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Abstract. Agents programmed in BDI-inspired languages have goals
to achieve and a library of plans that can be used to achieve them,
typically requiring further goals to be adopted. This is most naturally
represented by a structure that has been called a Goal-Plan Tree. One of
the uses of such structure is in agent deliberation (in particular, deciding
whether to commit to achieving a certain goal or not). In previous work, a
Petri net based approach for reasoning about goal-plan trees was defined.
This paper presents a constraint-based approach to perform the same
reasoning, which is then compared with the Petri net approach.
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1 Introduction

Agents programmed in BDI-inspired languages have goals to achieve and a li-
brary of plans that can be used to achieve them, typically requiring further goals
to be adopted. This is most naturally represented by a structure that has been
called a Goal-Plan Tree. Whilst no planning takes place in such agents, a cer-
tain type of reasoning – done over such representation of agents’ commitments
towards goals to be achieved and the known courses of actions to achieve them
– can significantly impact the agent’s performance by judicious scheduling of
the plan execution. More importantly, it can significantly improve deliberation,
in the sense that an agent can make reasoned choices on whether to commit to
achieving a new goal or not.

In the work by Thangarajah et al. [8–10], a goal-plan tree is used to represent
the structure of the various plans and subgoals related to each goal for an indi-
vidual agent. At each node of the tree, summary information is used to represent
the various constraints under consideration. This is similar to previous work by
Clement and Durfee [1–3], using summary information with Hierarchical Task
Network (HTN) planning to co-ordinate the actions of multiple agents.

When using summary information, the amount of summary information to
handle could potentially grow exponentially with the size of the goal-plan tree [3],
which could have a significant impact on the performance of the agent for larger
problems. A different approach was introduced by Shaw and Bordini [5], where
a goal-plan tree is mapped into a Petri net in such a way as to avoid the need
for summary information.
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The work in [5] considered reasoning about both positive and negative effects
of a plan on other plans using a Petri net based technique, while in [6] the focus
is on reasoning about resources using Petri nets, which are then combined into a
coherent reasoning process encompassing the reasoning about positive and neg-
ative interactions from [5]. These were evaluated based on an abstract scenario
as well as a more concrete scenario using a simplified mars rover scenario.

In this paper, we present an alternative specific implementation of an ap-
proach to reasoning about positive, negative and resource interactions using a
constraint logic programming approach developed in GNU Prolog to define a
set of constraints that are eventually solved to generate a successful execution
ordering of the plans to achieve an agent’s goals. These are evaluated against
the Petri net model using a common abstract scenario. While the approach de-
scribed here is based on a specific implementation, the concepts and processes
could be reapplied in other constraint (logic) programming or even constraint
optimisation settings. However, the aim of this paper is to present an approach
to solving a problem and experimentally compare it to another approach in order
to identify situations where it may be preferable to apply one approach over the
other.

The remainder of the paper is organised as follows. Section 2 shows the
constraint-based approach with each of the three forms of reasoning incorpo-
rated. Section 3 shows the experimental results and analysis of the comparison
of that approach to the Petri net approach for reasoning about the goal-plan
tree problem. Section 4 concludes the paper.

2 Constraint-Based Approach

2.1 Goal-Plan Trees

A goal-plan tree consists of a top-level goal at the root, with one or more plans
available to achieve that goal. Each of these plans may themselves include fur-
ther subgoals forming the next level in the tree, followed by additional plans to
achieve these subgoals3. All subgoals for a plan must be achieved for a plan to be
successful, while only one plan option needs to be executed for a goal or subgoal
to be successful. The simplest plans at the leaves of the tree will just contain a
sequence of actions and no further subgoals. An example of a goal-plan tree is
shown in Figure 1, which shows the goal-plan tree representation of a goal for
a Mars Rover to collect a soil sample from a location then transmit the results
back to Earth via the base station.

An agent will most likely have multiple top-level goals to achieve, each with
its own goal-plan tree. While it is often straightforward for these to be achieved
in sequence, it may be possible for the agent to achieve better performance by
attempting to achieve them in parallel. This can of course lead to problems
where the goals interfere with each other and where resources are limited, so
3 The term subgoals will always be used when referring to subgoals, while top-level

goals will either be referred to as goals or top-level goals
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SG3: TransmitResults

P2: MoveToPlan(A)

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A)
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Fig. 1. Goal-plan tree for a Mars rover as used by Thangarajah et al. The goals and
subgoals are represented by rectangles while the plans are represented by ovals.

reasoning about that can help an agent succeed in achieving its goals and do
so more efficiently. The three types of reasoning considered here are based on:
(i) the limited availability of consumable resources, (ii) the potential for positive
interactions between goals, and (iii) the risk of negative interference between
goals, which are discussed in more detail in the following sections.

The approach developed here for reasoning about goals applies constraint
satisfaction to find a solution to instances of the goal-plan tree problem. While
the Petri net approach applied in [6] provided a natural representation of an
agent’s goal-plan tree into which the reasoning could be added, this approach
provides a natural representation of the constraints to be handled by the agent
in the form of resource constraints and interaction constraints. The constraints
are represented using GNU Prolog4.

2.2 Modelling a Goal-Plan Tree

The idea surrounding the model used for representing the goal-plan tree rea-
soning problem as a set of constraints is to find an ordering of the plans for all
of the goals such that all the goals adopted are achieved and as many goals as
possible are adopted.

To start with, the plans and goals are both defined as facts using a Pro-
log functor node, with the plans being represented by 5-tuples 〈Pl, S, Pr, E,R〉
where Pl is a unique identifier for each plan; S is the list of subgoals for achiev-
ing the plan; Pr is a list of preconditions and E is a list of effects caused by
the plan; R is a list of pairs showing the resource requirements for the different
resources that a plan uses. The plans at the bottom of the goal-plan tree that
form the leaves of the tree will not have any subgoals listed in S, and not all
plans will have preconditions, effects or resource requirements.

4 The shorthand notation V1/V2 is used in GNU Prolog to represent pairs of values.
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A series of “variables” is used to represent resources and the effects on the
environment. The representation of available resources make use of dynamic facts
that can be updated as the resources are consumed, (e.g. resource(r1,50)). In
the plan definitions, the preconditions, effects and resources are all represented
as pairs of values, for example r1/5 represents the requirement of 5 units of
resource r1. The preconditions and effects referring to various properties of the
environment that can be modified are represented in a similar way with effect
e1/7 stating that the plan changes the variable representing the environment
property e1 so that it has the value 7. Sections 2.4 and 2.5 describe how these
are used to identify plans that can either be safely “merged” or that could
interfere (thus needing to be scheduled accordingly).

Goals and subgoals require less details, so they are simply represented as
pairs 〈G, P 〉, where G is a unique identifier for the goal or subgoal and P is
a non-empty list of plans that can be used to achieve G. The following Prolog
sample from a goal definition shows a top-level goal node and a plan node that
achieves this goal, itself using 1 unit of resource r1 and causing the effect of
assigning the value 7 to variable e3, while having no preconditions required for
it to start.

node(g1,[p1]). % Goal node
node(p1,[sg2,sg3],[],[e3/7],[r1/1]). % Plan node

In order to reason about the tree structure, various predicates are defined to
help query a goal-plan tree representation. These include listing all the plans in
the sub-tree of a goal or plan, finding all the plan options for achieving a goal
or subgoal, and querying the plan hierarchy within the goal-plan tree.

Where there is a choice of plans to achieve a goal or subgoal, only one of
these needs to be used in order for the goal to be successful. The surplus plans
can therefore be dropped from consideration, reducing the number of plans that
need to be considered later on. When the plan being dropped contains subgoals,
these are also removed from consideration. This is illustrated in Figure 2, where
the plan and its sub-tree inside the dashed line is being dropped in preference
of the alternative plan for achieving the subgoal.

In Prolog, this is defined as a series of predicates to “strip” the tree of the
branch options:

branchOptions:-
findall(O,option(_,O),All),
branchStrip(All).

The clause above uses the option(Goal,OptionList) predicate to generate
a list of all the sets of options for subgoal branches. O is a list of plans from
which just one plan needs to be selected, so the variable All, the result of the
findall, equates to a list of plan lists. Each of these lists of plans then needs
to be considered, selecting one plan to keep and the remainder to disregard. By
default, the plan that is kept is the first plan in the list. However, when resource
reasoning is incorporated, the summary resource requirements for each branch is
considered so the plan with the lowest summary resource requirements is kept.
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... ... ... ... ...

Subgoal

Plan 1 Plan 2

Subgoal Subgoal Subgoal Subgoal Subgoal

Fig. 2. Removal of surplus sub-trees where there is a choice of plans.

branchStrip([]).
branchStrip([[H | T2] | T]):-

rmBranch(T2),
branchStrip(T).

rmBranch([]).
rmBranch([P|T]):-

strip(P),
rmBranch(T).

When removing plans, it is important to remember to remove the sub-tree
formed from any subgoals that were required by the plan. This is handled by a
final recursive predicate to iterate through the list ensuring each of the members
of the sub-tree are removed. As it is possible for plans within the subtree of an
optional plan to also contain branches, it is possible for plans and subgoals to
have already been removed. To prevent this from causing the retraction to fail
a disjunction finishing with true is included as shown below.

strip(P):-
subtree(P,T),!,
stripTree(T),
retract(node(P,_,_,_,_)).

stripTree([]).
stripTree([H|T]):-

(((retract(node(H,_,_,_,_))); retract(node(H,_))); true),
stripTree(T).

An evaluation of the Constraint Satisfaction Problem (CSP) gives each plan
that is considered a number that can be used to sequence the plans. A global
finite-domain variable is created for each of the plans to store a value in the
domain of plans, ranging from 0 to the number of plans. A solution is a valid
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sequence where the goals adopted would be achieved if the plans were exe-
cuted in the order specified by the evaluation. A tree scheduling predicate,
treeScheduler defined below, is applied to the plan variables to ensure the tree
structure is maintained when considering the order in which to execute plans,
forming the basis of any scheduling over the plans. This includes preconditions
and effects of plans between different branches within a tree to ensure a plan is
not scheduled to execute before the plan producing the necessary preconditions
has been scheduled to execute.

treeScheduler([]).
treeScheduler([[P1,P2]|T]):-

g_read(P1,I),
g_read(P2,J),
I#<#J,
g_assign(P1,I),
g_assign(P2,J),
treeScheduler(T).

In many cases, the ordering between subsets of the plans is not important
as they will not affect each other in any way, so these plans can safely be given
the same sequence number. When executing the plans, this could be seen as
either executing them in parallel or executing them in sets, such that all the
plans with sequence number 1 are executed before those with sequence number
2, and so forth. By not specifying an exact ordering of the plans, the agent is
able to maintain a lot of its autonomy when selecting which plan to execute next.
Essentially the “ordering” of plans indicates to the agent which plans are safe to
execute together, grouping them into “safe” sets. Provided the agent completes
all the plans within one group before moving on to the next, there should be
no interference between the various goals. In the worst case, where there was a
lot of interference between all of the goals, each plan could be assigned a unique
number from their domain of values, specifying the exact ordering in which the
plans must be executed for the agent to be successful.

When searching for valid solutions to the goal-plan tree problem, the query is
directed from the reasoning predicate shown below. When a solution is found,
each of the parameters in the head of the predicate is unified with part of the
solution or details about the solution for evaluation purposes. This includes
counting the number of plans used, the number of goals achieved and the time
taken for the solution to be found. The Prolog predicate real time(Time) is used
to obtain start and end timings for the evaluation of a goal-plan tree model.

reasoning(Schedule, Plans, PlanCount, TimeTaken,
GoalsSet, GoalsAchieved):-
real_time(Start), % start timing the reasoning

findall(G,root(G),Goals),
length(Goals, GoalsSet),
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branchOptions,
% positive interaction reasoning

findall([Pa,Pb],pos(Pa,Pb),Merge),
posScheduler(Merge),

% resource reasoning
branchList(Goals,SumList),
sort(SumList,SortedSumList),
resReasoning(SortedSumList),

findall(P,node(P,_,_,_,_),Plans),
length(Plans,PlanCount),
varSetup(Plans,PlanCount),

findall([Px,Py],tree(Px,Py),A),
reverse(A,A2),
treeScheduler(A2),

% negative interference reasoning
findall([Pc,Pd,Pe],neg(Pc,Pd,Pe),Neg),
negScheduler(Neg),

varResult(Plans,Schedule),
fd_labeling(Schedule,[variable_method(standard)]),

real_time(End), % reasoning finished
TimeTaken#=End-Start,
findall(G2,root(G2),Goals2),
length(Goals2,GoalsAchieved).

The first step in the clause unifies the variable Goals with a list of all the
top-level goals. The length of this list is queried to identify how many goals
have been defined at the start. When reasoning about consumable resources, it
is likely that not all goals will be achieved, so a repeat of this is performed to
count the number of goals after the actual reasoning and scheduling components
of this predicate have been completed. Once the list of goals has been unified,
the reduction of the goal-plan trees can start by removing the branch options as
described above. The predicates for the three types of reasoning as shown above
can be added or removed as necessary, depending on the types of reasoning
desired.

Once all the plans that are not required have been removed, either because of
branch options, positive interactions or limited resources restricting the number
of goals that can be adopted, the finite domain variables for each of the remain-
ing plans are asserted as global variables. This is contained within a varSetup
predicate that iterates through the list of all the remaining plans asserting the
global variables with the domain ranging from 0 to the number of plans now
being considered, i.e. the length of the list of plans. After this has been success-
fully completed, it is then possible to start applying the constraints that restrict
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the assignment of the values from the domains to the variables. This starts with
the scheduling based on the tree structure and finishes with the negative in-
terference reasoning (Section 2.5), when this is incorporated into the types of
reasoning being performed. At this point, the labelling of variables with values
is to be performed, so the varResult predicate simply collects all of the finite
domain variables back into a list which is then passed on to the finite domain
labelling predicate (fd labeling). This predicate is part of the prolog library
for solving finite domain constraint satisfaction problems, and provides a selec-
tion of heuristics for ordering the variables; the heuristic selection is given as a
parameter to the predicate along with the list of variables.

While this design achieves the objectives of representing and reasoning about
the goal-plan tree, it may still be possible to optimise some of the constraints in
order to improve their efficiency, thereby reducing the length of time taken for
a solution to be found.

2.3 Consumable-Resource Reasoning

The reasoning described here is limited to that of consumable resources rather
than reusable resources. The purpose of the reasoning is to restrict the number
of goals adopted to those that can be achieved with the amount of consumable
resources available and to endeavour to make the best use of those resources
through the careful selection of plans when there is a choice between which plans
to use in order to achieve the desired result. The reasoning about consumable
resources makes use of a small amount of generated summary information to
perform this reasoning.

As described in the section above, the resource requirements for each plan are
represented by a list of pairs consisting of resource type and quantity required.
The total available resources for each type are each defined using a resource
predicate. This predicate is defined to be dynamic so that when reasoning about
resources the quantity available can be updated with the new quantities as they
are consumed.

The first part of the resource reasoning is incorporated into the constraint
reasoning for the selection between lists of plan options for achieving a goal
or subgoal. For each of the plans listed as being an option, a summary of the
resource requirements for the sub-tree with the plan at its root is generated.
At this point, a single number for all the resource quantities required regardless
of resource type is used to decide which plan to use. It is possible to extend
the reasoning here to incorporate weightings into the summation of resource
requirements in order to indicate preference for the use of certain resources over
others.

When this type of reasoning is included, the definition of the branchStrip
predicate shown above is extended to refer to a predicate that pairs the summary
resource requirement with each plan in the list of options. The list of plan options
is sorted so that the subgoal branches nearest the leaves at the bottom of the tree
are considered first. This is to reduce the number of plans being considered at
each iteration through the list and to allow for simpler predicates summing the
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resource requirements as they do not need to consider branches at lower subgoals.
Once the list of plan options paired with resource requirements is formed, it is
then sorted into order of increasing resource requirements so the first element in
the list is the preferred plan and the remaining plans can again be retracted.

branchStrip([]).
branchStrip([H|T]):-

branchList(H,L),
sort(L,[_|T2]),
rmBranch(T2),
branchStrip(T).

branchList([],T):-T=[].
branchList([P|T],T1):-

branchList(T,T2),
subtree(P,X),
resAll(S,X),
append([S/P],T2,T1).

The resAll predicate starts by producing a single long list of the resource
requirements for each plan. For each plan, this takes the pairs representing the
type of resource and quantity required and appends them to a list of all the
resource requirements for the sub-tree being considered. Once all the resource
requirements have been compiled into one list, this is sent to a summing predicate
to simply add together all the quantities to produce a total resource requirement.
It is in this final predicate where weightings could be included, if necessary, to
indicate any preferences for which types of resources should be saved or used the
most.

resAll(S,Ps):-
resourceList(L,Ps),
resSum(S,L),!.

resourceList(L,[]):-L=[],!.
resourceList(L,[SG|T]):- % Only interested in plans

node(SG,_),
resourceList(L,T).

resourceList(L,[P|T]):-
node(P,_,_,_,R),
resourceList(L1,T),
append(L1,R,L).

resSum(S,[]):- S=0,!.
resSum(S,[_/X|T]):-

S#=X+S1,
resSum(S1,T).
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After the plan options have been removed, the resource reasoning is next used
to consider which goals can be safely adopted given the quantity of each resource
available. The reasoning is performed in this order firstly to reduce the number of
plans being considered and secondly to allow the summary information generated
for reasoning about goal adoption to represent the actual requirements of the
goal.

The list of top-level goals can be sorted in the same manner as the list of
plan options for selecting the plans or, in this case, goals with the lowest resource
requirements. To do this, the first step, as before, is to generate the list of plans
in the tree for each goal. This can be performed using the branchList predicate
with a list of the top-level goals. This will pair up each of the goals with a number
representing the sum of resource requirements regardless of type. It is possible to
apply different orderings to the list of goals to indicate the importance of a goal,
thereby preferring to complete less goals of greater importance than to achieve
more goals of less importance. If the order in which the goals are considered for
adopting is not important, or if the order is predefined as the order in which the
goals were defined, this step can be skipped. This will also provide a decrease in
the number of steps and hence the length of time taken to evaluate the problem
each time a solution is to be found. In the evaluation of this approach, both
sorting and ordering were included in the reasoning.

The main reasoning about resources for goal adoption requires summary
information broken down by the different types of resources required. This is so
that the reasoning can check that there is actually sufficient resources available
for each goal to be adopted. For each goal in the list, the summary information
separating the different types of resource information is generated. While the
resAll predicate produces a combined summary of each of the resource types
into one number, the resType predicate used here keeps the different types of
resources separate when generating the summary information. The summary
information produced by the predicate resType is an unsorted list containing
each of the resource types and the quantity of it required by the goal, for example
S = [r3 / 6, r2 / 5, r1 / 7, r5 / 0, r4 / 0]. From this list, each of the
types of resource is extracted and compared to the available quantity of that
resource.

resReason(G):-
goalPlans(G,P),
resType(S,P), % generate resource summary by type
member(r1/A,S), % unify the resource values
member(r2/B,S),
...
resource(r1,RA), RA#>=A, % check sufficiently available
resource(r2,RB), RB#>=B,
... % reserve resources
retract(resource(r1,RA)),
NewRA #= RA-A, asserta(resource(r1,NewRA)),
retract(resource(r2,RB)),
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NewRB #= RB-B, asserta(resource(r2,NewRB)),
...

If each type of resource has sufficient resources available then the predicate
resReason will succeed and the quantity of each of the resources available will
be lowered accordingly. If one or more types of resource has as insufficient quan-
tity available then the predicate will fail and the if-then-else construct from
which the predicate was queried (resReason(G) -> true; strip(G)) will step
to the else component where the whole goal will be dropped in the same way
as for removing the sub-tree of a plan that is not required. After all the goals
have been considered, adopting those that are safe to start, and removing those
which are not, the reasoning then returns to the core part of the goal-plan tree
representation to schedule the plans for the goals that have been adopted.

2.4 Positive Interaction Reasoning

The positive interaction reasoning attempts to identify plans in different goal-
plan trees that can be “merged”, as they produce the same effects. When refer-
ring to plan merging, it is actually possible to achieve the effects by only using
one of the two plans. By doing this, the number of plans required to achieve
all the goals adopted can be significantly reduced, especially as the sub-trees of
the plans that are not used are also removed when the two plans are merged.
If the interaction between the goals occurs at high levels of the goal-plan trees,
i.e. near the root with each plan itself having a large sub-tree, then the impact
of the merging is particularly significant. Figure 3 illustrates where two plans
will achieve the same effect, so only one of the plans is need to reach the desired
state.

Positive interaction between goals

‣Two or more goals may share common 
subgoals that only need to be achieved 
once to satisfy that requirement of each 
of the goals.

‣ In this example, Px and Py are from 
different goals, but both achieve the 
same results.
‣Only one of the plans is needed in pairs 

of plans achieving the same effect; these 
are identified and constraints are used 
so that only one is allowed to execute.  
The other, including any sub-tree it may 
have, is removed from consideration.
‣This can lead to savings in the number 

of plans used, resources spent and time 
taken.

Px

Py

set effect A

Environment
Properties

set effect A

Reasoning about resources
‣Two main types of resources: consumable 

(e.g. energy)  and  reusable  (e.g. 
communication channels). Only the former 
are considered here.

‣Starting more goals than can be achieved 
with the resources available or using more 
expensive plans when there is a choice 
could lead to resources being wasted and 
goals failing.

‣A summary of the resource requirements 
for each top-level goal is generated and 
constraints applied to ensure that only a 
subset of goals, where the total required is 
less than or equal to that available, are 
started.  Preference is given to goals with 
lowest requirements to increase the 
number of goals achieved.

‣Note, resource reasoning is also used to 
select which plan to use in positive 
interaction, to save the most resources so 
reduction in plans also reduces a goalʼs 
resource requirements, potentially allowing 
more top-level goals to be achieved.

Fig. 3. Illustration of positive interaction.

To perform the reasoning in Prolog, a predicate is defined that identifies pairs
of plans that produce the same effects by checking that the lists of effects for the
two plans are equivalent. This starts by unifying two plans and the list of effects
generated by each of the plans, checking that the two plans are not the same
plan. The reasoning cycle in Prolog when requested for all pairs of positively
interacting plans will iteratively test every pair of plans. For pairs of different
plans, the effects of the plans are considered to identify if there is any possibility
of merging them. Firstly, it is checked that the list of effects for the first plan
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is not empty, otherwise all plans that themselves do not achieve effects could
be included for merging. Where an effect is produced by Px, the list of effects
for the two plans are compared to see if they are equivalent. If so, then with
all the constraints satisfied, the pair of plans is returned as a pair of positively
interacting plans that can be merged. If the effects are not equivalent, then the
solver backtracks to try another pairing until all possible pairings have been
tested.

pos(Px,Py):-
node(Px,_,_,XEffects,_),
not(XEffects=[]),
node(Py,_,_,YEffects,_),
Px\=Py,
seteq(XEffects,YEffects).

The findall([Px,Py], pos(Px,Py), Merge) predicate is used to generate
a list all the pairs of plans where it is possible for them to be merged. The
template used to form the list from the solutions to the pos(Px,Py) predicate
creates a sublist for each solution pair of plans. The complete list of positively
interacting plans is then used to select and remove plans that are not needed as
the effects they produce are duplicated by other plans. By default, the second
plan in the pair of interacting plans is retracted, however this is not always the
case.

While in the positive interaction reasoning considered here all the effects in
the list must match for the plans to be considered for merging, it is also possible
to consider a weaker version of positive interaction where only some of the effects
match. In this case, in order to ensure that a plan that is kept from the merging
with another plan is not then deleted by a later merging, the plan is “marked”.
This is done by asserting the predicate mark(Plan) for each of the plans that
have been kept from a merged pair. When a pair is first considered, it is checked
to see if either plan is already marked. If both plans are already marked, then
neither plan can be safely removed as it is possible that the intersecting effect
that was used to identify the two plans as positively interacting is different to the
intersecting effects from the interactions where they have already been “merged”.

As the reasoning here checks that the effects are equivalent, it is not necessary
to check if one or both plans are already marked. This is because if one plan is
marked, and has appeared in more than one positive interaction then the effects
of three or more plans must all be equivalent, therefore only one plan is still
needed to achieve the effects on behalf of all of the plans. However, as merges
could have occurred within the sub-tree of one or both of the interacting plans,
it is still necessary to mark the plan kept from a merge to ensure it does not get
removed as part of a sub-tree.

The posScheduler predicate defined below starts by checking that the two
plans both still exist, i.e. that one or both have not already been removed by
other merges. The sub-trees of each plan are then generated to check for any
marked plans within the sub-trees that could prevent one of the plans from being
removed in a merge. If just one of the plan’s sub-trees contains a marked plan,
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then that plan can be kept while the other is retracted, otherwise neither plan
and their sub-trees can be removed.

posScheduler([]).
posScheduler([[P1,P2] | T ]):-

node(P1,_,_,_,_), node(P2,_,_,_,_),
subtree(P1,X), subtree(P2,Y),
not((member(XP,X), mark(XP));

(member(YP,Y), mark(YP))),
((not(member(XP,X), mark(XP)), asserta(mark(P1)), strip(P2));
(not(member(YP,Y), mark(YP)), asserta(mark(P2)), strip(P1))),
posScheduler(T).

When the reasoning about positive interactions is combined with that of
reasoning about consumable resources, then the selection for which plan to keep
and which plan to drop is influenced by the summary resource requirements for
the sub-tree of each plan. In this case the predicate resAll is used to produce
the summary information for the sub-tree of each of the two plans. The plan
with the lower resource requirements is then kept when there is a free choice
between the two plans as neither sub-tree contains any marked plans.

The positive interaction reasoning is incorporated into the set of constraints
after the branch options have been removed. This is to reduce the number of
matches as the branches provide different sets of plans for achieving the same
effects within a goal-plan tree.

2.5 Negative Interference Reasoning

While the reasoning about positive interaction identifies plans that produce the
same effects, the reasoning about negative interference identifies sets of three
plans where one plan generates the effect required by the second plan, and the
third plan produces an opposite effect that if it were executed between the first
two would cause interference. This can be thought of as a causal link between
the first two plans, which the third plan would break. Figure 4 illustrates a case
of negative interference.

Constraint-based Approach
Goals can be achieved by alternative plans, 
and plans may contain further subgoals.  An 
example Goal-Plan Tree (GPT) is shown 
above. 

An agent will generally  have multiple top-
level goals, each with its own GPT.

The agent can work through the goals 
sequentially or they can work on multiple 
goals in parallel.

Pursuing multiple goals in parallel can lead 
to savings, but it can also lead to conflict.

To gain the most from what is available, 
reasoning about the potential interactions 
between the goals and the limited availability 
of resources need  to be considered.

A brief overview of the approach is 
presented here, with more details available 
from [3].

Px Py

Pz

set effect A

Negative interference between goals

‣The plans of one goal could cause 
conflict with another goal if executed 
without careful scheduling.

Environment
Properties

use effect A

set effect ¬A

‣ In this example, plan Px produces an 
effect in the environment that is a 
precondition for plan Py. However Pz 
changes the state of this property.

‣ If Pz is allowed to execute between Px 
and Py this will break a link and could 
potentially cause Py and its goal to fail.

‣Triplets of plans referring to common 
properties in this way are identified, 
then constraints are added preventing 
Pz from executing between Px and Py.

Fig. 4. Illustration of negative interference.

In Prolog, in order to identify the negative interactions between plans, the
neg(Px,Py,Pz) predicate is defined to find pairs of plans that have causal links
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and the plans that can interfere with those links. Px is the plan that starts the
causal link by producing the desired effect required as a precondition for plan Py.
Once Py has executed, it is assumed that the effect is no longer required, so can
be safely altered by other plans such as Pz. If however Pz attempts to execute
between Px and Py, then this will cause interference, possibly leading to plan
and then goal failure. As with the positive interaction reasoning, it is important
to check that the plans are all different before comparing the preconditions
and effects of the plans. To compare the effects, it is important to split up
the pair notation for representing the effects of plans into the two component
parts, the factor identifier and the value representing its current state (e.g. e1/7).
The member(Element, List) predicate, in the reasoning predicate shown below,
unifies properties of the environment that are common to all three plans but
where the value assigned to that property is different in the interfering plan to
the value used by the linked plans.

neg(Px,Py,Pz):-
node(Px,_,_,XEffects,_),
node(Py,_,YPrecon,_,_), Px\=Py,
node(Pz,_,_,ZEffects,_),
Px\=Pz,Py\=Pz,
member(V/N1,YPrecon),
member(V/N1,XEffects),
member(V/N2,ZEffects),
N1#\=N2.

This predicate is again queried with the
findall([Px,Py,Pz],neg(Px,Py,Pz),Neg) predicate to generate a list of
all the possible instances of the interference so they can be scheduled to ensure
the interference is avoided. For this, the interfering plan either needs to be
scheduled to execute before the other plans or after both have executed so the
effect is no longer required. This is handled by the negScheduler predicate
shown below.

negScheduler([]).
negScheduler([[Px,Py,Pz]|T]):-

g_read(Px,A),
g_read(Py,B),
g_read(Pz,C),
A#<#B,(C#<#A;C#>#B),
g_assign(Px,A),
g_assign(Py,B),
g_assign(Pz,C),
negScheduler(T).

The negScheduler predicate refers to the finite domain global variables that
have been defined for representing the domain of values that can be assigned
to each of the variables representing the plans for generating a schedule. The
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plan producing the effect (Px) must always occur before the plan using the effect
(Py). However, it is possible to schedule the interfering plan (Pz) to either execute
before Px or after Py, as long as it does not execute between the two plans.

The reasoning about negative interference is incorporated into the set of
constraints after the tree scheduling has been performed. This is to ensure the
minimum number of plans are considered as the evaluation of the neg(Px,Py,Pz)
predicate considers all the possible combinations of three plans. In addition, the
main purpose of the negative reasoning is to schedule potentially interfering
plans to ensure they do not interfere, rather than reducing the number of plans,
so this “scheduling” is performed after all the surplus plans have been removed
and the schedule refined based on the constraints in the tree structure.

3 Experimental Results

To compare the performance of the three types of reasoning under different
conditions, three different tree structures were used; a deep tree, a broad tree and
a tree that is part way between the two (referred to as the general tree structure).
The results presented here are a subset of a large set of experiments comparing
a wide range of variables covering goal-plan tree size, goal interaction levels and
resource availability amongst others. The aim of the experiments was to stress
test the approach described here and compare it to the approach described in [5,
6], to identify settings where one approach was able to perform better than
the other. Each of the types of reasoning was considered independently before
combining all three together. The performance of the two reasoning approaches
was also compared to the performance without any reasoning, simulated by a
Petri net model with the reasoning removed. An example of a more concrete
application to which this reasoning could be applied is presented in [5], where a
simplified Mars Rover is modelled. While the approach here can be applied to
this example, the results presented here are aimed at illustrating performance
under highly constrained conditions with a large number of substantially sized
goals.

In order to fully evaluate the performance of this approach and compare it
to other approaches, a set of large goal-plan trees has been designed with high
levels of interactions between them and heavy resource requirements. The goals
were designed to test different properties of the reasoning, for example there is a
deep tree structure that has very little branch options, and was designed to test
the effect of depth and size of sub-trees on the reasoning. Conversely, a broad
tree structure containing a lot of branch options has been designed to test the
ability of the two approaches to handle branches and select the best options
where appropriate. A third tree structure was also used to test the scalability of
the two models, so it contained nearly 100 plans and was used in experiments
focused on increasing the number of goals.

An overview of the results are presented below, summarising results across
the different tree structures. The graphs below combine the results for common
settings in each of the tree structures for each type of reasoning, individually
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and combined. They show the results for experiments using a medium-sized deep
and broad tree (∼50 plans) or a large tree (∼100 plans) from the general tree
structure, 20 goals, low level resource availability, positive interaction at a high
level in the goal-plan tree, negative interference over a long duration and high
goal interaction. When showing the timings, the load timings for both models
are included in the graphs, as well as the run times for the two approaches, as
the run time for the Petri net model was very short, but the load time was quite
long. The legend for the graphs is shown in Figure 5.

Deep Broad General

Deep Broad General

Petri net
Random
Constraints

Fig. 5. Legend for graphs comparing performance over the three different tree struc-
tures.

3.1 Reasoning about Consumable Resources

While the Petri net model was able to match the number of goals achieved by the
constraint model in the deep tree, the performance in the broad and general trees
was much worse, see Figure 6. In comparison, the random Petri net model was
able to achieve more goals in the broad and general trees than in the deep tree.
The timings for the Petri net model were greater than those for the constraint
model when including loading times, especially in the large-sized general tree
structure experiments. Overall, the constraint model gave better results both in
terms of time and number of goals achieved when there is limited availability
of consumable resources, especially in trees where there is a large amount of
branching.
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Fig. 6. Comparison results for reasoning about resources across the three tree struc-
tures.
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3.2 Reasoning about Positive Interaction

When reasoning about positive interaction, the Petri net was able to generate
better results based on the reduction in the number of plans used in each of the
tree structures, see Figure 7. Comparing the timings here shows that while the
time taken between the Petri net and the constraint models was the same for
the deep tree, the Petri net model took longer to load in the experiments for
the other two tree structures, especially the large tree size of the general tree
structure. When the number of plans used is the key criteria, then the Petri
net model performs better; however, if time is critical then the constraint model
can produce results slightly faster when reasoning about positive interaction is
applied.
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Fig. 7. Comparison results for reasoning about positive interaction across the three
tree structures.

3.3 Reasoning about Negative Interference

While the reasoning about negative interference was the most time consuming
of all the three types of reasoning, it is perhaps the most critical when com-
paring the results achieved to those produced when no reasoning is included, as
illustrated in Figure 8. In this case, the time taken by the Petri net even when
the load times are included is much shorter for the experiments on the deep and
broad tree structures. However, the loading time on the large-sized tree for the
general tree structure does take longer than the constraint model in this setting.
Overall, the Petri net model offers better results here, especially with the small
and medium tree structures.

3.4 Combined Reasoning

When combining the three types of reasoning together, the number of goals
achieved increased, especially in the deep tree where a large number of plans
were saved by the positive interaction reasoning, as shown in Figure 9. The
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Fig. 8. Comparison results for reasoning about negative interference across the three
tree structures.

resources that would have been consumed by these plans were then available for
use in achieving other goals. This combined effect is less noticeable in the broad
and general trees. However, the constraint model was generally able to make the
most optimisations here. The exception to this is that as the availability of the
resources was increased in the general tree structure, the number of goals started
and hence the plans interacting increased, resulting in more plans not being used
so more resources being saved for use in achieving further goals. In the high level
resource availability for the general tree, this lead to all goals being achieved by
the Petri net model.

In the experiments for the deep tree, the Petri net timings even when in-
cluding the loading times were quite similar to those for the constraint model,
however in the experiments for the other two tree structures, especially the large-
sized general tree, the time taken for loading the Petri net model was greater
than the time taken for the constraint model to find a solution. Despite the ad-
ditional time taken for the reasoning in both models, the benefits gained from
performing the reasoning over those shown in the random Petri net model in-
dicate that it is worth considering taking the time to find a good solution. In
highly dynamic environments, there may not be the time available to consider
this as too much would have changed by the time a simulation had finished.
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Fig. 9. Comparison results for combined reasoning across the three tree structures.
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When increasing the number of goals used in the general tree structure from
20 to 50, the Petri net model became too large for the Petri net editor (Renew [4])
to load the model, while the constraint-model was able to continue to reason
about up to 75 goals. However, it took 9hrs to find a solution, so further increases
in the number of goals were not tested. It should be noted that in current agent
applications, the size and number of goals tends to be significantly less than
those tested here. This means that the time taken for the reasoning can be
within acceptable ranges for practical purposes, at least in some applications.

4 Conclusions and Future Work

In this paper we have presented a specific Prolog implementation (with con-
straint solving) that could be used to solve the goal-plan tree problem, which
has then been compared to a second specific implementation based on Petri nets.
While these two approaches are both capable of solving the same problems, the
techniques they use are different and as a result the solutions they offer can
vary. For example, the approach here controls the sequence in which goals and
plans are considered. If a set of goals is evaluated again, it will be evaluated in
the same order and give the same answer each time. However, in the Petri net
approach, no exact order in which goals and plans are evaluated is set, so in
each evaluation the order can vary. This can lead to differences in the results
returned, particularly when resources are constrained. It is possible that varia-
tions in the used of the underlying techniques would offer different advantages,
however further experimental comparisons such as the one performed here would
be needed.

The approach presented here has been experimentally compared to the Petri
net approach described in [6]. The complete results from the comparison can be
found in [7]. The aim of these experiments was to test the two approaches under
highly constrained conditions and to identify situations where one approach may
be better suited over the other. The differences between these two approaches
can be beneficial in different situations and conditions where some properties of
one or the other approach may be preferable.

The results presented here show that while the Petri net model has faster
running times, it also has the slowest loading times with the greatest memory
usage once loaded. One of the side effects of this is that, as the size of the
goal-plan trees or the number of top-level goals increases, the load times rapidly
increase until the application running the Petri net simulations is no longer able
to load the Petri net goal-plan tree representation. Refinements and changes
in the way the goals are represented may reduce the problem allowing greater
numbers of goals to be handled in the Petri net model. Similarly, it is possible
that refinements in the efficiency of the Prolog constraints used in the constraint-
based model may improve the performance of this model as well.

In some cases the Petri net model can give better results over the constraint-
based model. In particular, when reasoning about positive interactions between
the goals, the Petri net model gives better results in terms of the number of
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plans used, and when reasoning about negative interference, the Petri net model
also gives faster results for successfully achieving all goals, even when including
the loading times. The structure of the tree also affected the performance of the
two reasoning models, with the constraint-based model performing better when
applied to reasoning about the limited availability of resources in trees where
there is a large amount of branching and little depth.

Where the ability to reason about large numbers of goals is required, espe-
cially for large sized trees, the constraint model demonstrated that it was able to
scale and find solutions to larger problems. However, the trade-off comes at the
time taken, for example taking 9 hours to reason about 75 goals in one setting.

The approach described here has been compared based on the individual
types of reasoning and the combined reasoning. While in most cases it makes
sense to combine all three types of reasoning, there may be application areas
where only one is needed. For example, in applications where there is limited
availability of consumable resources but very little interaction between the goals
it may only make sense to use the resource reasoning. Similarly, in applications
where there are a lot of common goals to achieve the same effects, and abundant
resources it may be better to use only the positive interaction reasoning. In
applications where there is likely to be a lot of conflict between the goals or
where it is more critical that all the goals are achieved, but again with abundant
resources, it may be sufficient to just apply the negative interference reasoning.

In conclusion, the following recommendations can be made to agents about
which model they may wish to consider depending on their specific circum-
stances:

– When just considering resource reasoning, if the goal-plan trees contain a lot
of branching then the constraint-based model gives better results in terms
of goals achieved.

– When just considering positive interaction reasoning, the Petri net model
gives better results for all goal-plan tree structures in terms of the reduction
in plans used.

– When just considering negative interaction reasoning, the Petri net model
gives better results for all goal-plan tree structures in terms of the time taken
to perform the reasoning.

– When considering the combination of all three types of reasoning, the
constraint-based model gives better results in terms of goals achieved ex-
cept when there is high resource availability, in which case the Petri net
model performs better.

– When there are a large number of large goals (i.e. 50 or more goals containing
more than 100 plans), only the constraint-based approach is able to perform
the reasoning, although it will take considerable time to find a solution.

The reasoning about resources that has been considered here has focused
on consumable resources that are limited in their availability. Another type of
resource that is often used are reusable resources, such as communication chan-
nels. A model was shown in [6] of how this could be incorporated into the Petri
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net model, and constraints could be added into the constraint-based approach
to prevent two plans attempting to use the same reusable resource at the same
time. This was not initially included as the use of these resources can be easily
scheduled, while the use of consumable resources has greater restrictions applied
to it. The reasoning about consumable resources is also the more difficult of
the two types of resources to implement, being possible to later incorporate the
reasoning for reusable resources easily. In addition, when considering consum-
able resources, all the goals are currently assumed to consume resources without
any goals to recharge them or to create more resource instances. The Petri net
approach and to some extent the constraint-based approach are however robust
enough to handle this, at least in a simplistic manner. However, further work
to extend both approaches to allow for more generic maintenance goals rather
than only achievement goals is required.

References

1. B. J. Clement and E. H. Durfee. Identifying and resolving conflicts among agents
with hierarchical plans. In proceedings of AAAI Workshop on Negotiation: Settling
Conflicts and Identifying Opportunities, Technical Report WS-99-12, pages 6–11.
AAAI Press, 1999.

2. B. J. Clement and E. H. Durfee. Theory for coordinating concurrent hierarchical
planning agents using summary information. In AAAI ’99/IAAI ’99: Proceed-
ings of the sixteenth national conference on Artificial intelligence and the eleventh
Innovative applications of artificial intelligence conference innovative applications
of artificial intelligence, pages 495–502, Menlo Park, CA, USA, 1999. American
Association for Artificial Intelligence.

3. B. J. Clement and E. H. Durfee. Performance of coordinating concurrent hierar-
chical planning agents using summary information. In proceedings of 4th Inter-
national Conference on Multi-Agent Systems (ICMAS), pages 373–374, Boston,
Massachusetts, USA, July 2000. IEEE Computer Society.

4. O. Kummer, F. Wienberg, and M. Duvigneau. Renew – the Reference Net Work-
shop, May 2006. Release 2.1.

5. P. Shaw and R. Bordini. Towards alternative approaches to reasoning about goals.
In Proceedings of the 5th International Workshop on Declarative Agent Languages
and Technologies, volume 4897/2008 of Lecture Notes in Computer Science, pages
104–121. Springer, January 2008.

6. P. Shaw, B. Farwer, and R. H. Bordini. Theoretical and experimental results on
the goal-plan tree problem. Proceedings of the 7th international joint conference
on Autonomous Agents and Multiagent Systems, 3:1379–1382, May 2008.

7. P. H. Shaw. Reasoning about Goal-Plan Trees in Autonomous Agents: Development
of Petri net and Constraint-Based Approaches with Resulting Performance Com-
parisons. PhD thesis, School of Engineering and Computing Sciences, University
of Durham, UK, January 2010.

8. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoiding interference
between goals in intelligent agents. In proceedings of 18th International Joint
Conference on Artificial Intelligence (IJCAI), pages 721–726, Acapulco, Mexico,
August 2003. Morgan Kaufmann.



22 Patricia Shaw and Rafael H. Bordini

9. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and exploiting positive
goal interaction in intelligent agents. In Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, pages 401–408,
New York, NY, USA, 2003. ACM Press.

10. J. Thangarajah, M. Winikoff, and L. Padgham. Avoiding resource conflicts in intel-
ligent agents. In proceedings of 15th European Conference on Artifical Intelligence
2002 (ECAI 2002), Amsterdam, 2002. IOS Press.


