoid waiting too long if one of the two plans
selected for merging is reached considerably sooner than the other or the second
plan is never reached, in case it was a “potential” merge rather than a “definite”
merge. Results from experiments using this type of reasoning are once again
presented in [19].

Horty and Pollack also consider positive interaction between plans [11]. In
their work, an agent evaluates the various options it has between its goals within
the context of its existing plans. They use estimates for the costs of plans, and
where there is some commonality between some plans, those plans will be con-
sidered for merging. If the estimated merged cost is less than the sum of the two
separate estimated costs, then the plans are actually merged. The example they
give to illustrate this is an “important” plan for going to a shopping centre to
buy a shirt, while also having a less important goal of buying a tie. Both plans
involve getting money and travelling to a shopping centre, so if the overall cost
of buying the tie at the same time as the shirt is less than that of buying the tie
separately, then the plans will be merged, even though the goal of having a tie
is not as important. In this way, they look for the least expensive execution of
plans involved in achieving the goals.



When referring to reasoning about resource usage in a GPT [23], Thangara-
jah et al. consider both reusable and consumable resources. For example, a com-
munication channel is a reusable resource, while energy or time is consumed so
they cannot be reused. Summaries of the resource requirements are passed up
the tree towards the goal, describing which resources are necessary in order to
achieve the goals, and also which resources are used only potentially. They intro-
duce a notation, based on set theory, allowing the derivation of summaries for
the resource requirements of each goal and plan with sub-goals. These can then
be used to reason about where conflicts might occur, so that they can be avoided
by choosing suitable alternative plans or appropriately ordering plan execution.
An algorithm is given to compute whether it is feasible to add a new goal to
the existing set of goals. The initial formation of the goal-plan tree and sum-
mary information for the agent is produced at compile time, and the highlighted
conflicts are then monitored at runtime in an attempt to avoid conflict.

Empirical results from experiments done using such reasoning are given
in [20]. They consider goal-plan trees of depth 2 and depth 5, varying the amount
of parallelism between multiple goals, and the amount of competition for the re-
sources either by reducing the availability or increasing the number of goals
competing for the same resources. The reasoning is implemented as an exten-
sion to the JACK agent development system [4]; the extended system is called
X-JACK. The performance of X-JACK is compared against the performance of
JACK without any of the additional reasoning, and shows an improvement in
performance regarding the number of goals successfully achieved, typically with
only a half-second time increase in the computation cost.

In comparison, [16] also consider the use of limited resources when deliber-
ating and performing actions in a multi-agent environment, where coordination
and negotiation with the other agents is required. In their attempt to address
the problem of limited resources within meta-level control, they make use of
reinforcement learning to improve the agents’ performance over time.

To our knowledge, while Thangarajah et al. have reported on experimen-
tal results for reasoning separately about each of those types of interactions
between plans and goals as well as resource usage, no results appear in the liter-
ature showing what is the performance obtained when an agent is doing all those
forms of reasoning simultaneously. All results are given for the individual types,
to demonstrate the sole effects from the individual reasoning and the (typically
very small) amount of added computational costs associated with it. The lack
of combined results seem to suggest the possibility of there being interference
between the different forms of reasoning presented in their approach. For exam-
ple, if one reasoning suggests that performing a particular plan will cause one
type of conflict (say, lack or resources), while another reasoning suggests that
the only alternative plan for that goal will also cause a conflict (say, a negative
interference with another goal), the agent may be unable to decide between the
two without some additional overriding reasoning. It also remains unknown if
their approach is still equally efficient when the various types of reasoning are
combined.



The results were also limited in the depth of trees tested. In the real world,
it is likely the plans (and hence the goals) would be far more complex, leading
to trees of significantly greater sizes. However, using the summary information,
as a goal-plan tree grows, the amount of summary information to handle could
potentially grow exponentially [8], which would have a significant impact on the
performance of the agent for larger problems.

Prior to the time that the work by Thangarajah et al. was published, the
Distributed Intelligent Agents Group led by Edmund Durfee, produced some
similar research for modelling — and reasoning about — plan effects, extending
their work to cover multi-agent systems rather than individual agents [6–8]. In
their work, they are interested in reasoning about conflicts to coordinate the
actions of agents that use HTN planning, while the work by Thangarajah was
based around BDI agents (focusing on individual agents instead). In [7], Clement
et al. present the summary information for pre-, in-, and post-conditions of plans,
which is adopted by Thangarajah et al. and used in goal-plan trees to reason
about both resources and effects.

3 Reasoning About Goals using Petri Nets

Petri nets are mathematical models, with an intuitive diagrammatic represen-
tation, used for describing and studying concurrent systems [14]. They consist
of places that are connected by arcs to transitions, with tokens that are passed
from place to place through transitions. Transitions can only fire when there
are sufficient tokens in each of the input places, acting as pre-conditions for the
transition. A token is then removed from each input place, and one is placed
in each of the output places. Places are graphically represented as circles, while
transitions are represented as rectangles.

There are many variations on the basic Petri net representation, and many of
these have been used in a variety of agent systems [13, 1]. Arcs can have weights
associated with them, the default weight being one. Greater weights on arcs
either require the place to have at least that many tokens for the transition to fire,
or the transition adds to the output place that number of tokens as its output.
Coloured Petri Nets are able to hold tokens of different types, representing for
example different data types. The weightings on the arcs then match up and
select the relevant tokens to fire. Reference nets allow nets to contain sub-nets.
Renew is a Petri net editor and simulator that is able to support high-level Petri
nets such as coloured and reference nets [12].

We have developed a method to represent an agents’ goals and plans using
Petri nets. Essentially, we are able to represent the same problems as expressed
by goal-plan trees in the work by Thangarajah et al. (see Figure 2 for an exam-
ple). According to the method we have devised, goals and plans are represented
by a series of places and transitions. A plan consists of a sequence of actions that
starts with a place, and has a transition to another place to represent each of the
atomic actions that occur in sequence within that plan. Goals are also set up as
places with transitions linked to the available plans for each goal or subgoal. In



Figure 2, the plans are enclosed in dark boxes, while the goals and subgoals are
in light boxes. The plans and subgoals are nested within each other, matching
the hierarchical tree structure of the GPT.

Fig. 2. Petri Net Representation of
the Mars Rover GPT in Figure 1.

The goal reasoning that we have in-
corporated into the Petri nets is to allow
an agent to handle both positive and neg-
ative interactions between multiple goals;
we are in the process of incorporating rea-
soning about resources on top of these.
Our aim is to be able to reason about
these three aspects together whilst also
avoiding the use of any “summary infor-
mation” as in the work by Thangarajah et
al. and Clement et al.. This reasoning and
the representation of the plans and goals
themselves can each be seen as an inter-
linked module, as will be discussed below.
This modularisation of the method we use
to represent goals and plans as (sub) Petri
nets allows an agent to dynamically pro-
duce Petri net representations of goals and
plans (and their relationship to existing
goals and plans) that can then be used
by an agent to reason on-the-fly about its
ability to adopt a new goal given its cur-
rent commitments towards existing goals.

Currently the Petri nets are being gen-
erated manually, but they have been de-
signed in such modular way with the aim
of being able to automate this process.
An agent will then be able to generate
new Petri nets to model new goals as
the agent generates them or receive re-
quests to achieve goals, allowing it to rea-
son about whether it is safe to accept the

new goal. If the goal is accepted then the Petri nets can be used to advise plan
selection to avoid interference and to benefit from positive interactions. Figure 3
shows the main modules being used in the Petri nets. Some of the notation used
in the Petri nets is specific to the Renew Petri net editor.

The negative interference reasoning protects the effects that have been caused
in the environment until they are no longer required by the goal that caused the
change. When an agent executes a plan that produces an effect in the environ-
ment, and that effect will be required by a later plan, the effect is immediately
marked as protected until it is no longer required. This is done by using a protect
module (Figure 3(a)) that adds a set of transitions and places to the Petri nets
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Fig. 3. Petri-Net Representation of Modules for Reasoning about Goals.

so that when the relevant effect takes place, a transition is fired to protect it,
then when it is no longer needed another transition is fired to release the pro-
tected effect. If another plan attempts to change something that will impact on
the protected effects, then it will be stopped and forced to wait until the effects
are no longer protected (i.e., until the release transition fires).

In the Mars Rover example, negative interference occurs when two or more
goals require taking samples at different locations and after having moved to
the first location, a second goal interferes to take the rover to another location
before the sample is taken to satisfy the fist goal. To avoid this, the causal link
is identified based on the effects and preconditions of the plans when Petri nets
are generated, and a protect module is added to ensure other goals and plans
cannot interfere with the casual link until the necessary plans have executed. In
the Petri nets, the protect module is implemented by adding a place that holds
a token to indicate if a variable is protected or not, with transitions that the



plan fires to protect the variable at the start of the causal link, then another
transition to unprotect the variable when it is no longer required.

The positive interaction reasoning checks whether the desired effects have
already been achieved (such as a Mars rover going to a specific location to
perform some tests), or whether multiple goals can all be achieved by a merged
plan rather than a plan for each goal, such as the Mars Rover transmitting all
the data back in one go instead of transmitting separately individual results
obtained by separate goals. When two or more plans achieve the same effect,
only one of the plans has to be executed. This can greatly reduce the number
of plans that are executed, especially if one of the plans has a large number of
subgoals and plans. As a result, this can speed up the completion and reduce the
costs of achieving the goals, particularly if there is a limited amount of resources.

In the Mars rover example, positive interaction can take place in both ways.
Firstly, when moving to a different location the rover may have several goals all
of which required going to the same location; however, only one plan needs to be
actually executed to take the rover there. In the Petri nets, this is handled by a
pre-check module (Figure 3(b)) that first checks whether another plan is about
to, or has already, moved the rover to the new location, and if not it then fires
a transition to indicate that the rover will be moving to the new location so the
similar plans for other parallel goals do not need to be executed.

The second form of positive interaction is the direct merging of two or more
plans. In the Mars rover scenario, this can occur when two or more goals are
ready to transmit the data they have collected back to the base station. A merge
module (Figure 3(c)) is added to indicate that when a goal is ready to transmit
data back, it also checks to see if other goals are also ready to transmit their
data. If so, all data that is ready is transmitted by the one plan rather than each
goal separately executing individual plans to transmit the data.

4 Experimental Results and Analysis

We have used two different scenarios in our evaluation: the first is an abstract
example and the other is the simple Mars rover example.

Scenario 1: Abstract Example

In this scenario, the goal structure in Figure 4 was used for each of the goals
that were initiated. In the experiments reported here, we have opted for not
considering varying structures, but this will be considered in future experiments.
The experiments we conducted with Scenario 1 aimed to match, to the extent
we could understand and reproduce, the settings of the experiments conducted
in [19] to evaluate the GPT and summary information method that they intro-
duced, in particular their experiments to compare the performance of JACK and
X-JACK.



Goal/Subgoal

Plan

Fig. 4. Goal-Plan Tree
Used for all Goals in
Scenario 1.

In our experiments using Scenario 1, ten goal types
were defined adjusting the selection of plans within
the goal plan tree that would interact with those of
other goals. The interaction was modelled through a
set of common variables to which each goal was able
to assign values. The variables and values are used to
represent the different effects that plans can have in
the environment.

To stress-test the Petri nets, tests were set up that
involved high levels of interaction, using a set of 5
variables, or low levels of interaction, using a set of 10
variables. Out of the 10 goal types, 5 of the goal types
used 3 variables, while the remaining 5 goals types
only altered 1 variable. During testing, 20 instanti-
ations of the 10 possible goal types were created at
random intervals and running concurrently. The Petri
nets were implemented using Renew 2.1 [12], and each
experiment was repeated 50 times.

Four experimental setups were used, with “High & Long” in the graphs (see
Figure 5) corresponding to High Levels of Negative Interference for Long Peri-
ods, down to “Normal & Random” corresponding to Normal Levels of Negative
Interference for Random Length Periods. The periods are controlled by defining
the levels within the GPT that the interaction occurs at; so, for example, in
the positive interaction, the duration over which the positive interaction takes
place can be maximised by making plans in the top levels of the GPT with the
greatest depth to interact.

A dummy Petri net was set up using the same goal structure and set of goal
types, but without any of the reasoning for positive or negative interaction. The
results from running this against the Petri net where such reasoning was included
could then be compared to show the improvements obtained by the reasoning.

Negative Interference. Each goal was given a set of 1 or 3 variables to which
it was to assign a given value and then use it (recall that this represents the
effects of plan execution in the environment). The positions in the goals where
the variables were set and then used were varied either randomly or set to require
the variables to be protected for the longest possible periods (meaning the state
of the world caused by a plan is required to be preserved for longer periods
before the interfering plans can be executed). The selections of plans in each goal
are designed to cause interference for other goals being pursued simultaneously.
This is done by ensuring a significant overlap in the variables which the goals are
setting, particularly under high levels of interaction. The effect of the reasoning
is measured by counting the number of goals achieved both by the “dummy”
and by the “reasoning” Petri nets.

The results are shown in Figure 5(a). The graphs show the averages for the
number of goals achieved by the reasoning Petri net and the dummy Petri net
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Fig. 5. Results for Negative Interference and Positive Interaction in an Abstract Sce-
nario.

from the 50 runs for each of the experiment sets, also showing the standard
deviation. The effects of the negative reasoning are immediately obvious by the
fact that the Petri nets with goal reasoning were consistently able to achieve
all the goals, while the dummy Petri nets achieved, on average, very few goals,
particularly when there were high levels of interference and variables that had
to be protected for a long time, where it was only able to achieve approximately
21% of the goals, on average. Even at normal levels of interaction and random
depth positioning, it was still only able to achieve, on average, 46% of the goals.
The standard deviation shows that the performance of the dummy Petri nets
was highly variable within the 50 runs of this experiment.

Positive Interaction. To measure the effects of reasoning about positive inter-
actions, each goal was again given a set of 1 or 3 variables, with overlap between
the goals, so that we can determine a selection of plans for each goal which can
potentially be achieved by just executing one of the plans. Each goal contains
25 plans (in its GPT), of which at least 21 would have to be executed if the goal
was being pursued on its own. This is due to two subgoals having a choice of
plans to execute in the GPT. The scenario was set up to ensure all the goals are
achievable without any reasoning, so the effects of the reasoning are measured
by the number of plans that are required to execute in order to achieve all the
goals.

As with the negative interference, the depth of the plans within the goal-plan
structure at which merging can occur is varied. Plans with more subgoals will
have a greater impact on the number of plans executed when merged than plans
with no or very few subgoals. The tests were set with mergeable plans either
high up in the GPT, or randomly placed within the tree.

The results are shown in Figure 5(b). The graphs show the averages for the
number of plans executed by an agent using the Petri net for goal reasoning
and a dummy agent; the averages are taken from the 50 runs for each of the
experiment setups, and the graphs also show the standard deviations. There is



clearly a major improvement between the “dummy” and the “reasoning” agents
in all of the simulation settings, with the reasoning agent requiring significantly
fewer plans to be executed than the dummy, whilst still achieving the same
goals. For high levels of interaction and mergeable plans at high levels in the
GPT, there is an average drop of 47% in the number of plans being executed.
Even with lower levels of interaction, and randomly placed mergeable plans,
there is still a decrease of 30% on average. This could lead to large savings in the
time and resources required by an agent to achieve its goals. While the standard
deviation shows there is more variance in the performance of the reasoning agent
than the dummy, this is due to the variations in depth and GPT of the merged
plans. Even with the variance, the reasoning consistently made a significant
improvement in the performance over the dummy agent.

Negative and Positive Interaction. In this section, the two types of reason-
ing have been combined into one Petri net with a scenario that causes both nega-
tive interference and provides opportunities for positive interaction. To maintain
exactly the same levels of interaction, both positively and negatively, the same
GPT has been used again and the variables are duplicated for this abstract sce-
nario. One set of variables is used for positive interaction, while the other is used
for negative interference. This has been done, in the abstract scenario, to main-
tain the levels of interaction to allow for a clear comparison, but in the second
scenario both forms of reasoning are applied to the same variables to represent
a more realistic scenario.

Each goal is given 1 or 3 variables to assign values to for the negative inter-
ference, and the same number of variables for positive interaction. The number
of goals achieved and the plans required are then measured to compare the ex-
pected performance of agent that uses the Petri-net based reasoning against a
dummy agent (i.e., an agent without any goal-reasoning).

The four sets of tests were combined, in particular the negative interference
at high levels of interaction over long periods was combined with the positive
interference at high levels of interaction and at high levels within the GPT,
while the negative interference at high levels of interaction over random periods
was combined with the positive interference at high levels of interaction and at
random levels within the GPT. The experiment for interaction at normal levels
was combined in the same way.

The results are shown in Figure 6. These are broken down into three groups:
6(a) goals achieved, 6(b) plans executed, and 6(c) the ratio between plans exe-
cuted and goals achieved. The standard deviations are also included in each of
these graphs.

The reasoning agent is once again able to achieve all of its goals, while the
dummy agent is still only able to achieve 57–83% of its goals. Not only is the
dummy agent failing to achieve all its goals, it is also attempting to execute
almost all its plans in an effort to find a solution. This means the effects of
the positive interaction reasoning are also very obvious with a drop of 50%
in the number of plans executed for high levels of negative interference with



Scenario 1: Positive and Negative Interaction
Comparing Goals Achieved

0

5

10

15

20

25

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

G
o

al
s 

A
ch

ie
ve

d

Reasoning
Dummy

(a) Comparison of goals
achieved across the four
experimental setups.

Scenario 1: Positive and Negative Interaction
Comparing Plans Executed

0

50

100

150

200

250

300

350

400

450

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

P
la

n
s 

E
xe

cu
te

d

Reasoning
Dummy

(b) Comparison of plans
executed across the four
experimental setups.

Scenario 1: Positive and Negative Interaction 
Comparing Plans per Goal Ratio

0.0

10.0

20.0

30.0

40.0

50.0

60.0

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

P
la

n
s 

p
er

 G
o

al

Reasoning
Dummy

(c) Comparison of ratio
between plans executed
and goals achieved.

Fig. 6. Experimental Results for Combined Positive and Negative Interaction in an
Abstract Scenario.

positive interaction for long periods in the GPT, while still maintaining a 32%
decrease in plans at lower levels of interference. The plan to goal ratio shows
that the reasoning agent only had to execute on average 10 plans at high levels
of interaction, and 14 plans at lower levels of interaction, to achieve its goals,
while the dummy agent had to execute on average 39 plans at high levels of
interaction and 25 at normal levels. Recall that while in the GPT there are only
25 plans available to achieve the main goal on its own, the dummy agent was still
executing plans in goals that failed, and the ratio shows all the plans executed
compared to the goals achieved. The standard deviation shows that in general,
the performance of the reasoning agent is very consistent, whereas the dummy
agent is highly erratic, particularly when there are high levels of interaction for
long periods.

Scenario 2: Mars Rover

To show the reasoning being used in a more concrete example, a Mars rover
scenario has also been used. In this scenario, the rover is given a set of locations
and a set of tests (or tasks) to perform at each location. Each task at each
location is represented by a separate goal, as shown in Figure 2, offering much
opportunity for both negative and positive interactions. All of the plans contain
a set of preconditions that must be true for it to be able to execute, and these
preconditions are satisfied by the effects of other plans. So while there may be
less plans involved than in Scenario 1, there is still a lot of interaction taking
place. The preconditions lead to a partial ordering of the plans for the goal
to be achieved. In our experiments, 2, 4, and 6 locations were used, with 5
tests carried out at each location, in order to evaluate the performance of the
reasoning over different levels of concurrency, specifically 10, 20, or 30 goals being
simultaneously pursued.

For the interests of comparison, the negative and positive reasoning have
again been separated out before being combined together in the final set of
experiments.



Negative Interference. Negative interference is caused when the rover goes
to a location ready to perform its tasks, but is then interrupted by another goal
that required going to a different location before the tasks required at the first
location by the previous goal had been completed. The effects of the reasoning
is again measured by the number of goals achieved. The results are shown in
Figure 7(a).
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(a) Reasoning about negative interfer-
ence.

Scenario 2: Positive Interaction
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Fig. 7. Results for Negative Interference and Positive Interaction in the Mars Rover
Example.

The results again show a definite improvement obtained by adding the rea-
soning about negative interference, whereby all goals were achieved, while the
dummy agent is still only able to achieve on average 75% of its goals, across all
the levels of goal concurrency, even at the lowest levels.

Positive Interaction. In the Mars Rover example, there are two main places
for positive interaction. The first is when multiple goals all require the rover to
perform tests/tasks at the same location, while the second is when the goals
require transmitting their results back to the mission control team, after having
performed the tests. When the goals have all obtained their test results, these
can either be transmitted back to the base individually, or one goal can assume
the responsibility of transmitting all the results back at the same time. This
means only one plan has to be executed whereas without the reasoning an agent
ends up executing one plan per goal.

The negative interference was removed from this setup to ensure all goals
could be achieved without any reasoning. This meant the number of plans exe-
cuted could be compared more fairly. The results are shown in Figure 7(b).

A clear reduction in the average number of plans executed can again be ob-
served in these results, with higher levels of concurrency giving a 32% reduction
in the number of plans executed to achieve the same goals. Even the lowest level
of concurrency offers a 28% reduction that could be highly beneficial when there
are many constraints imposed on an agent, such as time and resource availability.



Combined Negative and Positive Interaction. While both types of rea-
soning can be effectively used on their own, the combined effects of both types
of reasoning gives the best results, particularly in highly constrained conditions.
In the final set of results reported here, we show the results of the combined
reasoning about negative interference and positive interaction in the Mars rover
scenario.

The results are shown in Figure 8. These are broken down into three groups:
8(a) goals achieved, 8(b) plans executed, and 8(c) the ratio between plans exe-
cuted and goals achieved. The standard deviations are also included in each of
these graphs.
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Scenario 2: Positive and Negative Interaction
Comparing Plans Executed
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Scenario 2: Positive and Negative Interaction
Comparing Plan to Goal Ratio
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Fig. 8. Experimental Results for Reasoning about Negative and Positive Interaction
in the Mars Rover Example.

While the results all show that there is only a slight improvement in the
number of plans executed, the number of goals achieved by the reasoning agent
is significantly more, and the plan to goal ratio is almost half that of the agent
without any reasoning, increasing from a 34% reduction in the number of plans
per goal to a 47% reduction as the amount of concurrency increases. The rea-
soning agent is again consistently achieving all the goals it has been given, while
the proportion the dummy agent was able to achieve dropped from 67% to 54%
as the amount of concurrency increased. The standard deviation also shows that
the reasoning agent is more consistent in its results in this scenario, with a lower
range of variation.

5 Conclusions and Future Work

In this paper we have presented an alternative approach to reasoning about
negative and positive interactions between goals. The results clearly show a
significant improvement in the number of goals being achieved, and the number
of plans required to achieve them. To the best of our knowledge, this is the first
time such types of reasoning have been presented combined together to show
the joint effects of both positive and negative reasoning working in tandem for



an individual agent. As only a small extra computing cost is expected to result
from the added reasoning, the benefits are very likely to outweigh any costs.
However, in future work, we aim to analyse in detail the costs associated with
the reasoning and compare this cost with alternative approaches such as a CSP
representation and existing approaches such as the approach by Thangarajah et
al. using a GPT [21–23]. In all experiments reported in this paper, such costs
appeared to be negligible.

Preliminary work has been done in representing the same type of reason-
ing approached in this paper as a CSP, in order to provide further sources of
comparison. A further type of reasoning that can be used to aid an agent is
reasoning about resources, particularly when there is a limited supply of con-
sumable resources available. We are currently in the process of including that
type of reasoning in both our Petri-net and CSP-based techniques for reasoning
about goals.

Currently, the Petri nets are being produced manually, but their modular de-
sign provides scope for automating this process, so that it can be incorporated
into an agent architecture for on-the-fly reasoning about new goals to be poten-
tially adopted. This will also be possible for the CSP-based approach, offering
the agents a choice of reasoners if one proves to be better suited for particular
situations (e.g., the structure/scale of the agent’s GPT, or specific properties
of the environment) than the others. Our long-term objective is to incorporate
such reasoners into the interpreters of agent-oriented programming languages.
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