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Abstract

The work of this thesis is based on an investigation of the potential for utilising the
Integrated Services Digital Network (ISDN) for image transmission within a medical scenario.
The work initially identifies the major requirements of the application, and suggests that some
form of compression of the data is necessary, with the possibility of progressive enhancement
in some situations.

We consider a number of state of the art encoding approaches and provide evaluation of
each within this context. The approach is taken that the many advantages of lossy encoding
often outweigh the disadvantages, although effective use of these techniques can only be made
when characteristics of the data redundant to the future use of the image is identified. Sources
of redundancy are located at several levels, not only visual sensitivity, but from statistical and
spatial structure, based on external knowledge about the image and application.

The Wavelet transformation was selected due to a number of very useful characteristics
which we exploit in the development of a compression scheme capable of supporting both
the statistical and human visual models as well as providing a framework for allowing
higher level regional information to be used to allow non uniform quality selection. Thus
the potential ability to preserve the diagnostic information content of the image which can
be lost with general lossy encoding techniques is sought, whilst still maintaining the high
compression rates characteristic of lossy compression.

The scheme can easily be developed into a high ratio archive algorithm; the implications
of this use are also considered throughout the work.
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Chapter 1

Introduction

1.1 Background

The term Teleradiology (TR) has been used for many years. Although originally used to
describe the remote diagnosis of x-ray images by electronic means, it is often used today
for any application where medical images and data are transmitted by electronic means to
another location. The earliest experiments in this area date back to the early 70’s when Webber
of UCLA and Wilk, Pirruccello, and Aiken who were radiologists at a private hospital, built a
system to transmit radiographic images between their two departments. The system used an
amateur radio band and analogue video modulation with optical lenses to magnify details.
In the late 70’s ship to shore systems were tested by the US military. However success
was limited as the quality of received images was poor, transmission was slow, error rates
were high, and this analogue system could not provide any additional image processing to
compensate. Subsequent attempts have progressed to digital transmission and the use of
data compression algorithms.

Recent years have seen an increase in the use of digital imaging modalities, and large
volume optical mass storage devices. These combined with the introduction of faster wide
area digital communications provided by public service carriers now ensure that TR could be
a cost effective way of improving many medical procedures.

Another important factor in enhancing the feasibility of Teleradiology is the increasing
development of Hospital wide Picture Archiving and Communication Systems (PACS) that
can provide the underlying database and communication facilities. Indeed, TR has been
considered by some as an integral part of a PACS system, or even the driving force behind its
development.

1.2 Outline of objectives

We will show that although the application has stringent technological requirements, careful
consideration of these very requirements can in fact lead to practicable solutions. Considering
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more specifically the major problem of communicating and storing very large images, we
show that by choosing a technique and adapting it to suit the application, it will be possible to
provide the basis of an economic solution given the trends of increasingly inexpensive com-
puter power, combined with a less rapid increase in inexpensive wide area communications
bandwidth.

Specifically, the aims of this work are to provide the following:

� To assess telemedical imaging applications in the light of advances in telecommunica-
tions, image compression, and medical technology.

� Consider additional services which will be made feasible with this technology. Although
multi Mbit networks are technically feasible, availability certainly in the medium term
will be limited. We therefore consider primarily the Narrowband ISDN (N-ISDN) as
the carrier medium with its wide availability.

� Note the limitations of the technology and determine the range of scenarios for which
solutions can be found.

� By considering the specialist nature of the application, techniques can be tailored to
improve efficiency and enable implementations to be built.

Specifying the N-ISDN as the slowest part of the communication network places a severe
limitation on the communication throughput, and exacerbates the problems of telemedicine
involving images. There are however a number of reasons for doing this:

� Availability - The N-ISDN is available now, and access can be obtained from almost
everywhere1 that has a conventional telephone service. As one of our considerations
is in providing services to rural areas, with a network of small remote medical centres,
easy access to the network is important.

� Cost - N-ISDN connection is likely to be the most affordable solution in many cir-
cumstances, particularly those involving small ‘cottage hospitals’ and clinics, rural
communities, emergency use and remote specialist consultation. In essence any situa-
tion where infrequent communication is required over distances greater than the local
hospital networks or permanent (leased) communication lines. Due to the number of
factors to be considered when calculating the relative costs of network strategy, it is
possible that even frequent communication between centres is still more economic over
public telephone lines, and each case must be studied given the local factors before a
choice can be made. We can predict however that using the ISDN for medical informatics
in general and for medical imagery in particular, is certain to bring benefits to many
areas.

1The existing copper cable local loop is used minimising the amount of new infrastructure
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� Necessity - The previous two items demonstrate that at least in the short/medium term
many sites will only have access to N-ISDN bandwidths, especially when we consider
the number of years it has taken to implement the N-ISDN, it seems unlikely that
Broadband ISDN (B-ISDN) or an equivalent will appear rapidly.

� Subsidiary benefits in terms of a deeper understanding of the application and its
requirements. In this research we can investigate novel ways to solve some of the
problems encountered.

1.3 Structure of the thesis

There follows a brief description of the contents and objectives of each chapter of this work.

Chapter 1. This chapter gives a brief outline of the context of the research and its original
aims. The important areas of this multi disciplinary work are outlined.

Chapter 2. A literature survey of the topics involved is given in approximately chronological
order. Major achievements and problems are highlighted, together with the reasoning
which led the author to consider the time was right to attempt a solution to some of the
remaining problems.

Chapter 3. The requirements of the problem are discussed in detail and with reference to the
literature, to consider possible solutions and the feasibility of these.

Chapter 4. One of the results of the work in chapter 3 showed that image compression would
be a key factor in finding a solution, and also that there were some interesting constraints
which precluded most standard techniques. We started investigating some of the more
recent techniques being tried for image compression and after some experimentation
decided to use the Orthogonal Wavelet Transform as the basic energy redistribution
method. This chapter discusses other methods which were considered, some of which
were prototyped and disregarded as unsuitable.

Chapter 5. A discussion of the algorithms, implementation and characteristics which were
used to perform the transformation and how the efficiency criterion were met. An
analysis of the process to determine real time speed requirements for compression/
decompression for the algorithms used is also given.

Chapter 6. The Discrete Wavelet Transform (DWT) does not actually reduce the size of the
representation; the converse is usually true. This chapter describes the encoding strategy
which we used to perform the compression and give the characteristics which were
identified as useful in chapter 3.

Chapter 7. The performance of our method is compared with other techniques using standard
measures. Some examples of applying the ideas to real images are presented together
with some results of the various parts of the algorithm.
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Chapter 8. Details of the design of interesting parts of the algorithms, data structures, plus
any additional considerations which have been highlighted during the implementation.

Chapter 9. Conclusions and future work.

1.4 Integration of disciplines

This thesis will draw together advances in several differing application areas. It is neither
purely application pushed or technology led. Teleradiology, the summary term on which the
initial research was based, has been investigated from various viewpoints by a number of
researchers, investigators, users and implementors (Tobes, 1987; Markivee, 1989; Batnitzky,
1990; Binkhuysen, 1992; Dwyer et al., 1992; Bridgood & Staab, 1992; Lear et al., 1989; Yoshino
et al., 1992; Yamamoto et al., 1993b) and has been shown to be beneficial, even in some early,
rather crude incarnations. Our previous interests in evaluating (and developing) applications
for ISDN revealed this area as one that obviously has a number of difficulties, but in many
respects is sufficiently close to feasibility, and has enough potential benefits to warrant further
investigation.

The major contributing technologies supporting this work are shown in figure 1.1 The

Mathematics Image processing

TechnologyTheory Application

Communications

(wavelet transforms)

ISDN

Teleradiology

PACS, HIS, RIS

Teleworking

Digital capture/display
High qualitySemiconductor

Electronics

Digital

‘has enabled’

compression

Telemedicine

Figure 1.1: Telemedicine: contributing technologies

figure shows only the main contributing fields; there are others which will be required to
build a usable and successful system. Multimedia, user interface technologies, ergonomics,
and window based graphical displays provide many essential or desirable features, as does
the increase in digital at source imaging modalities and the inevitable migration of patient
records into electronic form. The following sections outline advances and work in the main
areas which have contributed to this work.
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1.5 Teleworking

Teleworking can be utilised in many situations where the worker is not required to be in any
specific place to perform work, and requires only information and communication facilities
to perform their job. Experiments in teleworking have been tried in many environments
including telephony services, mail order, data entry, computing, bibliographic indexing, and
publishing, to name a few. Often the worker will operate from home with telephone, electronic
mail, fax, and access to central computer facilities to provide the information necessary to
work. There are many advantages of this style of working both for employers and employees.
Employers can cut overheads, use remote or specialised labour, while employees can work at
home with flexible or variable hours, and are not required to live within commuting distance
of an office. There are disadvantages as well of course, the major one of which seems to be
lack of interaction with other workers. However, some solutions are being tried, for instance
videophone usage for rest periods etc. Another recent idea is the ‘telecottage’ where a small
number of workers work from a building located close to the residential areas of villages
and towns, and which contains all the required computing, IT, and communication services.
This solves the problem of workers being confined to home as they will meet others during
the time at work, although all the workers might not be working for the same company and
might well be performing completely different jobs. Teleworking in general involves many
other issues which will not be considered here as we are interested in one specific application.

1.6 Medical imaging technology

Modern medical equipment makes extensive use of digital microprocessors with the result
that much of the output is now readily available in digital form. For modalities where it is not
then analogue images are often digitised to enable on-line storage and processing. Soft copy
display of images and information is becoming increasingly more common, and equipment
is being supplied with interfaces to allow connection to computer based networks and other
medical equipment.

Radiological Information Systems (RIS) and Hospital Information Systems (HIS) are terms
which usually imply textually based electronic information systems designed to perform
mainly administrative tasks, including scheduling, billing/accounting, resource allocation,
staffing etc.

Picture Archival and Communication Systems or PACS usually refer to local (although not
necessarily) computer networks supporting image capture, archival and retrieval devices. We
expect Teleradiology systems in the future to be linked to such networks, rather than being
dedicated point to point systems. In this scenario teleradiology is simply an application
to be used over a LAN-LAN (local area network) or point to LAN interconnection. We
also expect that future HIS, RIS, and PACS will use the same physical network, with the
boundaries between each becoming blurred as information and functionality is necessarily
shared between them.

5



1.7 Telemedicine

Teleradiology has been considered as a telematic application for many years because of
the very real benefits it can provide to medical practitioners and patients. It seems almost
unfortunate that in terms of the quantity of information which is required to be transmitted,
it is also one of the most demanding non video applications. The prospect of avoiding the
necessity for radiologists having to visit many different institutions, being available on-call
during out of hours periods, and having fast access to sub-speciality opinions has provoked
many to build trial systems.

More recently however, other medical activities are being considered for improvement by
using remote data access, consultation or teleworking. The details vary but many involve the
transmission of medical images as a key requirement.

1.8 Description of TR services

The essential objective of a TR service is simple: to make medical images and (patient)
information available whenever it is required at a location other than that at which the image
is being held. Achieving this can have two effects, firstly vital information will always be
available when it is needed and secondly there are many situations where ’Teleworking’
can prove to be beneficial. Figure 1.2 shows a typical simple TR system, the images are
digital although the transmission link is analogue. The earliest experiments used analogue
images (TV quality) and more recent systems use digital transmission technology. In the
latest systems one or both ends of the transmission link might be connected to a high speed
LAN.

Telephone Link

Transmitter

Digitizer

Receiver

Network
Access
Controller
(modem)

Network
Access
Controller
(modem)

Computer systemComputer system

Optional Display
Display

Figure 1.2: Simple teleradiology system
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1.8.1 Potential benefits of TR services

There are many potential benefits provided by having TR facilities available. In any specific
implementation local considerations such as geography, and health service provision policy
will determine how effective a system will be in a particular situation. The following list
summarises some of the possible advantages:

� One radiologist can remotely serve several Cottage Hospitals, allowing an efficient
service with minimum delay.

� Consulting at a distance with subspeciality radiologists.

� Prompt interpretation of images at weekends or evenings.

� Radiologists in the community can gain immediate access to academic centres for
problematic cases.

� Forwarding of radiographic examinations to the primary referral centre prior to patient
arrival.

� Availability of images from remote institutions.

� In cases of a fragmented radiology department, images can easily be made available to
all radiologists.

� Possible availability of images direct from the scene of an emergency.

� Better information links can be made between hospitals and General Practitioners (GP).

� Wider availability of image data for training and medical research purposes.

� A reduction of professional isolation for practitioners in rural communities.

� Faster prior insurance approval of treatment (Farman et al., 1992).

These benefits will become increasingly important with the current trends in medical imaging
for instance those identified (Binkhuysen, 1992) in a paper reviewing the user interface
problems which must be addressed by system design. Namely:

� The use of non x-ray modalities such as ultrasound and MRI is increasing more and
more. An increasing number of referring physicians like to do their own imaging.

� Imaging modalities are becoming smaller and cheaper and the future is focused on
different groups of referring physicians. e.g. very small MRI’s for joints used by
orthopaedic surgeons.

� The complexity of logistics (archiving, registration etc.) will be reduced when a full
scale PACS is integrated in the HIS/RIS.

Considering these trends we can perhaps envisage a greater need for remote more specialist
consultative services, supporting smaller community hospitals and physicians.
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1.9 Image compression technology

The term ‘compression’ will occur frequently in this work and as it evokes much heated
debate when used in conjunction with medical imaging, the following paragraphs outline the
view taken towards image compression throughout this work.

Compression can simply be defined as reducing the amount of data required to represent
some original set of data. The reasons for doing this are usually straightforward; some sets
of data can be very large, and hence expensive to use both in terms of storage and processing
requirements. An important implication of this for the TR application is the amount of time
required to transmit an image through a communication channel.

It has been well publicised in recent years that most of the best 2 schemes lose or corrupt
some of the original data. While this fact is undeniably true, the main objective is to ensure
that the information relevant to the purpose for which the image is to be used is not lost. There
are problems with implementing this statement; we are often not able to make explicit the
relationship between pixel data and diagnostic tasks. Many empirical studies have been
carried out which can give information like ‘resolution x is required in region y to enable
pathologies of type z and minimum size q to be recognised’. In many applications it is far
easier to specify what is unwanted information rather that what is required, specifically it is
likely that these type of criteria can be applied to each anatomical object. In many situations
the subsequent use of an uncompressed image is defined well enough to allow the use of
relatively simple criteria applied to quite sophisticated compression. In this way substantial
savings to be made in the medical image compression field without causing an effect on the
outcome of procedures carried out with those images.

Additional considerations often neglected include the loss of information when an image
is digitised from an analogue film, which is a generally accepted process due to the utility
of a digital image and also the possibility of processing and enhancing the digital version to
reveal more detail than was visible on the original.

Finally experimentation has demonstrated that much of the ‘loss’ from an image is high
frequency noise, which is the most difficult component of the image to compress. Specifically,
high quality images actually compress to a greater degree with less absolute pixel error. One
result of this can be a cleaning effect caused by performing the compression. We are not
suggesting this is always true, or even that it can be usefully employed, it does however
prompt further investigation.

More detail on aspects of this discussion will be found in chapter 3.11.

1.10 Future applicability

During the course of this work we are aware that the use of fibre optical networks can provide
vast bandwidths of hundreds of Mbit/s or Gbit/s which effectively make the problem of

2taken to mean those providing large compression ratios, or large reductions in data volume
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transmitting even the largest images in a fraction of a second trivial. Leaving aside arguments
of availability and economics which we might assume will eventually be solved, there remain
several reasons for pursuing a low bandwidth solution:

� Any additional insight gained about the composition structure and characteristics of
the application and images will be of use for other processes, for instance modelling,
visualisation and analysis.

� Since the introduction of computing technology, resources (file space, network band-
width) have only just kept pace with the requirements of application developers and
users. Indeed it will be many years before resources are inexpensive enough not to be
a key issue in most PACS.

Although our teleradiology link might become faster, the image’s resolution and dy-
namic range will increase as will the number of images, and the duration of their
storage.

� Some of the methods developed are of a general nature and could be applied to other
application areas, for instance the progressive enhancement work would be useful for
any pictorial interactive database browser.

1.11 What this work does not address

This work touches on some themes which have been the subject of philosophical, moral
and political debates. Where appropriate these will be mentioned, but the issues will not
be pursued in detail as the technical aspects are our major concern. Though it is believed
by the author that the ideas and techniques investigated in this work are sound, it would
require further testing and evaluation, prior to implementation in a situation where significant
damage could be caused to persons by their use or misuse.
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Chapter 2

Brief History and Review of Recent
Work

As early as 1972 the prospect of using telephone circuits or radio frequency channels to
give ‘images whose grey scale and resolution are satisfactory enough to be virtually indis-
tinguishable from the original’ was being considered by some authors (Webber et al., 1973).
The benefit of such a system was clear to Webber and his co-authors. Since this time a
number of experimental systems have been developed using various approaches based on
the technology of the time. Although many of these experiments have been small scale, and
the applications limited, they nevertheless have been important in providing information
concerning technological, medical, psychophysical, and sociological implications in addition
to providing an insight to the potential for telemedicine. It is important to consider the local
infrastructure, and practices when assessing how transmission of medical data might improve
existing systems of working. The examples in this chapter are taken from sources world-wide
to demonstrate a number of (mainly technological) points, accordingly some would not be
appropriate to all health care environments.

In the next section we review firstly a selection of experiments and the main conclusions
of these relevant to this work, secondly we review technology available today as a prelude to
reconciling today’s technology with the facilities that are necessary, and those that can be seen
to be of potential benefit to medics and patients alike. Lastly we look to see where the current
technologies are likely to lead, as an attempt to assess any implications or shortcomings of
the techniques being developed in this work to ensure its validity in the future.

2.1 Telemedicine: the early days

Initial telemedicine studies focused on teleradiology as a key application with only recent
interest in other potential teleservices. The early studies, of which two have already been
mentioned in the introduction, were based on analogue systems, with relatively low reso-
lution. These experimental systems were built on ‘home made’ hardware as no commercial
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offerings were available. It was initially thought that television quality would be adequate
when provided with zoom facilities. Investigators soon discovered that the resolution was
inadequate for radiographic examinations and the signal to noise (S/N) ratio was too low with
zoom facilities (Batnitzky, 1990). Transmission via UHF radio and line of sight microwave
links was tried but proved to be difficult, especially in urban areas. Several trials using cable
television facilities (Curtis et al., 1983) underlined the resolution inadequacy of these systems.
Although the success of experiments like these was low this was due to immature supporting
technology and infrastructure.

2.1.1 Digital teleradiology

A major improvement was made with the introduction of digitised image data. Although
the digitised video image only provided a resolution of 512�512�81 the digital transmission
available via modems using the public telephone network proved to be adequate for some
applications. In 1982 the MITRE corporation under contract from the U.S. Public Health
Service held a six month field trial involving four remote sites which transmitted radiological
images daily to a central clinic for reading by a radiologist. Leased telephone lines were
used to transmit 512�512�8 digitised radiological examinations. Evaluation via Receiver
Operating Characteristic (ROC) studies showed an accuracy of 96.7% for findings and 95.0%
for impressions (Ratib et al., 1991a). Improvements in digitisation resolution allowed a second
trial in 1985 using 1024�1024�8 digitised images, transmitted at 9600 baud over telephone
lines. A similar evaluation to the 1982 study showed surprisingly, nearly identical results,
although the subject matter of the images is not known.

The benefits of the use of TR in rural settings (Iowa, US) are highlighted in a sum-
mary paper (Franken, 1992) which demonstrates ‘virtually identical’ diagnostic performance
through the use of teleradiology, with significant (positive) effects on the family practitioner’s
level of confidence in diagnosis. The paper continues to outline three additional areas;
Radiologist consultation to family practitioners in outlying areas, subspeciality consultation
to radiologists in rural areas, and augmenting the availability of on site radiologists through
the use of teleradiology.

The use of teleradiology for the emergency room is considered (Kagetsu & Ablow, 1992)
using standard telephone lines and a modem, with a resolution of only 512�512 pixels. An
interesting comment from the standpoint of this work was the following.

‘Limited spatial resolution makes the diagnosis of pneumothorax difficult ... If
optically zoomed images of both (lung) apices are routinely transmitted in addition
to the PA and lateral view transmission time would increase ...’

The implication being that there is a specific region of these images which requires higher
resolution than the rest. From comments such as these we developed the hypothesis that

1The convention n�m� bwill be used throughout to indicate an image of n pixels wide, bym pixels vertically,
and b bit planes deep, giving 2b levels in a grey scale.
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regional variations in the quality of images can be a useful feature, and also that it should
be possible to generate a high resolution image region from a lower quality one, without
transmitting the entire pixel array. We return to these ideas in the following chapters.

2.1.2 Commercial offerings

The Kodak Ektascan Image transmission system provided a commercial offering in 1988 and
was also based on camera digitising of x-ray images displayed at 640�480�8 with zoom
facilities to enable an effective resolution of 1048�1920�8. It also provided an integral 9600
baud modem for image transmission. An evaluation of the system (Markivee, 1989) (St. Louis
(US) University Medical School) reported that diagnosis of digitised plain film radiographic
images was 98% accurate with the Ektascan unit, the study also indicated the importance
of image manipulation and simple image processing operations – including reverse video,
window level adjustment and histogram equalisation – being used extensively to improve
the appearance of images.

2K2 TR technology was used in a study concerning cervical spine fracture detection
reported from the Arizona Health Sciences centre (US) (Yoshino et al., 1992). The study
used the DTR 2000 TR system, by DuPont (Washington). The resolution of this system was
2048�2048�8, the images were transmitted via T1 (1.54Mbyte/S) leased land lines prior to
being laser printed back on to film at the receiver for reading. The results which involved 4
radiologists, showed no diagnostic difference for 2 of them between original and transmitted
images. The other two (the more experienced) did perform better with the original film. The
authors provide the following interesting conclusion.

‘high resolution in and of itself is not adequate for fracture detection, and that
issues concerning image contrast manipulation also have to be addressed...’.

This advice has been accepted by many researchers, and a survey of modern systems reveals
that virtually all feature such image manipulation functions. It is our belief that such functions,
with correct use, can more than compensate for degradation caused by digitisation, (and
possibly some forms of compression) of images. It is also clear that the resolution and quality
required for an image depends upon several factors, some abnormalities being less visible
than others.

1993 saw encouraging results published in (Goldberg et al., 1993). A teleradiology link
was set up using a 1.544Mbit/s T1 link, a 1684�2048�12 plain film digitise2, and an Apple
IIfx interfaced to a 2048�2556 21 inch monitor as the diagnostic workstation. In addition a
140 Gbyte optical jukebox was used for image storage, and a DEC VAX 6430 used as a file
server. Each image was approximately 7Mbyte and took 36 seconds to transmit. Various other
specialised hardware such as a parallel disk array for the file server and a custom display
controller for the diagnostic workstation were also required, with the following discussion
included in this paper.

2FD-2000, Dupont, Wilmington, Del
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‘Our results suggest that accurate primary diagnosis with high resolution digital
teleradiology is feasible. With an overall accuracy of 98% our results surpassed
the results reported with low and moderate resolution systems. Discrepancies
were judged by the review panel to be more closely associated with observer
performance than with any error introduced by the fidelity of the digital display’

The authors noted that 2048�2048 resolution monitors are likely to become standard in the
future with 4096�4096 used for diagnosis of certain types of abnormalities. This could be
provided by zoom facilities based on the 2048 monitor. An additional mention is made to the
effect that the observers did not make much use of the magnification and intensity windowing
functions. For soft copy displays to provide the best performance such features need to be
fully utilised and obviously be easy to use. Much of the work presented in later chapters
assumes that these facilities will be used to overcome the limitations of soft copy displays,
given the many advantages.

At the time of writing the resolution of modern TR systems has stabilised at around 2K2

pixels for chest examinations (typically the largest) with debate about how much improvement
4K2 systems would provide, if any. 2K2 has thus been used as the ‘typical’ resolution of large
digital x-ray in this work, to enable system and algorithm performance to be assessed.

2.1.3 Other modalities

The widespread use of images from other modalities has prompted investigations into the
benefits of using these in a TR environment. A number of additional factors are then brought
into play, for instance some types of image are inherently digital, often at far lower resolution
(256�256�8). This advantage is offset because some scans comprise of many images, or slices
creating a 3D image, thus making the transmission requirements extremely varied. One
simple system (Yamamoto et al., 1993b) tested in 1991 (Hawaii) shows how simple technology
as a hand scanner, PC, and modem has been used to improve the ability of one medical
centre to optimise patient transfers between outlying hospitals, based on transmission of
Computed Tomography (CT) scan information. In this case diagnostic quality images were
not considered necessary.

No difference in diagnosis was found during a study between 1988 and 1990 (Eljamel
& Nixon, 1992) in the UK (Merseyside region) in which six peripheral CT scanners were
connected to a centre for neurology and neuro surgery in Walton. Patients were transferred
on the basis of images transmitted via an Image Link 100 system (Electronic imaging ltd,
Oxford, UK). The main advantages of the system were in a reduction in unnecessary referrals,
less complications during transport of critical patients due to unforeseen disorders, and early
detection of some disorders by a precautionary local scanning policy. A detailed discussion of
the economic advantages of the system is presented in the paper, but cost savings (excluding
medical, nursing, and police escort) were estimated to be around £20,000. Few technological
details of the system are given but transmission time ranges from 2 - 15 minutes with an
average of 5.5 minutes using standard (analogue) telephone circuits.
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2.1.4 Other progress

The availability of switched digital dialup networks provide an additional flexibility, allowing
occasional usage patterns to be accommodated. In some locations it is possible to automati-
cally select a number of channels. One TR study in 1991 (Kansas US) (Dwyer et al., 1992) allows
n�56Kbit/s channels to be selected, where n can be selected dependent on the time required
for transfer. The choice of bandwidth will depend exactly on the application, although another
study (Honeyman, 1991) gives the unsurprising result that multiple 56Kbit/s lines are more
inexpensive than T1 5.44Mbit/s for low traffic situations between two specific destinations.

The promotion of ACR-NEMA DICOM (American College of Radiology/ National Elec-
trical Manufacturers Association Digital Imaging COmmunications in Medicine) a standard
format for transfer of images and the all important associated patient information is very
welcome. The ACR-NEMA standard was originally designed to allow medical imaging
equipment to be made plug compatible. The advances in LAN technology have made
interconnection of equipment via industry standard interfaces, for instance Ethernet, and
FDDI popular and many manufacturers are providing this type of connection to equipment
as standard. The ACR-NEMA DICOM standard has been improved to support the ISO
(International Standards Organisation) communications model, and version 3.0 includes
upper layer software support of TCP/IP. The DICOM standard has a vast array of predefined
fields for image and patient information, but necessarily is expandable through the use of
reserved codes. Therefore it would be possible to include the work of this thesis by the use of
these links. We have not considered the details of implementing this step, however it would
be essential to provide an operational system.

2.2 PACS

Early investigations in teleradiology were based on stand-alone systems. This approach is
limited to providing a remote diagnosis facility, and is only suitable in certain situations. To
provide a more comprehensive service, allowing general access to information and images
by a range of medical professionals, teleradiology should be considered part of a more
comprehensive PAC system. Only then will the major benefits of both systems become
available. For the remainder of this work, we will generally consider that teleradiology
systems are likely to be part of some larger PAC system, with images which may or may not
be stored in some compressed formats.

Progress in implementing PACS has been slower than expected by many, with various
reasons being given. Aside from the financial considerations, the usability of the systems
has been seen to be a problem (Binkhuysen, 1992; Minato et al., 1992), with user complaints
summarised by:

� Systems are too slow.

� No good overview of an investigation or study is available.
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� Comparison with previous examination images is difficult.

Retrospectively we discover that the techniques we have developed for teleradiology might
also alleviate these problems in both remote and LAN based systems.

2.3 Leveraging technologies

Although many experiments have taken place in medical PACS and teleradiology in the
past, only recently have all the technological ingredients become available, with sufficient
standards (de facto or otherwise) to make an integrated digital medical imaging environment
a real prospect. Advances in technology have allowed these subsystems to be constructed
by many medical institutions specialising in research. The storage and archive of medical
images and data can be achieved with the use of high capacity optical disks and jukeboxes.
Many consider that WORM drives have the advantage that images cannot become deleted or
lost, while cost effective computed radiology equipment is becoming increasingly available
and portable digital x-ray equipment is also being developed. Many other image acquisition
modalities are inherently digital and so are well suited to inclusion in PACS environments.
Output devices allow high quality with reasonable cost. Laser printers can provide high
resolution grey scale images and CRT monitors for soft copy have been arguably shown to be
comparable to conventional film for diagnosis (H.Kangarloo, 1991; Goldberg et al., 1993). The
networking technology to link these devices into an integrated system has the form of high
speed optical fibre for PACS LANs, and possibly ISDN, or B-ISDN for the wide area network
(WAN) aspects.

Much work has still to be done to make such systems readily and economically viable with
the advantages often not great enough to justify the massive investment. This is especially
evident when some of the savings are not available directly, for instance the reduction of
archive room space etc. Much of the required technology is still very expensive, and the
systems too fragile and complicated for the users, who are experts in their own fields, and do
not wish to acquire vast amounts of computer expertise to be able to use new systems.

It is true however that the systems and trials performed more recently are far superior to
those only 5 or 10 years ago; the main factors contributing greatly to the improvement in TR
and PACS systems in recent years are considered next.

Multimedia. The medical image workstation is essentially a multimedia environment, al-
though it is often not explicitly called such. Typically an imaging workstation will
allow viewing of images, text, and graphical figures. There is often a tape recording
device for reporting, and telephone access, and both of the latter could be integrated
into the workstation with minimal effort.

Communications. LAN technology is heading towards fibre optic media supporting many
simultaneous image (multimedia) transfers with real time performance to the user.
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WAN technology can now support dial-up digital communications at medium band-
widths and low cost. The bandwidth to the end user cannot increase much beyond the
present levels until re-cabling with fibre or coaxial cable to each premises takes place.

Computing technology. High resolution display, and powerful workstations are becoming
relatively inexpensive, allowing WIMPS (Windows, Icons, Menus, Pointers) displays
and sophisticated image processing.

Archival devices. Optical jukebox technology (including RAID arrays) although still expen-
sive allows large databases to be created and maintained, and has benefits of space
saving and reliability compared with manual filing. As an additional benefit, there is
no restriction to a single copy, unlike real films, which can be an advantage in some
environments.

Imaging technology. Some commonly used modalities are inherently digital, often using
D/A conversion to produce video output. High quality digital scanners are now
available and films are often digitised when required.

Image compression. A leveraging technology bridging the gap between communications,
and archive technology, and computing and imaging technology.

Standards. A number of useful standards are emerging; ACR-NEMA defines both hardware
interfaces for equipment and also a structure for files in a PACS database. IEEE 802.3
(Ethernet), FDDI, B-ISDN, and N-ISDN networking standards provide a variety of
bandwidths and possible services at various costs and availability.

Although these factors do allow PAC systems to be built, progress has been slow. The reasons
for this are several; clearly changes in working practice combined with an (often justified)
mistrust of technology are factors, exacerbated by few experienced commercial vendors along
with incorrect expectations of what the new technology can provide. Additionally, heavy
investment in hardware, software, and training is required.

2.3.1 Compression techniques

Compression algorithms are divided into two types, lossless and lossy. Lossless compression
algorithms are bit-preserving and we thus recover exactly the same digital sequence as was
compressed. These techniques can be used for any type of information including text, images,
graphics, sound etc. The best ones can achieve compression ratios of about 3:1 depending on
the type of data, with 2:1 or less being common for image data.

The other type of compression termed lossy does not preserve the data exactly, but
tries to preserve all the relevant visual information. This can be very useful for images,
for instance where the raw data is large and slight variations in the image bit pattern are
virtually invisible to the human eye, remembering that the initial digitisation already produces
somewhat arbitrary (in terms of image content) spatial and intensity quantization. Lossy
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image compression applied to medical images has been the subject of many discussions in
the past and it is true that lossy image compression should not be applied in an ad-hoc fashion
to critical image data sets. However, if applied in sensible tested ways to images where the
effect on the image is known, and will not affect procedures to be carried out during the life
of the image then the savings in storage and transmission time can be substantial, yielding
10:1 - 40:1. Further discussion is postponed until section 3.11. Many experiments in applying
image compression to medical images have been published (Bruce, 1987; Cetin, 1991; Cho
et al., 1991a; Aberle et al., 1993; Kajiwara, 1992; Sun & Goldberg, 1987; Popescu & Yan, 1993),
and though results vary, they are on balance very encouraging. Details of the results of these
authors findings are included in chapter 4 when we survey available techniques.

2.4 Diagnostic performance

The final objective of any medical imaging procedure is to make a correct and timely diagnosis.
The extent to which this can be achieved depends on many factors, sometimes the limit of
diagnostic performance is the imaging technique itself. This type of limitation is unavoidable,
however it is important that any new techniques are at least as good and preferably better than
previous ones. Unfortunately we are studying an area where performance is hard to predict
as it involves skilled human operators who use experience and subjective processes when
reading an image and making a diagnosis. It is not always easy to predict the result of a specific
technology, for instance the surprise result in section 2.1.1. For this reason many studies have
been performed to decide what resolution and dynamic range is required for digital x-rays
to produce similar results to analogue film. The usual technique is to employ a ROC study,
which involves a number of radiologists diagnosing processed and original versions of a set
of images, the statistical results of which can predict any performance differences.

After considering a number of studies (Aberle et al., 1993; Scott et al., 1993; Yoshino et al.,
1992; Goldberg et al., 1993) it has become clear that for non digital modalities the process of
digitisation can cause some reader errors, before any image compression has been performed.
There are often multiple identified causes for this, not only lack of resolution or dynamic range.
Studies aimed at finding minimum resolution requirements for a diagnostic task have found
retrospectively that many overlooked anomalies have been visible on the image, and therefore
other explanations have been sought. These include positioning of workstation monitors
where there is glare on the screen, interruptions during the reading process, difficulty in
using the digital image enhancement facilities, or problems in comparing multiple images on
screen. The speed of image display can even cause a distraction from the diagnostic process.

Digitised studies which have printed images back on to film are immune to these problems,
but do not have the on line image manipulation facilities available. Soft copy display has
both technical and economic advantages over film which makes it likely to be the universal
medium for future imaging systems, therefore the problems associated with lack of user
experience or incapable user interfaces will diminish with time.
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2.5 Future technology trends

Considering the technologies which contribute to PACS and TR systems a number of trends
have emerged. The imaging devices are producing higher quality images, and some modal-
ities are becoming more compact allowing images to be produced on a more localised basis.
The systems are becoming more usable with a better understanding of graphical user interface
(GUI) construction and more powerful (and cheaper) processing to support these. Soft copy
display is naturally accepted in some modalities where it is the primary viewing medium
(e.g. NMI, Ultrasound) and is gradually gaining acceptance in other primarily film based
environments. Multimedia is becoming incorporated in a vast range of applications and
medical imaging is a naturally multimedium environment. Although archive technology
is based primarily around optical disks which can provide many hundreds of GBytes at
fairly reasonable cost, storage of studies is still also sometimes a limiting factor. Fibre optic
communication technology for LANs is feasible, as long as the system it supports provides
enough added value to the institution, though it is still expensive. Wide area communication
is usually only feasible through the use of external carrier services, for some applications
leased lines are appropriate, in the case of LAN-LAN interconnection for instance. However,
these are expensive if utilisation is low, the alternative of using switched dialup services is
often the best solution for ad-hoc or low volume connections. For the best coverage ISDN at
64 or 128 Kbit/S is widely available and can connect to most places including the GP surgery,
remote clinics, and (on call) radiologists homes, at very low cost.

It is hoped that the work of this thesis might help in two ways, firstly to allow the provision
of extra value added (tele) services, and secondly to allow savings on bandwidth/ storage
requirements which would improve feasibility by lowering the cost of existing imaging
services.
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Chapter 3

Facilities Required to Implement
Image Based Telemedicine

This chapter is primarily concerned with ascertaining the users’ requirements for medical
teleimaging1 and then linking these to the characteristics which will support this within the
transmission and image compression technology. Some sections of this chapter are extracted
from a previous publication by the author (Snooke, 1992).

3.1 Requirements of the professional user

A number of general requirements have been identified from the literature which a TR system
must meet to be considered usable:

� It should not interfere with diagnostic procedure.

– No noticeable or distracting delays.

– Appropriate resolution and grey scale.

– Flexible and powerful (graphical) user interface.

� Diagnostic facilities should at least match those already available.

� The system should require minimum familiarisation time for a new user, but should not
be frustrating for the expert user.

The way in which these objectives will be met depends partially upon the type of service
being provided. We can identify two different situations:

1the term teleimaging has been adopted to encompass a greater range of imaging modalities applications than
teleradiology
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� Advance notice of the transmission of an image or study is available — either explicitly,
or from an intelligent HIS or PACS system by workload scheduling.

� Immediate transmission is required —‘wet reading’ for consultation, second opinion,
emergency use, and teaching/reference.

Consideration of the published trials and studies would indicate that the transmission of many
images can be determined in advance, for instance most routine interpretation performed by
radiologists can be scheduled hours or possibly days in advance. When we consider possible
access to images by others, for instance by GPs, it is likely that these do not often require full
primary diagnosis quality images.

3.2 Types of user

Although primary diagnosis of radiographs by a radiologist is the main scenario in the
teleradiology literature and for this research, there are a number of situations where remote
access to medical images is (potentially) useful.

Teleradiology. Useful for small institutions, subspecialty situations, contract radiology etc.

Second opinion. Typically when a radiologist, doctor, or consultant would like a second
opinion, a delay is initiated while the image is transferred by post, or a visit is made.
Particularly in small institutions where the range of expertise is limited this can be a
significant problem. The advantages of electronic transfer of diagnostic quality images
or real time multimedia consultation are obvious.

Outpatient clinics. Though not essential, images can in some circumstances be of benefit
during tertiary care. Diagnostic quality is not necessarily required, for instance 8 bit
display rather than 12 bit, with limited image manipulation ability (London & Morton,
1992).

Doctor’s surgery. The GP typically does not have access to images currently, however exper-
iments in making such information available are being considered. Again only ‘review
quality’ is desired.

Remote retrieval. Over a period of time one specific patient might have images archived in
a number of places. Inter hospital image communication can sometimes reduce the
number of additional images which need to be made.

Training/ education/ reference. Images which are used for education, or those that show
some particularly interesting item should be available (anonymously) to the radiological
community. Due to the limitless copies available electronically reference images can be
made available for the cost of transmission.

Archive. In some situations remote long term archival is economically more viable when
performed in bulk at regional centres.
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3.3 Primary functions of a medical imaging network

A PACS or TR facility can be considered as 4 major subsystems:

� Image acquisition.

� Database and storage.

� Display and output.

� Communication network.

For a typical PACS system the TR link will be between the database and remote display
systems although there are circumstances where other combinations of subsystems might be
linked remotely.

In the case of a regional archive facility the small scale hospital PACS database could be
archived periodically to a remote long term storage facility.

The Acquisition and Display/Storage systems might also be linked remotely. For instance
in situations when portable imaging equipment is available at the scene of an emergency, the
image can be available at the hospital prior to patient arrival. Potentially, advice could even
be given to personnel at the scene of an emergency.

3.4 Teleradiology network requirements

The following criteria have been proposed as desirable requirements of a wide area network
or a TR system (Honeyman, 1991). Indeed, we note that when they are satisfied it will be
possible to provide a service which will satisfy the user requirements given in 3.1.

� Image data is accepted rapidly by the WAN.

� The WAN promptly accepts an intended transmission.

� The WAN is efficient (no long idle periods).

� Image data arriving at receiving host computer is processed rapidly.

� Transmission protocol responses are processed rapidly.

� The topological connectivity is modifiable in a reasonable length of time.

� The WAN is transparent to the user.

� The WAN should be as cost effective as possible.
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To satisfy all these requirements is very difficult, in particular the technology required is
expensive - possibly too much so to fulfil the cost criterion. In the future B-ISDN might well
provide a complete solution, however, at the present time it is still not widely available, and
is expensive especially in the rural areas which have been identified as benefiting most from
the TR services.

If we consider the circuit switched 64K bit/s ISDN network it satisfies most of the criteria
to the following extent.

Prompt acceptance. Once a call has been placed the sender has exclusive use of the channel
and so there should be no delay prior to sending data. If a call is not active a call set up
delay of the order of a few seconds should be acceptable in most cases.

Efficient use of WAN. Calls can be dropped according to a suitable strategy once active use
of the line has ceased. There are a number of factors to take in to account when deciding
on such a strategy, particularly in relation to the carrier’s tariff arrangements.

Connectivity. This is one of the strongest features of the ISDN. It should be possible to
connect to any required location (given access authority restrictions) that have the
required server machines.

Transparency. The public service telephone network (PSTN) already provides this, as will
ISDN calls. Systems will obviously be required to be configured to connect to the correct
databases, but this is likely to be under ‘friendly’ user control.

Host computer responses. The host machine should not cause delays to the system, either
in accepting data, or processing responses. We do not see this as a problem, given that
reasonably powerful and inexpensive machines are available, and are required in any
case for other aspects of this type of application.

Cost. The cost will depend on configuration, and usage patterns in any specific implementa-
tion. A cost effective solution is anticipated if the other criteria can be met.

Throughput. Although N-ISDN has far greater throughput than was previously possible
using modems and the like, large high quality images contain massive amounts of raw
data, making this the main unresolved problem area to which we turned our attention.

3.5 Application to rural areas

Rural areas have many difficulties on top of those experienced by well populated urban areas.
Some of the more obvious are as follows:

� Part time staff — some radiologists serve several hospitals visiting each on one or two
days each week. This causes delay to some patients, and the radiologist’s time is not
productive whilst travelling.
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� Few local specialists — it is not feasible or economic to employ many specialist consul-
tants in smaller hospitals. Patients therefore find it can take days or weeks for diagnosis
to be made, the method used to send images often being by land mail.

� Central storage of electronic images — it might prove more effective to collect images
in a central database where the necessary hardware and staff can be employed rather
than burden cottage hospitals with this expense.

� When it is necessary to refer a patient to another hospital the relevant images can be
made available prior to his/her arrival and if necessary an interactive session between
the staff concerned could be arranged utilising image, voice, and graphic media.

3.5.1 Workstation requirements

Within a PACS or TR environment several types of workstations are required to satisfy
the various requirements of the users. In one study (Matthews, 1991) 5 differing types of
workstation were proposed:

Specialised image stations. An interface between acquisition unit and medical and technical
users.

Image Processing Stations. Powerful machines with multiple level user interface to enable
use by engineers, specialists, clinicians, programmers etc.

Multimodality Reporting Console (MRC). Interpreting and reporting of exams. Two types
multiple display (several monitors) and virtual display (roam, pan, zoom on single moni-
tor).

Multimodality Viewing Station (MVS). For review by clinicians, user friendly but not so-
phisticated.

Remote Viewing Stations (RVS). To review images at remote sites and scientific archive(s).

The details of the functionality for these can be found in (Matthews, 1991). Although
the RVS here is assumed to have a low functionality to enable remote access, it would be
possible for any of the other types of workstation to utilise remote images given a reasonably
refined communication system. MRC’s would be necessary for a remote interpretation
service, with MVS and RVS being reduced functionality versions with possible application
to GP and archive site access. A paper dealing with how to evaluate a medical imaging
workstation (Johnson et al., 1987) although now dated, demonstrates the requirement for
various workstation capabilities. The evaluation is based within a framework for categories
of task (verification, interpretation, and consultation) and types of user (technician, physician,
hospital or clinic). Acceptable parameters (e.g. resolution) depend upon the location within
the framework. Other authors have considered less specific categories than these, and a more
general approach such as the use of X-terminals provides a sufficiently flexible approach

23



(London & Morton, 1992) to enable diverse information including text, images, and graphs
to be included. In the situation where significant local processing is required the server and
client can be supported on the same (powerful) local machine. In other situations, especially
when connected via fast LANs to powerful processors, then an X-terminal server would be
sufficient, utilising remote clients.

It is clear that although different capabilities are required for the different tasks, a modular
approach comprising both hardware and applications gives greater flexibility plus economy
of scale.

3.5.1.1 ACR-NEMA

The need for a standard way of interchanging images from different manufacturers’ ma-
chinery was realised over a decade ago. This prompted ACR-NEMA to develop the Digital
Imaging and Communication (DICOM) standard. The PAPYRUS format based on ACR-
NEMA DICOM with additions by the TELEMED project working group appears to be a
flexible solution (Ratib et al., 1991b). A folder mechanism is used to prevent images from
becoming separated from related patient details and clinical information. In addition, a frame
work for storing the large numbers of parameters associated with most medical images is
provided based on a ‘tagged’ format. Some simple types of image compression are supported
directly, however spare locally defined user fields can be used to support ‘non standard’
techniques.

3.5.2 End user terminal expectations

From a survey of the literature (Okabe et al., 1991; Ratib et al., 1991b; Johnson et al., 1987;
London & Morton, 1992; H.Kangarloo, 1991) the following list of expected features for primary
diagnostic level workstations has been compiled. The extent to which each is necessary cannot
be ascertained without specific application requirements. The following list is included
primarily to ensure that operational aspects are not overlooked in future chapters.

� High quality graphics display — 10242 or 20482 pixels.

� Powerful graphical user interface.

� Local disk storage — sufficient for storage of advance studies and temporary processed
images.

� Frame store or fast RAM — to provide fast switching between images in a study,
especially if a single monitor system is being used.

� Image compression software or hardware.

� Image manipulation processing capabilities — there are many essential image process-
ing operations to aid diagnosis. These are discussed in 3.5.3.
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� Possible multimedia support.

� Suitable network connection and supporting protocols. This could include voice
communication facilities with an ISDN workstation.

� Transparency of network — the radiologist should not need to know about the topology
of the network to access the required images. Items such as patient name, ID, and
hospital should be adequate to locate images. We shall not dwell on this here as for
large distributed databases this is a complex problem studied by others.

� Security — Access to confidential information must be restricted to authorised person-
nel. A multi level access system would perhaps be required.

Multimedia technology appears to have many advantages for the medical workstation. It
is possible that verbal as well as textual reports could be made, consultation between remote
specialists will be enhanced by animated graphical overlays on images. Most specifications
for medical imaging workstations already implicitly combine aspects of multimedia, other
functions will be included as natural progressions as the technology matures.

3.5.3 Image manipulation / processing functions

Although the field of medical imaging uses many very specialist image processing techniques2

there are a number of facilities that have been found to be particularly useful and are applicable
to many types of image. These fall into 3 categories; manipulation, processing, and annotation:

Manipulation The content of the image data is not changed, only the users’ view of it.

Processing The content of an image can be modified.

Annotation Appending additional information to an image ( textual, pictorial, audio etc ?).

The following list is a compilation of techniques (Irie, 1991; Okabe, 1991; Ligier et al., 1992)
which we have divided in to the above categories.

Manipulation functions:

� Intensity level modification (brightness).

� Intensity level remapping (windowing).

� Magnification and interpolation.

� Minification3, Spatial Information Models.

2for instance in 3 dimensional reconstruction
3Display of several reduced size images on a single monitor, similar to a pictorial directory or catalogue of

image files
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� 3-D display.

� Dynamic display.

Processing functions:

� Histogram equalisation (contrast enhancement, global and local).

� Edge enhancement.

� Weighted addition or subtraction of images.

� Frequency enhancement.

Annotation functions:

� Measurements of distance and angle.

� Editing or annotation of images.

� Region of interest (ROI) identification.

Most of these functions are easy to achieve with any workstation of reasonable power, certainly
the manipulation functions will be required to enable a graphical user interface to perform
efficiently.

3.5.4 User interfaces

An important area neglected until relatively recently can make or break a system. If the
user interface is poorly designed, it makes no difference how good (or fast) the rest of the
system is - it won’t be accepted by the users ! Windowing environments like X Windows for
workstations or Microsoft Windows for PC’s can provide a relatively consistent and intuitive
interface to sophisticated software. These environments are ideal where multiple images are
to be manipulated and displayed, and can (for X-windows) allow multiple screens to be used
for applications if necessary.

3.5.5 Bandwidth availability

Restricting the long distance communication to basic rate ISDN requires that we use 64K bps
or multiples thereof. In many situations it would be possible to utilise both the B1 and B2
channels with the option of adding more channels bandwidth. For the following sections
however, we restrict bandwidth to 64 or 128Kbps switched lines, ignoring the possibility of
packet or frame relay based services with higher transient throughput.
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3.6 Modes of working

It is useful to define categories of modes of working and determine the constraints each
has with regard to the network performance measures such as average throughput, peak
bandwidth, latency etc.

The categories are based on considering a communication link which has at each end either
a medical professional (P) or the database containing the images (D). In all cases assuming
that every local network connecting devices at either end is faster than the wide area link
under consideration, and provides sufficient buffering so that delays and transmission times
between a local review console and database are small.

session

Reactive

P -- D P -- PD D -- D

-- link    P user D  database

Tele medical  reporting

advance

Emergency or

Tele medical  reporting
fresh studies

Database archieve

interaction

session type

Review sessions
Consultation

Consultation

multiple patient/study
Structured

On the fly consultation

request
spurious additional
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1 4

6

7
Scheduled

Figure 3.1: Modes of working

Referring to figure 3.1 we can identify several situations based on the above categories:

1. A number of studies are to be diagnosed and reports returned. The process (for x-
ray interpretations) in some countries is known as contract radiology, and can be
performed remotely as no patient interaction is necessary. Often the images could
be transferred before the radiologist starts work, provided sufficient storage is available
on the workstation.

2. Another situation can exist where the radiologist will indicate which studies are going
to be required as each session begins.

3. All other situations can be considered as ‘wet reading’4 the most demanding situation,
when an image is required for viewing instantly.

4wet reading as used by (Bridgood & Staab, 1992) to indicate the situation when the radiologist is waiting for
the image to be transmitted
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4. Consultation between two people which was prearranged to enable patient records to
be transferred in advance.

5. Similar to 2 but in a consultative environment. Once the link is established the systems
know what is to be transferred.

6. On the fly consultation where studies are shared in an ad-hoc fashion.

7. In some networks archival of data might take place remotely.

We will be considering how it might be possible to provide a scheme which can adapt to
all of there situations.

3.7 Characteristics of medical images

One of the hypothesis of this work is that many medical images are of a sufficiently specialist
nature so as to respond to methods which might not be of general utility. This speciality can
be in terms of the image content itself or in the ways in which it is used and accessed. The first
step is to consider some of the basic characteristics together with specific problems which are
to be solved and any attributes which can be utilised to our advantage.

3.7.1 Resolution

Physical image size becomes irrelevant when considering soft copy and is less important than
the resolution required to make accurate diagnosis. For digitised images the limiting spatial
resolution is often measured in line pairs (lp) given by:

spatial resolution = m=2f;

where f is the dimension of the Field of View (FOV) and m is the number of samples in the
matrix. The term image size will be interpreted to mean the resolution in terms of the total
number of pixels required to represent the image in its horizontal, and vertical directions.
The spatial resolution can easily be calculated as above.

Table 3.1 gives a selection of typical image sizes and amount of data required to store one
study for a selection of modalities.

3.7.2 Image transmission time

To allow some comparison to be made, Table 3.2 specifies idealised transmission times for
typical medical image sizes, over several common communication network types. The times
are calculated on raw bandwidth, and are therefore over optimistic as no allowance is made
for network protocol overhead, transmission errors, and multiple access for some LANs.
No compression has been considered either, on balance the figures will give an order of
magnitude estimate of the problem.

28



Dimensions (pixels) Typical
Modality Horizontal Vertical Range Images per exam File size (Mb)
CT 512 512 12 30 15.7
MRI 256 256 12 50 6.5
Ultrasound 512 512 6 36 9.4
NMI 128 128 8 26 0.5
Computed Radiography 2048 2048 10 4 33.5
Digitised Film 2048 2048 12 4 33.5

Table 3.1: Typical medical image formats

3.7.3 Dynamic range

The dynamic range of an image, can for our purposes be considered as the number of bits
required to fully represent the range of grey scales in the image to the required accuracy. The
table shows some typical dynamic range values for typical image sources ranging from 8 -
12 bits. Many images contain more grey levels than all but the most expensive monitors can
display, and there is debate about how good the human eye is at resolving features at this
many grey levels within the intensity range attainable on CRT displays. In particular CRT
monitors, even those claiming high intensity, have a smaller dynamic range than traditional
film view boxes. One solution is to provide simple enhancement techniques to remap parts
of the image into a new grey level range as described in figure 3.2 thus revealing more detail
than was previously visible (Cox et al., 1992; Ratib et al., 1991b). The dynamic range within a
particular intensity window combined with the mapping function will be determine how many
more bits from the original are required to fully utilise the ability of the display hardware
being used. For instance in figure 3.2 (from left to right resp.) 8, 9 and 12 of the 12 bits are
required, though for the latter this is necessary only within some regions.

Using a linear mapping function (non-linear mappings are possible, see section 9.2.4) the
mapping can be automatically chosen to fully utilise the full display range for a specific ROI
defined by the user.

Format ISDN Modem Ethernet
64K bps 128K bit/s 9600 baud 10Mbit/s

2562� 12 12s 6S 1m21s 0.1s
5122� 12 48s 24s 5m28s 0.3s
1282� 8 2 1 13s 0.02s
20482� 10 10m55s 5m27s 1h12m 4.2s
20482� 12 13m6s 6m33s 1h27m 5.0s

Table 3.2: Idealised transmission times
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Figure 3.2: Image manipulation: remapping the tone scale

3.7.4 Other features

Image fidelity is clearly of utmost importance when dealing with medical images where
correct diagnosis might depend on the subtle features within the image.

We have observed several features of many medical images which can be utilised to
improve our compression ratios/ performance.

Restricted subject matter. Images are generally taken with specific views, of rather limited
anatomic subject matter. The proposal is to attempt to optimise algorithms utilising
these facts. It is possible that even simple information, for instance identification of
the important regions of particular image types, could be used to provide improved
compression without loss of utility.

Modality specific models. Each of the modalities used to capture medical images produce
images with specific dynamic range, dimensionality, noise levels, and visual character-
istics. Ideally the compression and transmission can be tailored to improve performance
by utilising these characteristics.

Statistical models. Where the compression algorithm utilises alternative representation do-
mains, for instance in the frequency domain, many types of image have characteristic
coefficient distributions5

Multistage (or progressive) viewing of images. Many of the largest sized images require
multistage viewing and this process automatically reduces image transmission require-
ments.

5the type of an image is left open to interpretation at this stage, the intention is to divide images in to categories
which will prove useful to the compression algorithms.
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Multi display. Many images are part of a sequence of related images, often captured in a
short period of time. In this case inter-frame encoding techniques can be utilised to
provide additional compression.

3.8 Characteristics of a medical imaging procedure

This section draws on the results of (Bazis et al., 1991) to describe how and why medical
images are typically used. Consideration of these characterisations must be made when
defining working procedures, transmission and compression procedures. Our main reason
for considering this information aside from ensuring a more complete understanding of the
application, is the possibility of using some of the knowledge concerning image use to improve
transmission, storage and archiving. This is however not a straight forward task; although
many systems have quite advanced facilities for dealing with information concerning how
an image was acquired with possibly a natural language explanation of why the procedure
was performed, none store explicitly the semantics of the procedures in a way which might be
of use for tasks like guiding archival and compression systems. It will be useful to bear such
possibilities in mind for future use and when considering database designs and compression
schemes. Other authors also consider such information to be useful, for instance, consider the
following list of major features characterising a medical imaging procedure as summarised
by (Bazis et al., 1991) following the production of an inventory of 30 imaging procedures
covering a number of modalities:

1. The medical goal of a procedure is to obtain a diagnosis or realisation of a therapeutic
act.

2. To obtain information from acquired series it is necessary to make relationships between
series explicit. For instance it is different to know the angle between two DSA images,
and to know why the images were acquired with such an angle.

3. Image processing is used to extract information relevant to the procedure goal from the
huge volume of data produced. It is therefore necessary to characterise how and why
processing is performed.

4. In almost all cases of digital procedures image processing is performed. Most often
simple (windowing, zooming, measurements) processing techniques are used. Only
in nuclear medicine are complex processing techniques performed. However, there is
no relationship between the algorithmic complexity of a processing technique and the
need for storing parameters used during processing.

5. By far the most common medical reason to store images is to compare sequential
procedures to evaluate the evolution of a pathology. It follows that if quantitative
comparison is to be used, the same parameters must be used on two procedures.

The consequences of this are that:
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“To be medically useful a Medical Image Data Base (MIDB) must be able to store
every piece of information used during the realisation of a procedure, and during
its consumption. If this is not the case the medical interest of a PACS is significantly
decreased.”

The paper concludes that a minimal MIDB solution is possible with standards like ACR-
NEMA, however for a generalised solution which stores the semantics of each procedure, a
far more complex data base is required;

“...since image sources, archives and workstations are not fully disconnected:
archives must know how acquisition and processing are done in image sources
and workstations to make it clear to final users why it was done (in terms of a
medical goal).”

Although this was written in the context of providing a value added system that physicians
would gain benefit from using, we had previously considered the use of such information
to improve the efficiency of compression algorithms, or more specifically to enable lossy
compression to be used in a more useful way. It is now clear that a PACS or MIDB should
be more than purely an image extension to current HIS systems. Achieving this though is
not an easy task, particularly given the many possibilities that WAN technology provides for
remote teleservices.

3.9 Techniques for image transmission

It is clear that many of the circumstances in which images must be transmitted, are amenable
to N-ISDN bandwidths. The following sections investigate methods which we consider
utilising to provide a service for the wet reading situations.

3.9.1 Predictive transfer

Predictive transfer or intelligent scheduling covers a wide variety of situations where infor-
mation obtained by the PACS and HIS system can predict which images will be required at a
remote location. This can range in the simplest form from checking a radiologists’ workload
schedule, to locating and transmitting a relevant archive image for a patient, or perhaps
automatically selecting the correct portion of an image for progressive enhancement based
on the information in the image request given to the radiographer or technologist when the
image was requested, for instance, what the main region of anatomy to be considered is.

If we consider the simplest case of a scheduled viewing of a set of studies we can consider
the feasibility of transmitting the images during a viewing session. Using S to represent
the average study size (bytes), t as the average time (sec) taken to view an image (perform
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diagnosis, write report etc.), and b as the bandwidth of the communication to the remote
database, if we assume full utilisation of the bandwidth and buffering then

S

t
� b:

If we insert t = 300s (Willis, 1991), and b = 64K bit/s then we obtain 2.4M bytes per study as
an approximate sustainable throughput. To determine required compression ratio we must
obtain the type and number of images per study for each application. Using this scheme the
delay prior to displaying each image should be small, with the exception of the first request
for each session for which it will be necessary to wait.

In practice the image sizes and viewing times are variable thus requiring enough buffering
to accommodate storage of images to allow the bandwidth of the line to be fully utilised. Some
delays might occur near the beginning of a session if especially rapid use of images is made.

3.9.2 Image compression

“Image compression algorithms have a key role to play as a leveraging technology in image
management systems” (Cho et al., 1987). There are many image compression methods
available and they fall into two categories; lossy, and bit-preserving. Generally bit-preserving
methods can only provide 30% to 60% compression of the original image, however they are
considered ‘safe’ as the original pixel values in the image can be recovered exactly from the
coded one. The lossy methods can compress to 5% or less of the original image size, however
it is possible that some detail might be lost from the image. It is therefore necessary to exercise
great care to ensure that relevant information is not lost.

When choosing lossy compression an image can be compressed to a given size (or
equivalently, ratio) or a given quality measure can be chosen. The latter measure provides the
safest technique allowing complex hard-to-compress images to attain a lower compression
ratio than ‘simple’ images. When designing encoding schemes, quality should always be the
primary constraint, with compression ratio secondly. This can have significant effects on the
algorithms which are developed. For instance, we should select the number of coefficients
required to attain a given quality, rather than selecting a given number of coefficients to attain
a specific ratio. Refer to chapter 7 for more details on quality measures and chapter 4 for a
review of compression technology.

3.9.3 User acceptance problems

Because interpretation and diagnosis is a subjective practice learned through experience it is
difficult to predict what effect any particular change in working practices or equipment will
have on the overall performance of the human expert concerned. For this reason it is often
advantageous to imitate established practices and equipment using the new technology, for
instance multiple monitors to simulate the traditional ’light box’ illuminator used in viewing
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films. Problems of ‘user adjustment’ are often encountered in studies involving a slight change
in working practice. An example is digital image manipulation – a powerful tool which can
overcome the limitations of soft copy display – however even when the implementation is
good, the users often do not make use of the facilities available without specific coaxing.
Once the practice of using the new facilities is established the problems have been overcome.
Our conclusion is that user reservation should be taken seriously (often concerns are fully
justified) but should not unnecessarily retard the investigation of new techniques.

3.10 Time criticality

It is now clear that ISDN has the potential to provide acceptable communication of images in
some circumstances. To attempt to find solutions for the demanding interactive transmission
of images additional techniques need to be considered.

3.10.1 Progressive enhancement

Progressive enhancement is useful for interactive transmission. The image is built up in
stages starting with a low quality ’sketch’ and rapidly improving to include fine details.
The advantage is that the user might be able to select the important region quickly, thus
eliminating much of the transmission, as only this area needs to be sent. The idea of using
progressive enhancement for the transmission of medical images is not new, many of the
arguments for its use are discussed elsewhere (Elnahas et al., 1986) in conjunction with a
discrete cosine transform (DCT) based implementation. In some cases the region of interest
might be identified automatically from the image by the use of image processing techniques.
For instance, the background of an image is unlikely to be of interest. The section of the
image most relevant to the study will then become visible first, with the rest of the fine detail
appearing subsequently, should it be required. Decompositions in the frequency domain are
ideal for this as the low frequency parameters can be transmitted initially followed by the
high frequency parts subsequently, thus omitting the fine detail initially so producing the
effect of a ‘blurred’ , but recognisable image useful for navigation and selection.

Progressive enhancement systems do not necessarily involve any feedback from the
receiver. Many have a pre-determined sequence of quality enhancing iterations, with the
only user interaction being premature termination of the transmission. We consider it would
be far more useful if the receiver can provide feedback to guide the transmission to match
user requirements. We envisage three categories of receiver feedback:

Terminal, hardware, or configuration settings of remote access terminals can supply infor-
mation which can affect the image reproduction strategy.

By-products of user actions can be utilised to imply certain information about what charac-
teristics of the image are required.
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Direct user requests The user should be free at any time to request additional improvements
on any aspect of the image.

The following table gives a number of progressive enhancement requests for each of the
categories, and typical ways in which the system might respond.

Category Nature Effect
Terminal, or configuration settings

display size quick display on lower resolution system
quick display on split/ windowed screen(s)

pixel depth (planes) efficient 12 bit image on 8 bit display
diagnostic or review quality optimum selection (eg. GP Info)
communication network efficient update steps
other heuristics e.g. prioritise centre portion at better quality

By-products of user actions
zoom capability higher resolution

or spatial frequency components
intensity windowing more accurate approximation for LF components

more bits/ planes
multi image display reduced effective resolution and less HF required

Direct user requests
priority regions regional quality improvement
SIM selection expand update
SIM region selection expand, prioritise region
best possible receive all
open folder transmit textual reports plus SIMS

3.10.2 Region of interest identification

Many medical images are of well defined types with specific features and interest areas. With
image segmentation and modelling techniques, identification of large areas of low interest
within an image will allow savings in transmission and storage capacity. We divide the ROI
identification into two categories, user identified and automatically identified.

The user identified ROI approach is used during reading or processing of an image by
radiologists or technologists. The technique is commonly used during soft copy processing
to identify sections of an image for further manipulation or processing as mentioned earlier.
The simplest method most often encountered in the literature is the ‘click and drag’ operation
using a mouse or similar device to produce rectangular ROIs. We have considered that
the ROI might be used to select the important areas of an image when it is being accessed
remotely over lower bandwidth channels, allowing the quality to improve from good to
excellent (or original) quality rapidly within the selected region. The transmission of large
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volumes of data can thus be avoided. There are obvious limitations to this approach as
it will involve additional user interactions, and possibly small delays. However, assuming
diagnostic accuracy is not affected by these user interactions, there are circumstances in which
there will be overall gains.

Automatic identification is where we see much future development. It will be possible for
regions of each image to be identified, and manipulated to provide the radiologist with the
best possible view of the image - without (or with minimal) user assistance. Some automatic
procedures are already carried out on digital radiographs to enable good visual display due
to the extremely good linear dynamic range of the images. We note that out of three methods
considered for performing this intensity rescaling (Blume & Kamiya, 1987), the technique
which has actually been used medically requires a model in terms of the characteristic
histogram features, for each type of image, to calculate the capture and display scaling
and auto-ranging parameters. The method put forward as possibly being the best (future
method) requires specific anatomical features to be automatically identified to allow auto-
ranging based on anatomy as well as imaging technique and various diagnostic specifiers.
This is in essence similar to automatic ROI enhancement, and as such it should be possible
to extend the methods to allow images to be highly compressed without danger of losing
important diagnostic information. We note that as the compression algorithm would be
obliged to preserve information in poorly recognised/defined areas the compression ratio
would be governed to some extent by the quality of the identification of regions.

Unfortunately no details were given of how the various anatomical features would
be identified, though this technology is certainly not new, as researchers have performed
segmentation of radiographic images for many years (Harlow & Eisenbeis, 1973). There have
been numerous other experiments in locating regions, anatomic features and abnormalities
within medical images, with varying levels of success. Typically the best methods are
specific to image types as a great deal of knowledge about the image is encoded within the
algorithm. We expect that the application of various existing and future artificial intelligence
(AI) techniques will improve the generality, accuracy, and feasibility in the future, with the
knowledge being contained in rule-bases or case-bases, rather than the processing algorithms.

3.10.3 Spatial information model

The SIM6 can be used to display a selection of available images in reduced size pictorial form.
The SIM is very similar to the commonly used term ICON, however SIMs are a reduced size
version of the actual image being referenced, whereas an icon will often be a general pictorial
representation of the subject of the icon. Thus the icons for several x-rays might be identical,
the SIMs will not. SIM’s allow the selection of images to be made pictorially rather than by
textual image name or filename. The utility of being able to choose an image from a selection
of instantly available SIMs was investigated by (Beard et al., 1987) using film CT images. They
concluded that radiologists typically place as many images as possible on the lightbox, prior

6The term PICON has also been used, and appears to have the same meaning
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to studying any images in detail, and subsequently only study a small selection in detail.
Firstly, an index set allowing rapid location of the target images is provided by the complete
set. Secondly, rapid access to the detail of these required images is then provided for. The use
of SIMs provides a softcopy version of this behaviour, which we consider an important aspect
worth incorporating in a soft copy environment. For a bandwidth limited remote system
there are benefits in that the process provides navigation through a large dataset, removing
the necessity to transmit the full dataset. To clarify, only some regions of some images will
ever be required at full resolution (quality).

3.10.4 Stack, tile, zoom

The ability to display multiple images simultaneously on one screen is essential to allow
comparative diagnosis to be carried out in a similar manner to the way films are displayed
on a lightbox alternator. Several simple techniques commonly used in today’s WIMPS
environments can be used to support this. The stack and tile functions simply control
screen layout and have been investigated for use in the medical workstation environment
(Ratib et al., 1991b). Stack and tile place no requirements on the compression scheme, and
can be applied regardless of the state of image transfer. Zoom, Pan, and Roam facilities have
been shown to improve diagnostic capability (Seeley et al., 1987b) and overcome some of the
limitations of soft copy display devices, particularly where resolution and dynamic range are
not as high as original film. For modalities where a large number of images are generated for
each study, images are displayed in a multiple format at a reduced resolution, with point and
zoom operations to view detail in specific images. Specific details of an early implementation
of a workstation for viewing CT scans are available (Komori et al., 1987). Whatever the reason
for using these type of operations, for remote access we ideally require a compression scheme
that can support decompression of a reduced size version of an image to be available prior to
transmission (and decompression) of the complete image. Additionally, for better efficiency
it would be advantageous if the SIM could form part of the data required to generate the final
decompressed image.

3.10.5 Reporting

During the process of a report being made from an image it is possible that certain images
or parts of an image might be attached to the report. Some annotation might be made to the
image in the form of text or graphical objects. Where processing of the image or parts of the
image takes place, details of this processing can be attached to the report to enable duplication
of the image to be made without having to store multiple copies of the image. The most likely
form for the report would be textual, however verbal recordings and other forms are being
considered. There are examples of reports being constructed from pre-formed text extracts
selected from context sensitive menus, with the appropriate detail inserted by the radiologist.
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3.11 Considerations in selection of archival compression ratio

There are indications in the literature that the quality required of a particular image can
depend on several factors:

� modality

� anatomical region

� type of diagnosis and anomaly suspected

� type of subsequent processing required

It is not possible to provide an acceptable compression ratio figure per se for any image, the
unfortunate consequence of this is that empirical studies must be carried out to test the effect
of any specific technique for each type of image/procedure. It would seem likely though that a
characterisation of images and their content can be made to predict required variable quality
compression parameters. Certain results (Fiske et al., 1987), although aimed at evaluating
display types, show that a large variation in the perceived visibility for one image modality
exists for specific anatomical features and pathologies.

We consider the possibility exists for a compression/transmission technique to be opti-
mised for a particular type of image. Two categories of information can be used for this,
the first are general characteristics concerning the image type and method of generation, the
second are specific characteristics gained from the (interactive) interpretation process for each
study, see section 3.10.5.

Inevitably some of the compression operations will be irreversible and the real difficulty is
in ensuring such operations are not overwritten onto the original image until we are sure they
will not invalidate future reproductions of the image. For teleradiology the original image is
kept, and if so desired, updates can be requested until the original image is viewed by the
remote user. For archival purposes we must distinguish between:

1. Operations applicable to all images of a type.

2. Authorised modifications which will not "beyond reasonable doubt" affect future inter-
pretation.

3. Acceptable distortion with regard to the future use of the image as a reference item only.

There is evidence to suggest that some forms of lossy compression have no more adverse
effects on diagnosis than that already caused by the digitisation process itself, which is gen-
erally accepted within certain resolution bounds. Before attempting to measure compression
distortion versus digitisation distortion the resolution for digitisation must be decided upon
for each application. There is still much debate at the time of writing concerning resolution
requirements, 2K2 is seen as adequate by some; others are experimenting with 4K2 images for
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some applications (chest x-rays etc.). An additional consideration applicable to item 3 above
is under what situations should reprocessing of a historical image be allowed. To take an
example, if a patient suffers from a condition which could possibly have been prevented if it
had been diagnosed at an early stage, and an archive image is reprocessed using techniques
available at the time to show evidence of the early stages of the condition. Could a case
be brought against the person who made the diagnosis ? The answer is difficult and must
depend upon how much reason there was to process the image in that way at the time. The
problem is the large number of ways an image can be processed using even simple operations
- e.g. magnify, equalise etc. We postulate that it might actually be better to fix an image once
the diagnosis has been made, allowing only repetition of the processing performed during the
original viewing. In this situation the compression steps can to some extent to enforce this.

There are similar arguments for only allowing certain users access to ‘non primary
diagnostic quality’ images. For instance the GP.

There are problems with this of course; we must consider who and when in the life cycle
of an image can these steps be taken. What about post analysis for research purposes ?
Overlooking this for the time being we can consider an architecture for supporting such a
scheme. Figure 3.3 shows how an image initially stored in its raw form can then be compressed
according to certain strategies pre or post primary diagnosis. In addition, during authorised
user interactions additional compression indicators can be deduced and verified if necessary.

Patient Record

Compression

images

Report

Verification

compress info
report

     transmission
     compression
     enhancement

infocontrol

archive

transmit
Image Viewing

Figure 3.3: Image archive

3.12 Interactive consultation

Electronic access to images and patient information will allow remote consultation, with the
ability to share images and data between remotely sited participants. The same discussion and
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shared visual workspace that would occur in a normal face to face meeting can be reproduced
with enhancements performed by each user being shown on the display of the other as well.
The concept has been investigated in other domains, and techniques such as the electronic
white board have been used. We envisage the following for a medical consultation:

� Voice communication - essential.

� Shared images - very useful/essential.

� Graphical overlays on shared images, including labelling, ROI - very useful.

� Video-phone images of participants - possibly helpful.

The provision of real time voice and graphical (geometrical as distinct from image based)
animation will be readily achieved over N-ISDN. As a live situation demands that extended
periods of waiting for images to be transmitted is unacceptable then we must either transmit
the required images to any participants who do not have local access prior to the conversation
taking place, or alternatively reduce the volume of data to be transmitted by selection and
compression of the image content. One possibility will be to allow the ’speaker’ to control
the content and compression directly by selection mechanisms or indirectly by highlighting
ROI areas, and thus enabling the higher quality requirements implied within the region to
be given to the compression module. In addition any information already known to the
compression module regarding image type and structure could be used improve efficiency.

3.13 Characteristics required from the compression scheme

From the previous sections we can conclude that a lossy compression scheme would ideally
support some of the following features/ characteristics:

� Systems for consultation, emergency or remote teleradiology require a compression
scheme where the quality of images can be improved by sending more data.

� Variable quality across differing regions of an image.

� Variable size (high frequency filtered) images for use as SIM (spatial information models,
icons) and for display on lower resolution monitors as review images, for GP’s use, and
providing zoom facilities (Bridgood & Staab, 1992).

� The computational load produced by the encoding/decoding should not be too great,
although we will be satisfied if it would run in software on one of today’s reasonably
powerful workstations or perhaps with the addition of some inexpensive hardware, for
instance a Digital Signal Processor board.
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Ideally the compression scheme would allow some or all of the parameters associated with
the above options to be specified at decode time. This will then allow a compressed image
to be uncompressed within a set of constraints, only requiring some of the information to
be accessed or transmitted to the (remote) decompression view station. Additionally some
constraints can be placed on the compression of the image to improve compression ratios, an
obvious consequence being that this step cannot be reversed. As an example, if an image were
compressed within a specific region at lower quality then it would be impossible to improve
on this quality for this region at decompression time. However for an image compressed
to a high quality it would be possible to select only a section for decompression at high
quality, thus saving time when transmitting the compressed image, of course the remainder
of the image would be available at high quality if it were required, accepting the additional
transmission time. The next chapter reports on the various schemes we have considered and
outlines a technique based on the recent mathematical theory of wavelets, for which encoder
and decoder algorithms will be designed to support the desired characteristics.

3.14 Simplistic estimated compression ratios

An outline of a combination scheme to show how the various savings compound is described
using estimates derived from inspection of example images. For any specific image the
amount of compression which can actually be achieved will vary considerably depending
upon how well the image can be analysed.

Taking as an example a 2048�2048�12 chest x-ray image, 0 - 60% of the image is
background (typical 25%) which is of no diagnostic value and can relatively easily be identified
and subsequently be compressed to very high compression ratios. A 1024�1024 sized image
will typically be displayed first prior to a zoom operation being applied (Kositpaiboon et al.,
1989), enabling 75% of the remaining image to be disregarded. As it is unlikely that the
full 12 bit resolution can be resolved until some processing or intensity remapping has been
applied to the image only 7-9 bits are initially required. For a specific diagnosis one region of
the image invariably requires better or original quality than the rest which only provides the
context for this ROI. If this region can be identified (see 3.10.2) then savings can be made in
the rest of the image.

It is important to note that the rest of the image would not appear significantly worse,
it is more a case of not having some of the extra fine subjective detail which is important
for some primary diagnoses (An image compressed to 10% has a typical signal/ noise ratio
(SNR) of 38db which is still fairly good quality). By allowing some minute differences to
occur in an image however, large savings in the image representation size can be made. From
Table 3.3, for an image treated in this way we have reduction to 5% data volume for the initial
image reconstruction and this should still provide images of diagnostic quality in the required
regions.

For progressive enhancement applications the initial selection images will be considerably
smaller still. The impact on transmission time requirements is clear; at 128K bit/s the original
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Optimisation Saving % Cumulative Representation
Original 0 6-8Mb
Initial 1K display 75% 1.5-2Mb
8 bit rather than 12 bit dynamic range 33% 1Mb
Initial ROI of 50% area at ‘best quality’ 50%
remainder at ’good’ 10% 30% 256K+52K

Total 308K

Table 3.3: Example of compound data volume savings

would take 375s whereas the compressed version takes 19s. For teleradiology applications
6 minutes would be too long to wait, and would make the transmission time for a study
(2-3 images) longer than a typical reading time (300s). 19s however could be an acceptable
time especially if there is additional textual information to be considered first. The time for
transmission of a study will also be less than the time for a typical reading thus allowing
single study advance scheduling. A zoom operation on the image would then require a
short delay to obtain the additional data though with progressive encoding it is far less than
would be required for the whole region under consideration. Later it is shown that due to
the encoding method we designed however, the data for a zoom operation would be faster
than this type of calculation would demonstrate due to much of the data being contained in
the lower resolution version.

Looking at it from the other direction (having implemented a lossy DWT coding algorithm)
and taking the raw figures we have predicted 4% of the total data for the first version of a half
size, reduced dynamic range image, with quality variation considered, which turns out to be
just about feasible.

3.15 Summary

During the previous sections it might appear at times that we are going to extraordinary
lengths to reduce the data required for the images, and resultant transmission times. The
reason for this is partly to improve existing TR applications but also to allow images to be
made available in additional situations as mentioned in 1.8.1 and 1.2 where it is currently
impossible, either through technological or economic constraints.

It is apparent that the transmission of medical images is a most demanding of tasks,
requiring accurate transmission of images containing millions of bytes. Although some suc-
cessful experimental hospital wide PACS systems have used 10M bit/s Ethernet technology,
transmission times for retrieval of images is still a problem. As the cause of this is usually
simultaneous requests by a number of nodes it is not anticipated as a problem when using
ISDN as we have guaranteed bandwidth channels (albeit of lower capacity).

The use of optical fibre will alleviate the transmission problems for LAN systems, and
where available, Metropolitan Area Networks (MAN) in well populated areas. Elsewhere
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basic rate ISDN is becoming available now, and should allow an enhancement of existing
services as well as new services. It is clear that even though ISDN is relatively fast (in
comparison to the modem) transmitting large images is still far from instantaneous - Lears
paper ‘Ultra high speed teleradiology with ISDN technology’ quotes 2min for a 1024�1024
chest x-ray, which compared to 15min for transmission by 9600 baud modem is fast. However
the situation can be worse than this with 2K2 and 4K2 images being typical for primary
diagnosis, often at 12 bits of dynamic range. The use of carefully applied compression
technology is therefore essential for some scenarios and, an extremely useful leveraging
technology in others.

This chapter has attempted to show that a variety of requirements exist in terms of image
resolution, acceptable display speed, distortion and presentation method. Any or all of these
can depend upon who the user of an image is, and why the image is being observed. Working
practices also vary, and some technologies are better matched to particular working practices.
The following chapter will concentrate on identification of a possible compression strategy
which can support as basic functions, many of the features identified in this chapter.
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Chapter 4

Possible Compression Strategies

In this chapter we will consider the major alternative methods which have been utilised as the
basis of lossy image compression algorithms. The methods generally rely on a combination
of removing details which are less visible to the human eye, and modelling the special
classes of two dimensional functions in which natural images are found, thus reducing
redundancy/correlations within the image. The extension to progressive enhancement
requires algorithms which have a wide range of efficient compression ratios. These must
also support the ability to add information to an image � to obtain an image �

0

with less error
(according to whatever measure we are using). Ideally we should obtain the original image
in less than (or equal) to the original uncompressed image size.

It had already been decided that progressive enhancement would be an important tech-
nique in reducing bandwidth and providing other facilities mentioned in 3.13 and that these
require lossy compression techniques for the initial versions of an image.

The available lossy compression technologies were considered to find out how well (or if)
the features identified in 3.13 could be supported. After some experimentation the wavelet
transform was selected for further investigation.

4.1 Lossless compression

Early on in this work we decided not to utilise compression which is completely lossless in
all respects, as the attainable ratios were not large enough to meet the ISDN requirements.
However lossless techniques are used in the final stages of most lossy algorithms.

Images do not respond particularly well to statistical methods relying on skewed dis-
tributions of pixel probability, for instance Huffman encoding and more recently arithmetic
encoders. Runlength encoding of adjacent similar pixel values can be used, but in practice for
greyscale images runlengths are short, especially when the image contains noise. Differencing
of adjacent pixel values works reasonably well as high frequency components with large
dynamic range are uncommon, the distribution of difference values is therefore nonuniform
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with small absolute differences being very common, and large values (occurring at object
boundaries) being infrequent. Statistical coding can then be utilised. Predictive encoders can
also be used to provide a linear prediction for each pixel based on the previously considered
pixels, the difference from which is encoded. This Differential Pulse Code Modulation
(DPCM) technique is in fact used for the lossless version of the JPEG (Joint Photographic
Expert Group) standard because of the difficulty in ensuring the precision of the floating
point arithmetic required for the cosine transform used in the lossy algorithm.

Another commonly used method developed by Lempel and Ziv adaptively parses an
input string, replacing each reoccurring sequence with a pointer to the previous occurrence
plus an additional symbol. A modification to this algorithm was presented by Walsh in ’84,
and has become known as LZW coding, and is used in the Unix ‘compress’ utility. We find
however, that for natural greyscale images it produces only limited compression1 ratios as
demonstrated by the following table.

File Type size (bytes) compressed size (bytes) compression (%)
Text 217115 97023 44.6
Text (this chapter) 20036 9580 47.8
Vector graphics 6957 3140 45.1
Postscript 148994 55811 34.4
Grey scale image (MRI head) 65552 45952 70.1
Grey scale image (CT spine) 102416 40220 39.2
Grey scale image (CT neck) 102416 30307 29.6
Grey scale image (dig. x-ray) 262160 209015 79.7

Table 4.1: Typical LZW compression ratios

Work on context based lossless image compression (Todd et al., 1985) attempts to improve
compression ratio by providing a number of alternative local models (contexts) for pixel error
prediction. A number of classes are defined based upon the error of a predictor function. For
instance, the error of some predictor function f might be divided into 3 classes representing
small, medium, and large prediction errors. The error classes of the neighbours of the pixel
under consideration will define the context used to select the model to encode the class of the
prediction error for the pixel. The same model is used for the prediction error within a class
for all the contexts. The recent development of this method by (Tischer et al., 1993) using a
bit plane approach to encode the probability for each context provides typical compression
ratios of 2-5 bits per pixel depending on the predictor, number of contexts and other factors.
This approach is intuitively appealing as smooth areas of an image will create contexts which
expect low error from the predicted values, contexts applying to rapidly changing areas of
the image expect larger predictor errors. The codelengths are thus minimised depending
on the local features of the image. On a similar theme a feature based heuristic algorithm
is also described (Romaniuk et al., 1993) which considers not only local redundancy, this

1Compression is given as a percentage of the original file size
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being attributed to smoothness within the image, but also global redundancy. Both types
of redundancy are based on dividing the image into small blocks of pixels and considering
the small range of values within each block for local smoothness, and duplicate blocks for
similarity. Typical compression from a scheme based on this technique was 2-6 bits per
pixel, the authors claiming better compression ratios as compared to other lossless schemes.
Certainly the idea of using heuristic feature models is appealing particularly where large
numbers of similar images are to be compressed, and could provide a worthwhile technique
to be incorporated in our lossy schemes.

4.2 Lossy compression

4.2.1 Transform coding

Many different transformations have been used for image analysis and coding, they can be
graded for compression efficiency according to their energy compaction ability. The objective
is to obtain a set of coefficients which have a nonuniform distribution, with the majority
being negligible, the rest can then be quantized and losslessly encoded. Figure 4.2 shows
a generic transform encoder, additional steps might be included for specific algorithms but
all current encoders utilise this same basic approach. In general, the transform causes an
increase in representation size, either by an increase in number of coefficients as compared
to pixels in the original, and/or the coefficients having real rather than integer values. A
number of factors must be considered including computational complexity, representation
size and relationship of coefficients to visual sensitivity. Figure 4.1 is a modified version of a
previous diagram (Ohta et al., 1992) and shows the major developments in transform coding.

4.2.2 Discrete cosine transform

The DCT has been popular for some time as a basis for lossy image compression, and
includes the well known baseline lossy JPEG encoder, which has become popular for general
image compression tasks (Wallace, 1992; Wallace, 1991). It is closely related to the Discrete
Fourier Transform, with the advantage of only producing real valued coefficients. Intensive
computation is required to calculate the transform (even with ‘fast’ algorithms) and is usually
carried out on individual ‘blocks’ of a subdivided image. It has two major drawbacks when
applied to image coding:

Blocking effect. Quantization of low frequency coefficients produces horizontal and vertical
lines at the edges of each transform block. The cause of this is slight inaccuracy of the
average colour of each block, which although only small is regular enough for the eye
to readily observe.
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Mosquito noise. Also known as the corona effect causes ‘ringing’ in the vicinity of rapid
intensity changes (edges). When small coefficients are missing, the additional ‘destruc-
tive interference’ to the large basis functions in the locality of edges is missing, allowing
additional intensity oscillations to occur.

Both of these effects become worse with more widely spaced quantization thresholds (in-
creased coding ratios). JPEG does provide a near state of the art compression for general
use, and has the advantage of being a fully accepted standard which makes it the method of
choice for many applications, particularly as hardware is becoming available to support the
JPEG standard.

It is also possible to perform full-frame DCT encoding (Cho et al., 1991b) using a DSP (dig-
ital signal processor) based hardware implementation. No results concerning the quality/or
compression ratios of reproduced images are given for this study, however the hardware was
designed specifically for use with medical images. Another full frame DCT encoder (Aberle
et al., 1993) did report 20:1 compression as being acceptable for thorac imaging. Another
study (Bruce, 1987) also uses specialised parallel DSP hardware to perform full frame DCT
based encoding and reports the following results.

Image Size CT Chest(A-P) Chest(Lat) GI ANGIO
20482 25:1 20:1 25:1 25:1
10242 20:1 15:1 20:1 20:1

5122 10:1 10:1 6:1 10:1 10:1

These results are interesting not only because of the compression ratios claimed to be
acceptable, but because of the difference in coding ratio for various types of image, thus
providing more evidence for the idea that each type of image has differing compression
potential, which we can extend to regions within an image type.

All full frame DCT based techniques in general require the use of substantial hardware
modules to perform the compression however.

Returning to JPEG we find that the extended system provides some useful additional
facilities, the major ones being progressive build up, progressive lossless encoding, greater
than 8 bit dynamic range for pixels, and hierarchical encoding. It is unfortunate that most
JPEG implementations do not (yet) support these - particularly the hardware solutions - as
they are not the generally sought after features.

The progressive normal mode differs from the baseline standard in the selection of
coefficients for transmission. After quantization the encoder makes several passes of the
coefficients selecting a portion of the coefficients for transmission at each stage. Generally,
the low frequency components will be sent first, followed by the high frequency detail.
Two compatible modes are possible, successive approximation and spectral selection. These two
techniques can be applied to the problem of encoding coefficients from any transform which
provides frequency/scale separated coefficients, and is used later in our wavelet approach.
Essentially when using successive approximation the accuracy of each coefficient is increased
with each pass, whereas spectral selection allows an approximate image to be generated
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with only the low frequency coefficients, followed by improvements when high frequency
components are included. In this mode of operation AC prediction can be used to predict
the low frequency AC coefficients from the surrounding DC coefficients. This improves
the quality of initial stages of progressive build up. We note this technique seems to share
common ground with the context based approach above, except that coefficients instead of
pixel values are being predicted.

The extended JPEG coder can provide a good number of the features which we require.
Providing variable quality within an image is not specified but could be implemented on a
per-block basis by adjusting the quality parameters for each block.

The Hierarchical mode of operation is provided by a sequence of filtering and sampling
operations when encoding. The image produced at each stage is then interpolated and used as
a prediction for the next stage, the difference being encoded using the standard encoder. This
introduces a number of additional operations and appears to be rather a ‘bolt - on’ solution.

The JPEG standard does have a lossless mode of operation as mentioned earlier and it
does provide good compression ratios given its lossless nature, however, it is not based on
the DCT and is a completely separate algorithm.

Experiments have been carried out to assess JPEG in the medical imaging field. The
results (Kajiwara, 1992) reflect on the various practical advantages of compressing images,
including reduction of transmission times, storage requirements (including floppy disks), and
the greater feasibility of long term archives. The summary concludes that 20:1 compression
for 2K2 chest x-rays are acceptable to many researchers when using JPEG, although the final
use of the images is not specified.

Image Data
Image 

Coefficients

Symbol

Sets

Transform Quantizing
Encoding

Entropy

Binary

Representation

Figure 4.2: General transform coder

Other modifications have been made to the blocked DCT to remove the blocking artefacts,
for instance a hierarchical approach requiring repeated encoding, decimation, and decoding
operations (Tan & Ghanbari, 1992). Although the resultant quality is better, especially with
regard to these artefacts, the additional processing requirements creates severe limitations to
the implementation of such methods.
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4.2.3 Subband coding

Subband coding was first introduced by John Woods (Woods, 1986) and is a closely related
predecessor to ‘wavelet’ based methods, being implemented using quadrature mirror filters
(QMF) filters, and producing a specific number of band limited subbands, which are then
amenable to bit allocation techniques between the subsampled frequency bands. An adaptive
technique was used to allocate bits within each band, bits being allocated between the
subbands to minimise the mean error (MSE) for DPCM coding of the subbands.

Subband coding for DSA images using non rectangular subband decompositions followed
by DCT encoding of the subimages, has been implemented (Cetin, 1991) and results were
published for compression ratios of 0.7 to 1.1 bpp. The paper unfortunately does not discuss
the reasons for using this approach, and gives no indication of the acceptability of its use. For
comparison the results of this experiment are plotted alongside our own results in chapter 7.

4.2.4 Vector quantization

The source image is divided into spatially contiguous blocks. These blocks are then mapped
into a vector set dimensionally similar to the block size. A codebook of representative
vectors (codewords) is then generated using a clustering algorithm. Coding the image
consists of finding the closest codeword for each given vector. This encoding method
generally provides poor compression ratios and can introduce significant visual artefacts to the
image. Enhancements have been made to Vector Quantization (VQ) including a hierarchical
progressive algorithm (Wang & Goldberg, 1987) and a linear predictor technique using
multiple level codebooks (Manikopoulos et al., 1989). Unfortunately neither provides the
level of quality/compression of transform methods, although the progressive algorithm does
have a mode of operation whereby errors are transferred from the low resolution to higher
resolution images allowing lossless transmission of images at around 50% compression.

VQ has been applied to the problem of encoding medical image sequences (Sun &
Goldberg, 1987). The method was chosen because these images have the special characteristic
that inter frame changes are from only two sources; the movement of the contrast agent, and
body movement. It is clear that VQ works well in this situation, particularly for representing
the body movement, but in general for a wider range of image types its application is more
limited.

4.2.5 Iterated function systems

Papers dealing with image coding using IFS or Fractal coding have been appearing for several
years. We investigated these as a possible technique for application to medical images. The
method which we investigated was originated by Michael Barnsley (Barnsley, 1988), but this
work provided no automatic coding algorithm. A block based implementation (Jacquin,
1990) was subsequently improved (Beaumont, 1991) involving the subdivision of the image
into a number of blocks with multiscale matching on these blocks. We implemented a version
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for which a brief description is subsequently given and applied it to some medical images.
Finally we decided that the characteristics of such techniques did not quite fulfil our criterion
for the reasons outlined in section 4.2.5.3, and this technique was abandoned in preference
for a wavelet based approach.

The technique is concerned with utilising the characteristic of many natural objects known
as self similarity. Artificial fractal objects can be constructed by iteratively applying a set
of transformations. Often a small set of simple transformations can be used to generate
incredibly complex functions (images). The major challenge for image coding is finding a
set of transformations which will produce the desired image after iterative application. Once
such a set can be found then the required image can be completely represented by this set of
transformations thus producing a compressed representation.

Compression ratios of 1000’s:1 have been claimed for fractal techniques. However this
has been achieved by using the collage theorem (Barnsley, 1990) which involved operators
matching sections of an image by eye. The result was indeed to produce an extremely small
number of transformations which when applied could produce an image which appears
similar to the original. The detail however will be very dissimilar to the original. We did
not consider this approach further due to this limitation although techniques to deduce
the required transformations automatically will become available allowing the quality/
compression ratio to be selected.

Another technique which does allow tighter control over the reconstruction errors pro-
duced, is based on block matching within an image. We investigated Beaumont’s method
(Beaumont, 1991) which was a development of another method (Jacquin, 1990). Apart
from the high compression ratios claimed, an interesting feature of the implementation is
the computationally asymmetric encoder/decoder, with decoding requiring relatively few
operations. Images could therefore be compressed off-line, at archive sites with powerful
machines, allowing decoding and viewing at remote sites with the minimum of transmission
and processing overheads. We do not wish to provide a detailed description of the implemen-
tation here, the next two sections provide a brief overview of the algorithm for the encoding
and decoding processes.

4.2.5.1 Block based IFS encoding

The image is partitioned into domain blocks consisting of 8 � 8 pixel blocks. Each domain
block is subdivided into 4 � 4 pixel range blocks. To encode the image we require to find a
transformation for each range block which will approximately map from one of the domain
blocks. We used a minimum number of transformations consisting of:

� the compulsory height and width scaling by factor of half

� a grey level offset

� a grey level contraction
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� an orthogonal reflection

The encoded representation of the image consists of the coefficients representing these
operations plus the index of the domain block which provided the best match.

4.2.5.2 Block based IFS decoding

The image represented by this set of coefficients is decoded iteratively by starting with an
arbitrary image and applying each transformation in turn, replacing each range block by the
appropriately transformed domain block. The image converges to an approximation of the
original over a number of passes by a gradual reduction of the error contained within each
pixel. There is in fact an optimisation whereby the range block means are transmitted instead
of the grey level offset producing convergence in one iteration.

4.2.5.3 IFS summary

Following investigation, several characteristics were noted:

� The quality will vary within an image, depending upon how well the iteration of the
transform for each block converges to the required image. This is in turn related to
the number of possible transformations and the thoroughness (=time taken) for the
encoding searches.

� A maximum quality limit for each allowable set of transformations is reached when no
better matches are found.

� Larger images can in general be encoded to a better accuracy as there are more domain
blocks. However if a free search of the entire image is allowed the block offset indices
have a larger possible range, and may require greater storage requirements.

� Improvement in quality can also be made by allowing domain blocks to be positioned at
any pixel position or to have a variety of sizes. The domain block index has greater range
and the scaling factor is no longer implicit, respectively, decreasing the compression
ratio.

� High frequency components generally have poorer matches producing errors and
artefacts in the region of edges.

� The block match searching criterion can be adjusted to vary the quality/ compression/
computational complexity.

� We could not envisage a way of selecting the quality for specific regions of an image.
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In addition to these characteristics there is no direct support for progressive transmission, or
production of variable resolution images. To enable a specific quality to be obtained we used
a non fractal technique to store range blocks for which a sufficiently good match could not
be found. This does allow bounds to be kept on MSE for any required area of the image,
although the number of blocks which are encoded by a fractal transformation rapidly drops
beyond the ‘natural’ quality produced by the transform specification.

We concluded that IFS encoding has a number of problems which make it unsuitable
for use in medical image compression. In applications where only an impression of a scene
is required, rather than exact detail (e.g. photographic databases) there is the possibility of
further development, as is being performed by Iterated Systems Ltd, Atlanta.

In a recent paper, an experiment was performed using a similar block transform technique
to compress MR images (Popescu & Yan, 1993) and concluded that quite good compression
ratios were possible, this being partly due to the large areas of similar grey level intensity
within these images. Other methods however, also benefit from this type of characteristic
as few high frequency components are present within these areas. The main advantage
identified by the study was the fast decoding which is possible, providing a relatively weak
overall argument for its use.

4.2.6 Neural nets

Neural nets were considered next as a possible candidate for providing a compression
algorithm. A multi layer network with input, hidden and output nodes is used. An image is
divided into blocks and the neural net is trained with a number of example blocks whereby
the internal weights are adjusted. An image is then compressed by using the values of the
hidden node layer as the compressed representation of the image. To decompress the image
it is merely fed through to the output layer.

This simple but elegant technique has much appeal especially when we consider the
specialist nature of the images which are to be compressed, a different net could be trained
for each type of image for instance - even for each area of anatomy. There are many possible
enhancements to such techniques for instance Marsi (Marsi & Carrelo, 1992) proposes a
solution where a number of neural nets with differing numbers of hidden nodes are trained
for each block. The net providing reconstruction of the required quality (SNR) is then chosen.
The advantages of this is that ‘simple’ blocks require only a small net, and more complex
blocks use larger nets, which obviously decrease compression ratio.

Finally, it was decided not to pursue the use of neural nets as a method of encoding
medical images at the present time due to the following:

Quality. It is not clear that very high quality can be achieved if required when compression
ratio is relaxed. In addition, there was concern about spurious artefacts occurring in
certain situations.

53



Black box. Unfortunately it is difficult to analyse the net to find out why or how a given com-
pression was achieved. This will undoubtedly cause problems should the compression
fail in some respect.

Other features. It was not clear if or how features such as progressive enhancement or SIM’s
could be catered for. Retrospectively we consider there are some possibilities in terms
of hierarchical net structures, based on the observation that most of these features occur
in the wavelet transform due to its hierarchical characteristics.

Nets representation. The compression ratios given in some articles do not include the storage
required for the net itself. The assumption is that the net is available at the decoder
and forms part of the algorithm itself. This implies that we would either have to define
standard nets or transmit alongside the coded image(s).

4.2.7 Wavelet transform

Wavelet coding can be considered as both transform and/or subband coding, since it can be
implemented as subband filter banks. A summary of the properties of the DWT are:

� Multi resolution.

� No artificial blocking required.

� Computationally relatively fast.

� Localisation (shorter basis for higher frequency).

� Compact energy spectrum.

� A directional component is included in the two dimensional transform allowing hori-
zontal, vertical and ‘corner’ features to be identified from the coefficient set.

� Image ‘fingerprint’ is possible for efficient image indexing and identification.

The narrow filter orthogonal transform derived by Daubechies (Daubechies, 1988) was
chosen as the basis of the coding method because of its good spatial localisation and rapid
convergence properties. The details of the transform and its implementation are provided in
the next chapter with a description of the encoding technique which we developed to allow
these properties to be utilised in chapter 6.

As might be expected, there are some disadvantages to the transform. Firstly to provide a
complete decomposition the original data set must have 2N , N 2 Z pixels in each dimension
and secondly the filter arithmetic includes irrational constants. Both of these problems are
considered later in sections 5.5.2 and 5.5.3.
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4.3 Specialist techniques

Most medical images are captured for a specific purpose, with particular processing require-
ments. We believe that it is possible to utilise the multi resolution representation produced
by the wavelet transform as the basis for further processing. In addition, the geometry of
images can then be utilised to provide further coding efficiency. This is hinted at in a paper on
radiographic image sequence coding using adaptive vector quantization (Sun & Goldberg,
1987) where the results demonstrate that ‘good reproduction especially in those parts of the
image containing contrast agent, can be obtained at a compression ration of 10:1’ (italics added).
We expect a number of techniques can be developed to locate the significant medical areas
for each type of image. This information can then be used by the general purpose multi
resolution transform to more usefully allocate the bits in the compressed representation.

Three Dimensional or Multi slice images obviously contain inter frame correlations which
should be exploited. These have not been considered in detail in this work but possible
enhancements to deal with this are discussed in chapter 9.

4.3.1 Hierarchical representations

Intuitively, a hierarchical representation appears to provide a good framework in which to
perform image analysis. Initially, reduced (in both detail and size) images can be considered,
with subsequent processing of the larger and more detailed versions restricted to ‘interesting’
areas or specific features. This allows the image features to be considered in a structured way,
and in context with the rest of the image. In this way the vast complexity of the complete
image with all its features, on a number of scales, can be overcome. We suggest that this
approach will work at a number of levels of abstraction, from simple pixel operations such as
area segmentation, through to anatomic structure labelling.

4.3.2 ROI and heuristic feature models

The ability to vary image reconstruction error rates within the spatial extent of an image has
been proposed to provide additional compression. Assuming we have an algorithm which
allows this to occur, then a method is required to select the quality of regions within an image.
Referring back to 3.10.2 the same two categories of ROI will be considered.

For the user defined ROI some information used during processing can be utilised for
archival (post primary diagnosis) by the compression algorithm. Regions which had zoom
operations or other manipulation functions applied require that the compression gives better
(perfect) quality to them - to the extent that similar processing of the uncompressed version
will not uncover artefacts. Other regions do not need to be perfect under manipulation.

Alternatively it is plausible that scenarios exist where is can be justified to ask the user to
define a ROI. For instance, in an on-line consultation situation a reasonable approach might
be for the initiator (sender) to select the main region for consideration. We might consider the
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possibility that during a diagnosis, when a specific area only of an image is of interest then
this could be indicated by the physician, radiologist or technologist to allow more efficient
future compression.

It is clear that in many images only small areas are required to be presented at the highest
fidelity. If we could separate gross anatomical features for each image type the compression
parameters could be selected accordingly, for instance for hard and soft tissue. This approach
of using a priori knowledge about an image to process some regions more favourably has been
considered for applications such as videophone communication (where a face is considered
to be the most important region of the image (Soryani & Clarke, 1992)), but not for medical
uses. Unfortunately gathering the knowledge and linking it to the image data and its context
is a difficult problem. The initial task involved, particularly for variable quality image
compression, is the identifying of regions within the image. This established area of research
in computer vision and image processing has provided a large number of algorithms; for
instance model driven edge detection (Fua & Leclerc, 1990; Waite & Welsh, 1990) and region
analysis, which could be tailored or combined for our purposes.

Other examples of image segmentation exist from the medical world, one of the earliest
(Harlow & Eisenbeis, 1973) involved extracting the major anatomical regions from PA chest
radiographs and AP knee radiograms utilising a hierarchical top down scene description
of the image type being analysed. Given the results of a segmentation such as this we
might consider that regions such as heart and lungs are given priority over secondary regions
representing arms and neck. The justification for this is two fold; firstly if these secondary
regions were the main subject of the image typically another view would have been taken,
making the image a different type, and secondly abnormalities in these regions are (for the
sake of argument) less demanding than the soft tissue organs.

Another example of extracting high level knowledge from an image involves the detection
of more specific regions containing visual clues used (often unconsciously) by observers to
identify anatomic features within images. These are typically the result of the projection of 3
dimensional surfaces on to two dimensional planes. An interesting paper (Kergosien, 1991)
considering the changes in such generic sign systems within the radiographic digital image
representation, gives in conclusion, the possibility of automatic location of such features.
Another segmentation technique (Griffin et al., 1990) whose principles are of specific interest
to this work utilises a multi scale method of maximum gradient paths to locate regions within
MRI images. The final example - to demonstrate the diversity of pathologies for which
algorithms have been devised - is used for locating and enhancing line like structures such as
vessels within radiograms (Dallas & Roehrig, 1987). For this situation an iterative approach
was taken to reduce false identification of correlated noise.

These are just examples of possible methods which could be incorporated to provide
additional regional information to create a more efficient compression strategy. We have not
implemented any of them here, but attempt instead to develop a high efficiency compression
algorithm which has the ability to incorporate such information when it is available.

Some analysis is relatively simple however, and can use heuristic rules based on the
geometric or statistical properties of the image and/or its Wavelet Transform (WT) coefficients.
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As a demonstration of the possibility of regional selection the next section considers the easiest
region to identify.

4.3.3 Background removal

We have considered the idea of allowing different encoding characteristics for different
areas within the same image, with the aim of saving transmission bandwidth. One of the
simplest, most effective, and general possibilities is removal of the background which exists
in many image types. Though the characterisation of the background will vary for image
types, the number of parameters required to allow it to be detected should be relatively
low, including perhaps some details of typical intensity, expected noise levels, and simple
geometric constraints. We would expect details such as these to be created for each image type,
along with any specialist algorithms to create ‘plug in’ modules (or models) for the encoder.
Defining sets of classes of images will thus allow better performance than could be obtained
by a general algorithm. By using both explicit information (e.g. typical background noise
of ndB for a certain image type), and implicit information (e.g. by specifying background
removal), it is implied that this area makes no contribution to the diagnostic procedure to be
performed in the future.

For many images the background can be defined as a contiguous area of nearly uniform
intensity. For each modality the intensity range of the background can be specified, typically
black or white. For specific views the start position for searches, for instance if region growing
techniques were used, could be configured. More sophisticated techniques have already been
developed for other applications. As an example we consider the energy minimising snake
as developed for separating human heads from background for model based videophone
applications (Waite & Welsh, 1990). The wavelet transformation which we have used to
provide energy compaction within the image can also be utilised to provide a hierarchical
scheme for separating the subject from the background, described in section 6.8.2.

4.3.4 High frequency noise removal

In areas of continuous high or low intensity, uncorrelated small high frequency components
of the image of comparable size to those identified as noise in the background (for each scale)
are not visible, and could be disregarded as noise.

4.4 Summary

This chapter has attempted to give an outline of the major approaches to high efficiency
compression of images. We investigated and performed exploratory experiments for blocked
DCT, Blocked IFS, and Wavelet approaches. The approach which supported the greatest
number of the characteristics which were felt to be useful in supporting the facilities discussed
in chapter 3 was the narrow filter orthogonal DWT.
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Figure 4.3: Sources of compression

With the good energy compaction capabilities of the DWT, combined with its frequency,
and spatially represented coefficients, it will be possible to implement a scheme which can
include the ideas in sections 3.14 and 4.3 as exemplified in figure 4.3.
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Chapter 5

Wavelet Transforms

5.1 Important characteristics

Multiresolution representations of functions have been studied for use in image processing,
computer vision and compression for many years. The advantages of this approach are
obvious when we consider the vast numbers of discrete samples contained in the high
resolution images capable of being captured and displayed by today’s technology. A fruitful
approach when presented with such a vast quantity of data must be to extract the gross detail
from the image, and using the results of this, to selectively process interesting areas in more
detail. Thus we have a hierarchical model of the image contents.

Several hierarchical decomposition algorithms have been devised for image coding in the
past but generally have the disadvantage of the details at different scales having significant
correlation, thus providing a redundant representation. For some applications, this can have
advantages, for example, the representation can be more resistant to arbitrary errors. The
wavelet transform, however, minimises the loss of information from one scale to the next, thus
improving analysis and compression capability. The orthogonal DWT can also distinguish
between a number of spatial orientations, in particular the vertical and horizontal components
can be used for further analysis of the image content. In addition a signature for an image
(Wickerhauser, 1993) can be derived from the most energetic wavelet coefficients given their
frequency, spatial, and orientation characteristics.

The Wavelet transform is computed by expanding a signal into a family of functions
which are the dilation and translation of a single function called the wavelet basis (!(x)). One
class of wavelet basis (Daubechies, 1988) has been shown to be orthonormal and compactly
supported, providing both sharp localisation in space and frequency, together with efficient
computational implementation.

One of the attractive properties of the discrete orthonormal wavelet transformation is
the possibility of an implementation by use of the recursive application of a series of filters.
This technique has been well documented (Mallat, 1989; DeVore et al., 1992) and allows the
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fast wavelet transform to be implemented by use of a pair of QMF’s with coefficients ak for
the ‘averaging’ filter, H and bk for the ‘differencing’ filter, G. The decimated result of H is
reapplied to the filters, the decimated result of G being extracted as the required wavelet
domain representation of the function. The set of convolutions for each step of the recursion
is described pictorially in fig. 5.1 for a 2� filter. An outline of the complete process is often
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Figure 5.1: Convolution filters

referred to as the pyramid algorithm1 as the number of samples is halved at each stage. Filters
with 4 non zero coefficients are shown in figure 5.2. The result of this filtering process is to
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Figure 5.2: The pyramid algorithm

1The term pyramid is especially appropriate when the process is extended to two dimensions, because the set
of intermediate smoothed coefficients can be visualised as a square based pyramid structure.
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produce a set of smoothed versions of the signal, the detail of the signal at each successive
scale being the difference between two consecutive smoothed signals. The wavelet domain
representation is naturally divided into a number of sections, characterised by scale. The
complete representation consisting of:

S1f = (S2�Jf; (D2jf)�J�j��1);

has a set of coefficients S, which can be imagined as a smoothed or averaged image, and a
number of difference images Do

s
at varying scales (s) and orientations (o).

5.2 4 coefficient Daubechies kernel

The order N� of the wavelet set determines the number of non zero coefficients required for
each filter. In this thesis short filters have been used for to enable:

� Minimum processing requirements.

� Good for representing ‘unsmooth’ functions with discontinuities. Natural images
usually fall into this category.

� The spatial overlap of coefficient contributions between scales to be less.

� Convergence of order N� providing good quality with very few coefficients.

5.2.1 Filter coefficients

The sequence ak for 1� reduces to produce the well known Haar basis. 2� produces ak; 0 �
k � 3 and unlike the Haar basis is continuous. The values of ak for 2� can be derived from
equation B.4 with N = 2, giving:

a2
0 + a2

1 + a2
2 + a2

3 = 1;
a2a0 + a3a1 = 0;

and equation B.5 giving:
a0 � a1 + a2 � a3 = 0;

0a0 � 1a1 + 2a2 � 3a3 = 0:

Solving these allows values for an to be calculated as:

a0 = (1 +
p

3)=4;
a1 = (3 +

p
3)=4;

a2 = (3�
p

3)=4;
a3 = (1�

p
3)=4:

These values require in addition the L2(R) normalisation factor 1p
2
.
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5.2.2 Extending to two dimensions

The extension of the orthogonal transform into two dimensions is a straight forward case of
transforming on each dimensional index sequentially. Each filtering and decimation operation
is equivalent to multiplying by an orthogonal matrix. The result is therefore independent
of the order of application of the filters. A proof of this is described in a paper concerning
multiresolution signal decomposition (Mallat, 1989). Referring to figure 5.3 will verify that
an image S1 is completely represented by the set of images:

S1f = (S2�Jf;D
1
2jf;D

2
2jf;D

3
2jf) � J � j � �1:

To visualise this as the same series of decimated convolutions as described for the one
dimensional case, we can refer to figure 5.3. The filters Hx; Hy refer to the smoothing filter
coefficients H in figure 5.2, but applied to samples along the ordinate or abscissa. Similarly
this is true for Gx; Gy, the differencing function.
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Figure 5.3: The 2D pyramid algorithm

To refer to the coefficients we introduce the additional multiindex subscript k = (kx; ky) to
give sd2j;k as a specific coefficient in the wavelet expansion. Figure 5.4 shows a set of wavelet
coefficients for a small image, with intensity of grey level representing coefficient magnitude.

5.2.2.1 Boundary conditions

Since images are not infinitely large, the edges must be considered in a special way. For the
implementation used in this work, the image is considered as ‘wrapping around’ on itself,
for an image, I(n;m) we have f(x mod n; y mod m).
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Figure 5.4: Typical coefficient set
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5.2.2.2 Inverse transform

The inverse transform can be considered as a series of interpolated convolutions. Firstly, the
smooth and detail coefficients have zero values interspersed, then the sum of the two values
resulting from the convolution with the same filter as used in the forward transform is then
equal to the next (lower) scale approximation of the image. This process is clarified for the one
dimensional case in figure 5.5. The extension to two dimensions follows in a similar way to
the forward transform. In effect, the smooth and detail images for each scale are combined to
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Figure 5.5: Inverse transform convolutions

produce the smooth image for the next lower scale. The process terminates when the original
image is recovered.

5.3 Coefficient characteristics

From a histogram of the frequency of coefficients produced for each scale on a number of
images, we observe that:

� Setting small valued coefficients in the high frequency parts of the coefficient space to
zero has little or no visible effect on the image.

� The numerical values of lower frequency coefficients are greater in magnitude due to
the wavelets on different scales having the same squared integral (Press, 1991). For
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instance, two coefficients with the same value on different scales will produce different
contrast on the reconstruction. The higher frequency coefficient will produce greater
contrast.

� For real images (as distinct to drawings, or computer modelled) the distribution of
coefficient magnitude follows a very well defined curve of exponential order.

� At each stage of the construction we obtain a subsampled version of the original with
modified dynamic range.

5.4 Computational overhead

If the pyramid algorithm is to be used to enable a progressive enhancement system to be
implemented, the transformation must be computable in a reasonable time. We calculate the
total number of operations to perform a DWT with J defined as above will be:

0X
j=J+1

NjNc;

whereNj is the number of coefficients inS2j (and alsoDd

2j), andNc is the number of operations
required to calculate each coefficient in S2j or Dd

2j from S2j+1.

In two dimensions Nj = 22jIN , IN being the number of pixels in the image. To produce
each coefficient involves QMF filtering in both the horizontal and vertical directions giving 4l
operations2 where l is the number of non zero filter coefficients. If we then take into account
the required decimation of the output from each filter the number of operations per coefficient
becomes Nc = 2l. Therefore the total number of operations Nt becomes:

Nt = 4
0X

j=J+1

22jIN l:

As
P0

j=J+1 22j converges to 4=3 we can simplify to:

Nt � 8=3IN l;

which gives the total number of operations for the worst case of a complete hierarchy. In
practice the process is usually terminated when the set of low frequency coefficients reaches
a suitable size. This result shows that the processing required to perform the transformation
is O(N) (a linear multiplier of the number of pixels in the image) which indicates that the
process will work well on the large medical images which we are considering.

The process can still be reasonably processor intensive, however, because of the double
figure constant, and the time taken to perform the transformation will depend upon other

2one operation here is a multiplication and addition
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factors such as the pipeline ability of the processor, the number of memory read/writes, use of
possible (fast) processor cache memory, and the general efficiency of the implementation. The
implementation for this thesis was written in a high level language (’C’) without any specific
concern over efficiency, and performance was quite reasonable (of the order seconds) for
modest 512�512 images using a moderately loaded Sun Microsystems SPARC 1 or equivalent.
We would anticipate that the central core of the algorithm, which is actually very compact (see
appendix A.2) would be well worth implementing at the processor level for specific target
machines, or better still, using dedicated DSP chip(s) or board.

The reverse transform requires a similar number of operations to the forward, with the
main difference being the ‘partial filters’ and the reverse traversal of the coefficient hierarchy,
starting at the low frequency coefficients.

5.4.1 Characteristics of the encoder/decoder

A simple compression / decompression utility will require one forward transform to encode
the image, and one reverse transform to decode the image. The situation for progressive
enhancement, however, requires that the compression ratio of the decoded image decreases
with time. This in turn implies that the accuracy of the quantized coefficients also increases
for each new approximation, with the result that although only one forward transform is
required to generate the coefficient set, each new approximated image requires an additional
reverse transform (figure 5.6).
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Figure 5.6: Progressive system

This characteristic is common to most progressive transform coders. However, the DWT
can produce a viewable image at an intermediate stage of the reverse transform. This image
is physically smaller in terms of the number of pixels it contains, and can be obtained by
simply scaling the values of S2j by a suitable amount. For high compression ratios most of
the highest frequency coefficients will have been removed, either because of their typically
small magnitude, or due to their least visibility in the image, and therefore an interpolated
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partially decoded image will by very similar to the fully transformed one. In practice this
ability is more usefully employed in fast production of a number of SIMS for rapid pictorial
database access.

5.4.2 Regional selection

We have already seen from the short non zero filter length and also from figure 5.4 that
each coefficient makes a limited spatial contribution to a reconstructed image. However, to
make an accurate selection of an area as part of a quality selection mechanism, a mapping is
required between an area in the original image and the contributing coefficients. To find the
region of contribution from each scale, the non zero length of the filter plus the scale change
of coefficients from each scale must be considered. Clearly LF coefficients support a larger
region than the HF ones, and therefore cannot accurately represent a specific region. Each
LF coefficient must therefore be represented at the accuracy required to produce the required
quality in the most stringent of the regions it may include.

5.5 Reconstruction error

In this section the numerical (pixel error) and visual effect on an image of quantizing the
coefficients is investigated.

5.5.1 Arithmetic type

As the real coefficients are eventually truncated in the quantization process, we were interested
to find out how much degradation would be introduced by truncating at each stage of the
algorithm, to enable only integer intermediate storage to be used. The following table
shows the error introduced by using various forms of approximation provided by the
implementation system for our ‘head55’ test image. These figures were representative of
tests on several different 8 bit medical image types.

Arithmetic type Error
Coding Quantization Decoding Max Pix Ave Pix NMSE
int none (int) int 5 1.008 3.2E-3
float none float 0 0.0 0.0
float int float 1 9.04E-2 1.47E-4
double none double 0 0.0 0.0
double int double 1 8.04E-2 1.46E-4

Table 5.1: Transform arithmetic type (‘Head55’)

It was interesting to note that it made very little difference to the measured error how
many levels of the transform pyramid were used. However, this is easily explained when
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we realise that the error contribution to the reconstructed image is the same regardless of the
position of the coefficient in the wavelet pyramid. Looking ahead to consider figure 6.2, we see
intuitively, that the coefficient magnitude though increasing with scale, is representing a larger
area of the original image, thus dividing the error between more pixels. Errors propagated
from one scale to the next are therefore not as one might initially expect, prone to ‘explode’. A
detailed analysis has subsequently been found (Chen et al., 1993), which continues to provide
a formula for total MSE (in the notation used previously where �k

j
indicates the total error for

scale j, direction k) as follows:

�0 = ��J +

�1X
j=�J

3X
k=1

�k2j ;

thus indicating the total error is merely the sum of the component parts.

It was clear from these results that the intermediate storage of the coefficients should be
in one of the floating point formats to allow for the best quality reproduction.

As there was some residual reconstruction error when the coefficients were rounded to
integer values, experimentation with rounding accuracy showed that rounding to the nearest
0.25 (i.e. 2 bits past the binary point) reduces the reconstruction error to zero for images of 8
bit dynamic range using one of the floating point forms.

5.5.2 Integer arithmetic

One alternative for this particular transformation was to note that the only source of non
integers in the calculation are the

p
2 and

p
3 factors in the transform matrix. It would be

possible to perform the calculations in integer arithmetic keeping several integer values for
each coefficient to represent the various irrational multipliers. The number of individual
integer calculations increases by several times as does the required storage if the coefficients
grow too large. There is scope for more investigation in to this possibility in the future, as
perfect accuracy is maintained, although quantization will be required to prevent an increase
in representation size.

This approach was abandoned as in the worst case the integer multipliers of the coefficients
will increase at around 5 extra bits per scale. As the final coefficients are quantized, and we
have found that keeping only two binary places provides an exact reproduction of the original
pixel values, some limited accuracy arithmetic should be possible.

5.5.3 Image size restrictions

The complete transform operates on data sets of 2n samples (n is a natural number), though
n is not required to be the same for each dimension of an image. Many images are naturally
of these sizes, due to the digital nature of the imaging devices. For those that are not, we
can expand the image with the approximate background intensity (or black if this is not
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clear). This will add virtually nothing to the encoded image due to the run-length encoding
performed in the final stages of the compression algorithm. Alternatively, if the original
image size is stored with the encoded image, the positions of all zero coefficients relating to
the artificial border can be calculated, and ignored in the encoding algorithm.

5.5.4 Image processing in the wavelet domain

5.5.4.1 HF filtering and background removal

If we consider a typical radiographic image, there are many instances where a reasonable
percentage of the image is background, in the sense that it is outside of the object(s) under
consideration. This will appear on the image as a large area of similar intensity surrounding
the object. If this area was clean in the sense that it contained no noise (i.e. a single intensity),
it would be compressed very efficiently by most compression algorithms. Unfortunately, the
background area will usually contain some noise due to limitations of the imaging equipment,
which thus reduces the efficiency of any high quality compression algorithm which attempts
to reproduce it. This type of typically high frequency ‘white noise’ is in fact the worst possible
signal to compress as it is uncorrelated. Though there are other algorithms which could
separate the areas we are interested in, the hierarchy of wavelet coefficients allows small
changes in intensity at various scales to be removed. At larger scales the HF noise component
becomes separated by a wider margin in terms of the magnitude of wavelet coefficients (figure
5.7), thus making it easier to search for the image/ background boundary. The coefficients in
the background at higher scales can then be set to zero, thus improving the efficiency of the
compression. If required, the search in the region of the boundary can descend the hierarchy
of coefficients to more accurately locate the boundary.

5.5.4.2 Intensity gradient and edge detection

The first step in most edge detection algorithms is noise filtering, followed by the production of
the first and second differentials to locate the changes in intensity and their maxima/minima.
Thresholding and linking then takes place to locate relevant edges. Considering a set of
detail coefficients from the DWT, it is clear that the largest coefficient values for each scale
occur in regions of more rapid intensity changes. It will, therefore, be possible to consider the
proportion of each of the directional coefficient contributions in a specific region to determine
the possible strength and direction of a candidate edge. In addition, consideration can be
made of each scale and between adjacent scales to reinforce the location process. We hope in
the future to develop these ideas further.

5.5.5 Typical experimental result

Once the coefficients have been calculated, it remains to select, quantize, code, and store these
such that the decoding process can possess the characteristics we require. However, initial
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Figure 5.7: Image with small (�5) coefficients ignored
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experiments were performed to assess the amount and appearance of error introduced into
an image reconstructed from a set of approximated coefficients. The simplest approaches
were to: a) store only coefficients to a given scale; and b) to truncate all coefficients below a
given threshold to zero. These two methods were used on a test image; figure 5.8 plots the
normalised mean square error between the decoded and original images against the number
of zero coefficients in the set. Note that the complete image was 65536 pixels resulting in a
similar number of coefficients.
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Figure 5.8: Error vs number of zero coefficients (for ‘head55’)

The visual appearance of the distortion introduced by truncating the smallest coefficients
is shown in section 7.2.3.
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Chapter 6

Coefficient Encoding Strategy

The objective of image compression is to reduce the number of bits of information required
to represent the given set of pixels, whilst preserving the ‘best’ possible quality. Progressive
enhancement, introduces the additional complexity of selecting a method which allows the
quality to increase with time and inclusion of additional bits of information. To be most
effective, the early versions of an image must be the best possible quality, without precluding
efficient further updates. To enable a quantization, and transmission strategy to be developed,
some measure of the ’quality’ of a reconstructed image must be considered. Once this has
been decided upon we are then in a position to develop techniques which will minimise the
reconstruction error of a compressed image, or minimise the reconstruction error with respect
to time for the case of progressive enhancement.

It is worth noting that although the ability to vary the quality of different regions of each
image is an important feature of the chosen method, the entire image is considered using the
same quality when evaluating compression ratios and effectiveness of the algorithms. This
decision is based on the observation that we require regional selection to be an additional
improvement in quality for the selected regions. The base compression algorithm must be
as effective as possible before regional selection and variable compression ratios are applied,
and hence we need to compare with other non regional methods.

If the possibility exists of selecting regions requiring specific quality, then the reconstruc-
tion error must include a measure of how accurately these regions were selected. This is a
problem in its own right of course as it depends entirely on the viewing characteristics of the
observer and the purpose for which the image will be reconstructed. An automated error
measure is therefore not expected to be feasible.

Table 6.1 describes how the wavelet coefficients can be related to various image manipula-
tion functions, user and window manager requests. These features can provide the framework
for both progressive enhancement and file compression algorithms. It is also interesting to
note that some image manipulation functions can be implemented more efficiently on the
compressed format than on a raw image. The details of this form of processing are left until
section 6.9.
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User Operation Coefficient Manipulation
ROI selection Select localised coefficients at required scales
1
2 or 1

4 resolution display Neglect HF components
Zoom Include or increase coefficient contributions from

higher scales
Quality improvement Increase accuracy of coefficients and

include higher scales
Intensity window- Increase accuracy of coefficients
modification
Request SIM Select base (averaged) coefficients

Table 6.1: Coefficient selection

The remainder of this chapter is devoted to describing the techniques which have been
investigated to convert the set of coefficients provided by the orthogonal wavelet transform
into an encoded bit stream suitable for storage initially as a file, and then as progressive
transmission.

6.1 Determining image distortion

There are two main approaches to determining the quality of a reconstructed image. The
easiest to implement (generally) is an automated error measure based on a comparison of the
pixel values from the reconstructed image with the pixel values of the original image. The
alternative method is to perform a study based on human observers comments. In practice,
for critical applications algorithms will be developed based on the first method, and the
second will be used to ensure the characteristics of the reconstruction are suitable for the
application to which the image will be put.

6.1.1 Image quality: human observer

Ultimately the only way to be sure how the quality of a compressed image has been affected
is to perform a study based on the effects on the human observer. There are a number of
variations on this theme, the simplest being simply to ask a number of observers for a report
of perceived picture quality for a number of coded and original images. This technique is
only suitable for applications where casual viewing is required, for instance entertainment.

Medical imaging applications call for more rigorous studies based on diagnostic per-
formance measures. Typically ROC studies are carried out with a carefully chosen set of
compressed and placebo images, each presented for reading. The number of correct, incorrect,
and missed observations can be analysed statistically to determine any significant effects
caused by the processing of the image. A number of studies (Manninen et al., 1992; Yoshino
et al., 1992; Markivee, 1989; Scott et al., 1993) have been carried out using this technique
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to assess the effects of film versus CRT soft copy, and also to asses the effect of differing
resolutions for various imaging applications. These results demonstrate, unsurprisingly, that
certain types of abnormality require higher resolution/ dynamic range/ image processing for
diagnosis than others.

To assess the effect of compression or transmission techniques the control images must be
presented in a similar way to those under evaluation. For instance, it is misleading to compare
results for diagnosis of a compressed digitised x-ray with the original film, as we do no know
whether any discrepancy is a feature of the compression process, or the digitisation process. A
similar argument follows for display screen type, and environmental factors (lighting etc). It
is conceivable that studies of this nature would however be useful for checking the diagnostic
efficacy of a complete system.

6.1.2 Image quality: error measures

When attempting to provide a numerical measure of the quality of a reconstructed image
there are number of mathematical operators which can (and have) been used. The mean
square error (MSE) measure is most commonly found in the literature, but we can argue that
it does not necessarily provide the metric which most accurately matches the human visual
system.

The situation becomes more complicated if we consider using a model of how the eye
and brain respond and process images. It is possible to build a model of such phenomena
(Watson, 1987) and use this to measure the visibility of error introduced. If the model has been
used to produce the procedure which encoded the image however, it is not possible to use an
error measure based upon the model (otherwise we have not utilised the model properly) and
hence there is still gives no guarantee that the model or compression actually does minimise
visual distortion. The only solution is to perform an empirical ROI study under carefully
controlled conditions, to show statistically that the model and compression are valid.

We continue to utilise MSE and MAE (Mean Absolute Error) to provide a handle on
distortion, though we do not of course necessarily expect the parts of the system based upon
the models mentioned above to reduce these measures, though the apparent subjective quality
will be improved.

6.2 Visual properties

We have two mechanisms for compressing images without producing visible artefacts in the
uncompressed image. Accurate prediction or modelling of the image is one; matching the
error to the sensitivity of the human visual system is the other. Techniques from both of
these approaches can be applied to the encoding of the wavelet coefficients. Taking a broader
view of the requirement for compression produces a third option - deliberately removing
nonessential information - which will be considered later. The following sections describe
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how we have used some of the well known human visual response characteristics to optimise
the quantization of coefficients.

There are two main effects used here:

Contrast sensitivity curve. Which makes use of the insensitivity of the eye to certain fre-
quency components at low contrast.

Contrast masking. Uses the effect that high contrast regions tend to mask errors. High
contrast or edges make small errors invisible or conversely low contrast areas highlight
errors. This effect can easily be seen on 8 bit colour displays when large areas of very
slight colour variation (e.g. clear sky views) show the colour quantization as banding
on screen.

6.3 Quantization characteristics

The storage requirements for the set of coefficients generated is greater than the original image
because anN �N integer pixel image produces N �N real coefficients at scale k and location
of support cj;k. To achieve a compression of the image the coefficients must be quantized.
There are a number of possible alternatives while using the general strategy of preserving the
largest coefficients, as these have most visible effect on the image when it is reconstructed.
In a progressive setting, adding coefficients from a higher scale we call spectral selection, and
improving the approximation of coefficients is termed successive approximation. The methods
considered are:

� Set all coefficients less than some value, l to zero. This approach was used earlier to
produce successive approximation for comparison with spectral selection.

� Uniform quantization by truncating each coefficient to the same accuracy. This is easily
achieved for some error rates by deleting the l least significant bits.

� Non-uniform quantization of coefficients at each scale to take advantage of the contrast
masking curve.

� Varying the base threshold of the quantizer at each scale, j and each orientation, o to
utilise the contrast sensitivity curve (CST).

It is necessary to select the quantization scheme for each scale j. In the next few sections,
a number of techniques are considered to help in the design of the quantizing method.
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6.3.1 Effect of the quantizer on progressive enhancement

In general a quantizer is defined by a set of threshold values and a corresponding set of
output levels, all input values are mapped to one of the output levels dependent on the
position relative to the threshold values.

To perform progressive enhancement we require over time for the coefficient space to be
approximated more accurately. In turn this requires coefficients to be improved with priority
based on their contribution to visibility in the reconstructed image. For the efficient coding of
the output symbols from the quantizer, the symbols need to be embedded. In practical terms
the requirement is for the sequence of bits for symbols from more accurate approximations to
contain those in the in coarser ones.

The first version of our encoder utilised the rounded integer coefficient values as the
symbol levels with thresholds N � 1

2 . This then allows bit plane1 selection of the quantized
levels to be used as the accuracy improvement mechanism, without requiring a mapping
between the quantizer levels and output symbols. Figure 6.1 shows this pictorially and
shows that for the less accurate approximations the thresholds move away from the ideal
values midway between levels. If we choose any other threshold-level mapping then the
thresholds must be aligned to ensure the correct embeddedness with the objective of allowing
the bit plane approximation of the symbols to be layered on top of the quantizer operation,
and still provide a monotonically decreasing reconstruction error. This will require that the
thresholds are aligned for each approximation, which for non uniform quantizers will make
sub optimal thresholds for some approximation layers.

l0 l2 l3l1 l4 l5 l6 l7 l8 l9
t1 t2 t3 t4 t5 t6 t7 t8 t9

Level 2

l1 l2

l2

l3 l4

l1

Level 1

Level 0

Figure 6.1: Embedded uniform quantizer

1if only the nth bit for each coefficient in an array of coefficients is considered this will be called bit plane n for
the coefficients
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6.3.2 CST curve

A graph of intensity deviation against frequency (sinusoidal oscillation in intensity) is known
as a CST plot. Observations from a CST plot show a region of uniform intensity in the
high frequency/low intensity perturbation region. The boundary of the region of perceived
uniformity is known as the CST curve, and is usually drawn as an almost straight line
(above about 4 cycles/degree) with a gradient of about 2 (Glenn, 1993). This line, which is
purely an artefact of the human visual system, serves to indicate that small high frequency
intensity changes are less visible to the human eye than large low frequency components.
The actual location of this line depends of a number of factors when applied to CRT displays,
including viewing distance and ambient lighting conditions etc. As we are interested in
relative visibility of each scale rather than absolute visibility of distortion (which depends on
uncontrollable factors) the gradient of the line is utilised to determine the relative accuracy to
retain coefficients within the approximate frequency and orientation bands produced by the
transform.

Assuming the observation that gCST = 2 then an intensity perturbation �i at frequency f

which is ‘just visible’, will require, at frequency 2f an intensity perturbation of 4�i to have
equal visibility. If we make the assumption that below the contrast detection threshold the
CST curve indicates a measure of the degree of visibility of any feature (i.e. all features along
a given (shifted) CST line would contribute equally to visual distortion), then we can predict
that two fewer bits of accuracy would be required for coefficients representing components
of double the frequency. The assumption made when arriving at this figure is that coefficient
magnitude is directly proportional to reconstruction intensity accross the frequency space
- for the DWT this is not true - and the implications of this are considered shortly. It is
worth noting two additional things about the CST curve. It actually peaks at around 4-5
cycles/degree (for luminance) and then drops dramatically for lower frequencies, however at
these low frequencies the information content is far lower and for this reason we project the
curve past the peak and by doing this retain potentially invisible low contrast low frequency
information.

Figure 6.2 is an idealised representation of the basis functions and shows that coefficients
of a similar magnitude produce varying intensity perturbations in the image when the
inverse transform is applied. For each successive increase in scale (lower frequency) the
intensity range represented within the image is halved. (The transform under consideration
in normalised in L2(R).

Following the logic for the forward transform we can see that coefficients therefore gain
one bit in magnitude for each halving in frequency in order to represent a similar intensity
deviation. One fewer bit is therefore required for coefficients at half the frequency to maintain
accuracy of intensity deviation of the image. Recalling that from the CST curve we need two
fewer bits for each doubling in frequency, we combine these two arguments resulting in a
quantization strategy requiring one fewer bit for each doubling in frequency, above some
threshold frequency.
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Figure 6.2: Relationship of DWT coefficients to image features

6.3.3 Contrast masking

Distortion measured by the MSE error measure equates all errors of a given size, regardless
of the pixel value from which the deviation occurs. Studies of the early stages of spatial
processing in the human visual system (Watson, 1987; Sezan et al., 1987) have produced a
model which demonstrates that errors are less readily detectable to the human observer when
the deviations are from a larger intensity variation, than a smaller one. The implication from
this is that high contrast features can be quantized with a greater error than low contrast
features to achieve the same visual effect. A model for this was provided (Watson, 1987) as

�c(c) = max[1; (c=C)W ];

where C is the contrast detection threshold or the minimum detectable change from zero
contrast. �c represents the largest ‘undetectable’ threshold increment from an image of
contrast c. The value of W has been found experimentally to be 0.7. A plot of this is shown
in figure 6.3 with the sequence of quantization levels and was shown in a survey by Watson
to vary little with mean luminance, spatial frequency, retinal location, and psychophysical
method.

A quantizer based upon this model should be optimal in the sense of reducing perceptually
visible distortions. This will compare favourably to the well known Max quantizer which
optimises the RMS error for an input of Gaussian distribution mainly because RMS error
equates magnitude of error with no regard for the intensity gradient from which the deviation
is from. Given that the transform coefficients actually represent the contrast of some ‘wavelet
shaped’ feature we could quantize the coefficients directly according to such a scheme. The
result of this will be to non-uniformly quantize the (real valued) wavelet coefficients. Figure
6.4(a) shows how thresholds and levels can be selected from the CST curve. Essentially the
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first threshold is set at the visibility threshold, thus ensuring that all values between L0 and
T1 are quantized to L0 and are perceptually invisible. L1 must then also be no greater than the
visibility threshold from T1. At L1 a slightly greater quantization error can be accommodated
indicated by the vertical intersection with the curve, which is then projected along the contrast
axis to provide T2. The process continues to provide the required nonuniform quantizer.
Once again, we can use this to optimise quality at a specific compression ratio by making
the assumption that if the quantizer is set coarser than the visibility threshold then the
magnitude of visible distortion from the range of quantized values will be approximately
similar. Put another way, we are assuming that the perceptual distortion produced by
quantized coefficients will not be visibly greater between any pair of thresholds despite
the thresholds being separated by differing amounts. We will thus have an efficient system in
the sense that we will not have a large visible distortion in one component masking accurate
reproduction in another.

This approach can be utilised for file compression where the quantization thresholds are
static, however for progressive enhancement we have the problem of creating a non-uniform
embedded quantizer. Though this is possible by aligning the thresholds (Elnahas et al., 1986)
in a similar manner to the linear one in section 6.3.1. Some inefficiency is inevitable for all
approximations other that the one chosen to align to, and the symbols generated for each
level require mapping back to the original quantizer level values by the decoder, thus adding
to the overall complexity.
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Figure 6.4: Contrast masking

An alternative is to restrict quantization levels and thresholds to integer values, thus
allowing direct coding of the quantized values in figure 6.4(b). The new thresholds are always
chosen to be closer together, thus ensuring that the only effect will be to slightly improve the
worst quantization error of some levels. Depending on the final lossless encoding step the
actual values of the levels might be used as input to a Huffman encoder as unused integers
(symbols) will be ignored. Runlength encoding between bit planes however would not be
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efficient without mapping to a reduced symbol set.

6.4 File compression

The following sections follow the development of our algorithm. The first version (I) forms
the basis on which a number of modifications are then made to enable the additional features
we require to be incorporated.

This first version can only support progressive enhancement in the form of adding all the
information from complete scales of the transform, which was shown in figure 5.8 to be poor
in terms of the MSE at low and medium coding ratios. The method is ideal for non interactive
file compression as it is the least processor intensive.

The process for encoding an image to a file at a given compression ratio for storage consists
of the following steps:

1. Convert the pixel values into an array of values suitable for the transformation to operate
on, we used the ‘C’ language floating point type float. It is possible that fixed point, or
even integer with assumed divisor factors, can be used if the minimum quantization
separation of the coder is known, in which case the maximum accuracy required can be
calculated.

2. Perform the forward (DWT) transform for DAUB4 so that each pixel value becomes
replaced by a real valued coefficient.

3. Quantization strategies are applied, utilising the characteristics of the transformation to
produce a symbol set.

4. The resulting symbols are entropy encoded to remove statistical redundancy.

5. The bitstream plus any additional information, for instance coding tables, and header
information is written to a file.

Steps 1 and 2 are covered in previous chapters, step 3 has been introduced but will be
analysed in more detail subsequently and 4 is the subject of the next sections.

6.4.1 Quantization

The simplest form of quantization is a linear quantizer with thresholds at the points midway
between successive integers, and levels therefore at integer values. Section 7.2 uses the ‘C’
round function to achieve this.
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6.4.2 Zero runlength (ZRL) encoding (Code-1)

The result of quantization of the wavelet function coefficients will be a set of approximate
coefficients some of which are zero. As it is necessary to know the location as well as the
magnitude of these within the coefficient set, a procedure which encodes ZRL’s has been
adopted to improve efficiency of the algorithm. The initial version of the algorithm used two
sets of codes. For each non zero coefficient the first (referred to as Code-1) contains two pieces
of information in a similar way to the JPEG Symbol-1 (Wallace, 1992). The first part contains
the run length of zeros preceding the coefficient to which this code-1 refers; and the second,
the number of bits required to represent the actual coefficient, referred to subsequently as the
bit count. The range of values for the ZRL part of this code-1 could in fact become large,
in the worst case of all zero coefficients in the high frequency region, a run length of N=4
(image containingN pixels) would be generated. To reduce the number of possible values for
Code-1s one special code is set aside to act as a repeat code (RC), for this there is no Code-2,
associated and the next Code-1 is treated as a continuation of the bit count. The number of
bits required to store each coefficient depends on the scale under consideration. The set of
code-1’s are most easily considered as a two dimensional array of values with indices of ZRL
and bit count. The ZRL codes are self representing integers from 0 to one less than the repeat
code value. The bit count index is represented by the following table:

Bit count index Coefficient range
1 -1 , 1
2 -3, -2 , 3, 2
3 -7..-4 , 4..7
4 -15..-8 , 8..15
6 -31..-16 , 16..31

etc

6.4.2.1 Scanning of coefficients

Implicit in the concept of ZRL encoding is the assumption that the coefficients will be
considered in some well known order. This constitutes part of the definition of a particular
compression algorithm. Two approaches are possible, either grouping according to frequency
band as is usually done in subband coding techniques, or according to location/block as is
usually done in transform coding2.

Ordering according to location in the original image is slightly complicated in the case of
the orthonormal DWT due to each scale having a different number of coefficients. However
this technique is described in (Ohta et al., 1992), by using a scanning approach based on
considering the coefficients as a quad tree structure with ‘end of block’ (EOB) codes. The best
results are obtained for low bit rate coding when many of the coefficients at higher frequencies
will be zero, thus enabling the EOB codes to work efficiently. It does however provide a

2DCT being the notable example for the image compression domain
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complication if we wish to provide a progressive system as the end of block codes would
be inefficient to represent when each node adds only 1 bit, though there are alternatives,
for instance providing an advance count of bits to the next EOB. The method could have
possible advantages, especially when transmitting coefficient bit planes individually, or in
direct sequence, for instance plane n from scale j and plane n� 1 from scale j+ 1, as many of
the high order planes would create EOB codes in a similar way to a highly compressed image.
Further consideration will be given to the scanning sequence once the progressive build up
scenario has been investigated in section 6.5.

The relative simplicity of scanning the coefficients in each frequency band in a sequential
manner, from left to right and top to bottom especially when dealing with specific regions
of an image in the wavelet domain, outweighed the possible advantages of a more complex
scanning technique for the basic coder. Figure 6.5 gives an example run length encoding for
a small section of coefficients.

*

ones complimented
negative coefficients are

Symbol-1

(0,4),(1,1),(n,2),(0,2),..

Symbol-2
(Data bits)

1001,1,01,10,...

*

(Runlengths,bit-count)

9,1,-2,2,...

1 0 09 0 -2n

2

coefficient block

Figure 6.5: Runlength encoding

6.4.3 Representing coefficients (Code-2)

The actual bits representing the coefficients are coded as a sequence of Variable Length Integers
(VLI) for the file coder. This simply means the minimum number of significant bits required
to represent each integer are used.

For each set of coefficientsDo

2j the two sets of codes are generated, and the Code-1 symbols
encoded using a Huffman encoder. The Code-2 bits are close to random and do not respond
to entropy encoding as any symbols generated from these bits occur with approximately
equal probability. The Code-1s for each block must be available to the decoder before the
corresponding Code-2, so this ordering is obviously used by the encoder. Sections 7.2.3
and 7.3 give examples utilising smallest coefficient removal and quantization using CST and
CM. The quality (SNR) achieved is given for a range of compression ratios together with
comparison to other methods.
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6.5 Progressive transmission

To allow progressive build up of an image it is necessary to provide successive approximation
of coefficients. Although the most obvious method is spectral selection with a sequence of
reconstructions including coefficients from the next higher frequency band, the quality of
the images is poor initially, with blocking artefacts producing a ‘low resolution’ effect. This
subjective effect is noted in (DeVore et al., 1992) where it is shown that the rate of decay of
error in the reconstructed image will be sharper for coefficients considered in order of size
than those considered in fixed lexicographical order. This effect was also presented in the
previous chapter.

So far we have considered only producing the best quality image in the shortest length of
time (fewest bits/coefficients). For the application areas under consideration in this thesis,
we must also determine how user interactions as discussed in the latter sections of chapter 3
can be supported. The selection of a ROI and its increase in priority in the transmission will
require the set of coefficients contributing the required area to be identified. Zoom operations
will require additional coefficients to be considered and intensity windowing will require
coefficients to be transmitted more accurately.

6.5.1 Sequential bit plane encoding

To enable the accuracy of coefficients to be gradually increased each additional improvement
in accuracy is gained by reducing quantizer threshold distances. In terms of the linear integer
quantizer discussed earlier, all that is required is extra bits of accuracy to all of the non zero
coefficients for each plane. Whilst this works well to reduce the number of bits required for
Code-2’s for an initial estimate of an image including information from several scales, the
Code-1’s must still all be transmitted in advance. To avoid this, the Code-1 was adjusted so
that each value of coefficient size (in bits) is treated in a separate pass, thus the coefficient size
can be dropped from the Code-1, which is left as a simple run length value. It is now possible
to build up the coefficient bit counts gradually as required. Apart from the repeat codes
required for very long run lengths, there is one code required for each non zero coefficient
in both approaches. The run lengths will on average be longer for the progressive approach,
however as no bit count is required. Figure 6.6 shows this for a small section of some
coefficient space.

It is now possible to produce a coded sequence of bits representing approximate values
for the largest valued coefficients initially. Subsequently, including more data will include
approximations for smaller magnitude coefficients, and improve the accuracy of the larger
ones.

We now consider the efficiency of the new ordering. The number of Code-2 data bits will
not be changed since each coefficient retains the same representation - only the ordering of the
bits is changed. The number and distribution of run length symbols for the new ordering is
less obvious. For an image �, Nc(x) is defined as the number of coefficients of each quantized
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Figure 6.6: Encoding as sequential binary planes

value x andNB(x) represents the number of quantized coefficients requiring x bits of storage.
The number of run length symbols for VLI coding, Rvli, is the number of non zero quantized
coefficients,

Rvli = NI �NB(0);

where NI is the total number of coefficients under consideration. Therefore,

Rvli =

NB(max)X
i=0

NB(i)�NB(0):

Next the bit plane encoded method is considered. Each valid bit in a coefficient will
require a run length symbol to describe the number of proceeding zeros. The total number of
symbols, Rbit, will be the sum of all the coefficients multiplied by the number of bits in each,

Rbit =

NB(max)X
i=1

NB(i):i; (6:1)

which is obviously considerably more than using VLI.

However, as the only realistic ordering is MSB..LSB, the sequence of passes will be in
reverse numerical order of bit plane (starting with the largest number of bits required to
represent coefficients on each scale). Therefore coefficients whose size has previously been
transmitted should not be considered in the run length as the decoder will already know of
their existence. For example, when a run length between coefficients requiring s bits is being
calculated, any coefficients whose bit count requirement is greater than s are ignored. Figure
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Figure 6.7: Runlength encoding of binary planes

6.7 demonstrates the way in which this approach reduces the required number of run length
codes. We can now subtract from the run length symbols any runlength generated from
coefficients from a higher bit plane, as these are not required,

total not counted =

NB(max)�1X
p=1

NB(max)X
i=p+1

NB(i): (6:2)

Noting that:

NB(max)X
i=1

NB(i):i �
NB(max)X

p=1

pX
i=1

NB(p) �
NB(max)X

p=1

NB(max)X
i=p

NB(i)i;

and subtracting 6.2 from 6.1 we get RObit bits for the ordered bit planes,

RObit =

NB(max)X
p=1

0
@NB(max)X

i=p

NB(i)�
NB(max)X
i=p+1

NB(i)

1
A+

NB(max)X
i=NB(max)

NB(i):

Simplification now gives:

RObit =

NB(max)�1X
p=1

NB(p) +NB(max);

reducing to an identical number of run length code bits RObit, as the VLI case:

RObit =

NB(max)X
p=1

NB(p):
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The total length of run length generated by the bit plane method will be greater than the
VLI method as for each coefficient C, max(NB) � bits in(C) is contributed to the total run
length, thus generating a wider distribution (larger average length) of run length values.
However, unlike the VLI case it is not necessary to store explicitly the size of each coefficient
which increases the possible range of codes by a factor NB(max) for the same number of
symbols

Section 7.4 compares experimentally the overall compression efficiency of VLI and Bitplane
coding.

6.5.2 Bit level selection criteria

From the CST curve we have chosen to ensure that 1 extra bit plane is used for each halving
in frequency. Each entry in the following table shows which bit plane will be used for the
various regions within the transform domain.

Coefficient Approximation
Section 1st 2nd 3rd .. last-2 last-1 last
S2j all
D2j max max-1 max-2
D2j+1 max max-1

...
D2�3 1
D2�2 2 1
D2�1 3 2 1

6.5.3 VLI coefficient truncation (Code-2)

The actual bits representing the coefficients are a sequence of VLIs as for the file coder. The
bit pattern cannot unfortunately be the usual twos compliment representation due to the
necessity to determine negative coefficients from the first bit received (so that the register can
be set to FFFFh or 0 for negative and positive respectively) The following table demonstrates
the reason why all negative coefficients had one subtracted from their values to produce the
ones compliment representation before the bitstream of Code-2 bits is created by extracting
the least significant bits specified by the corresponding Code-1.
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Coefficient Binary Representation Code-2
etc
-6 1010 001
-5 1011 010
-4 1100 011
-3 1101 00
-2 1110 01
-1 1111 0
1 0001 1
2 0010 10
3 0011 11
4 0100 100
5 0101 101

etc

As the code-2 symbols are self-representing3, the error when only some of the bit planes
have been received will always have the same sign, as the true value will be equal or greater
in magnitude to the approximation. To improve this we need to have coefficient values mid
way between the Code-2 values. This is easily achieved by ensuring the next most LSB to the
one received was set for positive values, and reset for negative values. The inverse DWT will
then produce a better approximation. Clearly, when the real LSB is received no other action
is taken.

Section 7.4 gives the experimental results of bit plane encoding. This verifies that
we have now achieved progressive enhancement capability without changing the quality/
compression ratio curve.

6.6 Enhanced progressive system

Generally the bit planes representing the MSB bits of the coefficients have few significant
values, and many repeat codes. From a purely implementational standpoint the entire
coefficient space must be searched to place just a small amount of information. To relieve
both of these problems, a combination approach using code-1’s containing ZRL and bit count
information for the sparsest planes, and only the ZRL for the remainder is adopted.

6.6.1 Combination VLI and bit plane encoding

When several bit planes are combined we must resort to VLI’s for the coefficient bits if the
bit planes are to be kept level, with the number of bits deduced from the bit count minus
minimum bit count range.

3By self-representing we mean that there is no translation between the code two symbols and the coefficient
value
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6.7 Entropy coding table generation

6.7.1 Statistical distribution

The set of coefficients generated by the chosen transform have interesting statistical properties
when applied to natural images, these in turn are passed to the code-1’s due to their close
relationship. It is interesting to note, as several authors previously have done (Mallat,
1989) that this is only a feature of the subset of possible datasets in which natural images
seem to occur, and for an arbitrary dataset may not be the case since the coefficients are a
decomposition in an othonormal family and are therefore uncorrelated. Figure 6.8 shows a
typical real image and the coefficient distributions associated with it. These have been plotted
for each scale and show a characteristic distribution shape common to most ‘natural’ images
which in practice have remarkably similar properties. Essentially, the largest coefficients
have the lowest frequency (probability), with the smaller coefficients having the highest
frequency. This makes entropy encoding an effective final step in reducing the number of bits
required to store the image, as a comparison, figure 6.9 shows the distribution for an artificial
image, producing a noticeably less well defined distribution. The two main alternative
algorithms available are Huffman based coding and Arithmetic Coding. The implementation
uses Huffman coding due to the lower memory and processing requirements. Huffman
coding only gives optimum (theoretical entropy) encoding when the source symbols have a
probability of 1=2n for integer n. This is rarely the case and therefore arithmetic coding will
give better compression ratios as it can adapt to any distribution.

The next consideration is the number of distributions to use. It is clear from figure 6.9 that
a characteristic distribution is formed at each scale of the transform; the coefficients from each
directional component on the same scale having approximately similar distributions, with
different scales producing different distributions (as well as different numbers of coefficients).
We adopt the strategy of providing separate tables for the statistical coding of coefficients at
each scale. For VLI encoding, only this number of statistical models is required, i.e. one for
each scale. When we consider progressive selection of coefficients on a bit plane basis, where it
is a set of run lengths which provide the symbols to be coded, each bit-plane also has different
distribution of run lengths requiring more tables. A maximum of number scales�NB(max)
tables might be used, although it is very likely that some will be empty.

6.7.2 Application of tables

Huffman encoding is performed by generating a set of unequal length codes allowing short
codes to be used for symbols with high probability, and longer codes for symbols with low
probability. The codes are required to have the property that no valid code is contained as
the beginning of another code, the codes thus require no separator as the end of each (and
hence the beginning of the next) is uniquely defined. In this case the codes will be a sequence
of variable length bit patterns.

Two versions of Huffman coding are available. The simplest requires the statistical
distribution of the symbols to be known in advance, from which a table of code bits is

89



4 coefficient DWT

Original Image
Coefficient Magnitude Distributions

Figure 6.8: Coefficient magnitude and spatial distributions

90



4 coefficient DWT

Original Image
Coefficient Magnitude Distributions

Figure 6.9: Coefficient magnitude and spatial distributions - test image
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generated via the generation of a binary tree structure. The encoder finds the code bits for
each symbol by simply referencing the look up table. The decoder will traverse the tree
from the root, for each symbol, and follow the branch at each node according to the next bit
received, until a leaf node is reached when the appropriate original symbol can be determined.
Clearly the table, or tree (one can be generated from the other) must also be available to both
encoder and decoder. If the table is not known at the decoder this must be considered when
determining the efficiency of this scheme.

The alternative version known as Adaptive Huffman coding, refer to Apiki (Apiki, 1991)
for an overview, allows the tree to be constructed as decoding takes place. As this adds
a number of complications and is not as efficient - in as much as its capability to adapt to
changing symbol statistics is not required - and was not used for our initial experiments as
more advanced arithmetic encoders could be used. We also discovered that the distribution of
the symbols could be modelled relatively well by a simple function, eliminating the necessity
to transmit the encoding tables, as they can be reconstructed with 3 coefficients.

6.7.3 Encoding sets of tables

Previously, we mentioned that empirical analysis of the histogram for each scale and ori-
entation of coefficients for a number of images reveals a set of characteristically shaped
distributions. If we assume the distributions derived from these are to be used for the
Huffman coding, a number of approaches are possible:

� Include the data required to store the tables along with the symbol data.

� Set up standard tables for each type of image.

� Generate tables from a model, with a small number of parameters.

Including the tables in the coded data will reduce coding efficiency, especially as several are
required (one for each scale) although there is an advantage for file compression in that non
appearing symbols are disregarded, thus shortening codes for low probability symbols. If ROI
selection is required the exact set of symbols cannot be determined in advance, because the
scanning sequence is likely to change, thus changing the actual run length codes generated
(although not significantly the statistics of the distribution). This implies a code must be made
available for every possible symbol and the advantage is thus lost.

Creating a set of tables which can be stored by receiver and transmitter and allows selection
based on image type, or best match from available tables could be attractive if the match is
sufficiently good so as not to degrade performance. The space required to store these along
with the possibility of incorrect assumptions by the encoder concerning the availability of
particular tables could cause problems.

The final option considered here has potential to be the most useful if it is true that a
sufficiently good model can be made, such that the loss of efficiency by doing this is less than
would have been achieved by the first option.
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6.7.4 Modelling of tables

This section will determine how effectively we can model the statistics of the symbols
produced by the encoder. Once this has been achieved we are not limited to using only
a few sets of encoding tables, as the storage space allocated to the table becomes far less of
a contributing factor. It is therefore possible to match the run length statistics for each scale
and bit plane.

The distributions appear to be of exponential form,

P (x) � Ke�(jxj=�)
�

leaving us the objective of findng the values of �, �, and K which give the best fit (minimum
error) to the actual probabilities. For our purposes P (x) will represent the number of
occurrences of each symbol (run length) rather than the actual coefficient probability. As
this function is used to build variable length codes small errors in the predictor function have
little or no effect on the overall encoding efficiency. This is particularly true when Huffman
coding is used, as it is suboptimal for most distributions in practice. As it proved difficult to
analyse P (x) analytically a combination of numerical techniques was used. This is performed
in two stages:

� Stage 1 finds K based on the most frequently occurring symbol.

� Stage 2 estimates �, the variances of the distribution.

� Stage 3 finds the value of � which minimises the error of the predictor function.

6.7.4.1 Finding K

The constantK represents the number of occurrences of the zero coefficient in the model. The
actual measured value of the number of zero coefficients can be used for K, although obviously
it is possible that this is not the optimal value for fitment of the rest of the distribution, but in
practice there does not appear to be any problem.

6.7.4.2 Estimating �

At the point where P (x) = K=e, the value of P (x) does not depend upon �, and so by finding
an approximation to x where the sampled number of symbols is approximately K=e a value
of � can be found.

In practice of course we have a discrete number of samples on the ‘curve’ as well as errors.
To over come this � is estimated by linear interpolation between the points P (a) and P (b). If
M is the largest valid symbol index, and given a; b; x 2 N+ we ensure that a and b satisfy the
following:

(a; x < M)

�
(P (a+ 1) <

k

e
) ^ (8x � a)((P (x) >

k

e
) _ (P (x) = 0))

�
;
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and,

(b; x < M)

�
(P (b� 1) >

k

e
) ^ (8x � b)(P (x) <

k

e
) _ (P (x) = 0))

�
:

There is the possibility that no a or b exists, in which case it is assumed that no model can be
found. This typically happens when there are too few sample values to build a meaningful
distribution. Figure 6.10 gives an example identification of a and b. We therefore interpolate
between the last point continuously above the K=e line (increasing index) and the last point
continuously below the line (decreasing index).

K

alpha

2 3 4 5 6 7 8

b

a

0

P(x)

x
1

K/e

Figure 6.10: Estimate of �

6.7.4.3 Estimating �

Initially � was estimated by substituting the gradient of the line a,b in to the differential of
P (x). However because of the discrete samples the gradient provides a very poor estimate
of � and we gained better accuracy by using a simple iterative technique to reduce the error.
Because � is generally a small number we take the cumulative error between the actual and
estimated distribution to adjust the value of � for each iteration only for (integer) x values
greater than �. In practice only 3-4 significant digits are required, and convergence can
usually be obtained in 5-15 iterations.

The pseudo code is contained in Appendix A. The following tables show the efficiency
loss for encoding using the real distributions and the parameterised model used here with
Huffman encoding. These results do not include the storage required for the tables which
obviously compare unfavourably with the model parameters.

The following example describes the results of modelling the run length codes for the
‘head55’ example image.
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SCALE, BIT ACTUAL ALL ESTIMATED
PLANE STATS CODES CODES

16, 9 : NO model
8, 7 : NO model
16, 8 : NO model
32, 9 : NO model
8, 6 : 64, 137, 138 K: 12, alpha: 1.759, beta: 3.984
16, 7 : 312, 418, 421 K: 28, alpha: 1.450, beta: 0.428
32, 8 : NO model
8, 5 : NO model
16, 6 : 301, 377, 404 K: 33, alpha: 0.948, beta: 0.409
32, 7 : NO model
64, 8 : NO model
8, 4 : NO model
16, 5 : NO model
32, 6 : NO model
64, 7 : NO model
8, 3 : NO model
16, 4 : 217, 297, 296 K: 36, alpha: 0.875, beta: 0.506
32, 5 : 1172, 1264, 1310 K: 118, alpha: 1.682, beta: 0.650
64, 6 : NO model
128, 7 : NO model
8, 2 : NO model
16, 3 : 209, 320, 311 K: 30, alpha: 0.998, beta: 0.504
32, 4 : 1027, 1177, 1171 K: 123, alpha: 1.534, beta: 0.667
64, 5 : 3854, 3942, 4012 K: 306, alpha: 1.405, beta: 0.530
128, 6 : 1322, 1396, 1563 K: 95, alpha: 0.834, beta: 0.422
8, 1 : NO model
16, 2 : 227, 326, 332 K: 29, alpha: 1.949, beta: 0.629
32, 3 : 1036, 1150, 1140 K: 112, alpha: 1.516, beta: 0.626
64, 4 : 4617, 4733, 4873 K: 476, alpha: 1.672, beta: 0.667
128, 5 : 5990, 6009, 6191 K: 325, alpha: 0.997, beta: 0.417
16, 1 : NO model
32, 2 : 1379, 1511, 1547 K: 161, alpha: 2.151, beta: 0.881
64, 3 : 5071, 5149, 5215 K: 549, alpha: 1.800, beta: 0.733
128, 4 : 13716, 13739, 14018 K: 905, alpha: 1.908, beta: 0.579
32, 1 : 1096, 1290, 1293 K: 212, alpha: 1.805, beta: 1.120
64, 2 : 6668, 6842, 6896 K: 745, alpha: 1.862, beta: 0.698
128, 3 : 21985, 22033, 22346 K: 1940, alpha: 2.194, beta: 0.750
64, 1 : 5664, 5817, 6009 K: 988, alpha: 1.908, beta: 1.016
128, 2 : 32893, 32983, 33071 K: 3584, alpha: 2.244, beta: 0.847
128, 1 : 27426, 27634, 27576 K: 4949, alpha: 1.822, beta: 1.035
Total : 136246, 138544, 140133

Column 1 gives the number of bits required to code each section using Huffman coding
based upon the actual symbol probabilities. Column 2 gives a similar result except that every
possible symbol can be represented if required. This is necessary if the distribution is only
a sample, or only part of the image will be used at encode time, thus changing the actual
codes, but not the statistical distribution. The third column gives the number of bits required
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when the encoder uses the model to provide the distribution to the Huffman encoder. Here
also every symbol also has a representation. Figure 6.11 shows pictorially a selection of the
distributions for the head55 test image along with the corresponding modelled distribution.
As expected where only a few samples are available. the distribution is of a more random
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Figure 6.11: Example models for ‘head55’

nature. This then either excludes the fitting of the model, or produces a poor fit. Obviously
this is especially true for small scales and most significant bit planes (or both). For these
distributions the actual frequency of codes is stored however, as there are few symbols this is
not a major requirement. In addition, when the sparsest planes are grouped (section 6.6) it is
far more likely that the resultant distribution will fit the model.
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6.8 Spatial coefficient selection

As discussed earlier, each coefficient represents only specific parts of an image. As the filter
we used contains only 4 non zero filter coefficients the areas affected are very localised,
particularly for HF components.

By careful selection of coefficients we can therefore provide non uniform quality/compression
ratio within an image by giving preferential treatment to specific subsets of coefficients. The
factors which determine the spatial association of each coefficient, are filter width, scale, and
orientation.

For file encoding we can simply quantize the coefficients by the appropriate amount,
dependent on their position. For progressive enhancement the situation is more complicated
as each update must know the accuracy a specific coefficient has been approximated to. In
terms of bit plane encoding the planes must be allowed to become separated in level. This
can be achieved by associating a bit-level mask to each coefficient when the most significant
bit is received. An extra bit plane can then be transmitted for a specific region allowing future
updates to traverse between the bit planes. To keep the run length statistics correct each run
length will use the statistics of the previous coefficient to Huffman code. The run length
encoding will only use the wrong table when crossing between selected regions. In figure
6.12 the bold line indicates an extra bit plane to improve quality in the region marked a; b

Coefficient number
1 2 3

LSB

MSB

ma b

Figure 6.12: Regional quality improvement

6.8.1 Specifying a region

In the above section we did not provide a mechanism for the decoder to recognise a partial
plane (region). There are (as always) a number of possibilities for doing this. The least
overhead will be provided by a geometrical constraint such as a rectangular region, which
although is of no value for regions identified from the image itself, would be useful for user
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selections in a progressive enhancement situation. Slightly more complex regions could be
specified by a series of points on an irregular polygon, as long as exactly the same coefficients
fall inside and outside the area. For large areas all unwanted coefficients could be neglected
using ZRL codes, allowing an entirely arbitrary area to be enhanced. The overhead in ZRL
repeat symbols could become high however if the area is small.

There are more complex possibilities, which have been considered, for instance for regions
with convex only edges, the position of the first required coefficient, followed by an offset for
each new scan might be possible, giving a reasonably low overhead, combined with flexible
selection of regions.

6.8.2 Background removal

The background of many images typically contains a lot of random noise. This is the part of
the signal which is removed first by lossy compression algorithms. For high ratio compression
we would not therefore expect any significant improvement in compression efficiency. The
real benefit would be expected to be at the lower ratios when this random noise is starting
to be reproduced. The gain will be maximised when the image becomes indistinguishable
from the original, at a higher overall compression ratio than it would have otherwise. Some
types of image respond to very simple techniques for instance the ‘head55’ image can be
separated from the background by simply thresholding the detail wavelet coefficients. The
threshold can be calculated from the edge regions for this type of image as it is known that
the extremities of this class (i.e. CT headscan) of image are background.

6.9 Manipulation of the coded image

For some basic image processing operations it is more efficient to process the image in its
DWT function space, and should be possible on images regardless of the compression ratio.

Some possible operations are listed, indicating at which stage, and of what nature the
processing would take. Further investigation of this aspect has not taken place, but it will
share some similarities with similar DCT operations discussed in (Smith & Rowe, 1993) in the
context of JPEG. The operations considered are:

Scalar multiplication. The visual effect of this operation is to increase the dynamic range of
an image. This operation is usefully applied to faint images, or those where we wish
to extract detail from an area of similar intensity. This operation will be performed by
scaling the wavelet coefficients by the appropriate factor.

Scalar addition. Adding a constant value to all pixels within an image will brighten it
(positive constant) or make it dimmer (negative constant). To achieve this we only
require to add the appropriate value to the lowest resolution or average image.
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Pixel addition. The ability to add two images could prove useful for annotation or marking
of images, as well as the superposition of two images or taking the difference of two
images (e.g. DSA), addition of the coefficients will achieve this.

6.10 Summary of encoding strategy

In the previous sections, a number of ideas have been brought together to allow an en-
coded stream of bits to be generated from the transformed image data. The process of
bit plane encoding produces a fairly fine grained progressive enhancement capability, and
experiments with contrast masking which require a non uniform quantizer produce slightly
better reproduction at high compression ratios. Figure 6.13 shows the stages involved in the
quantizing and encoding process. The dashed line on this diagram indicates a path which
has not been implemented but should provide the best result of all given the restrictions
discussed previously in section 6.3.1.
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Chapter 7

Performance Comparison

7.1 Automated error measures

To allow comparison between coding strategies and also with other methods, some quantita-
tive measures of image reproduction quality are used. The two most often used measures are
NMSE and SNR. Given an image �, and an approximation to this image �, S(i; j)denotes the
extent of the images �; �. The RMS (L2) error is therefore the root of the sum over the image
of the square of the differences of the pixel values, i.e.,

dL2(�; �) =

sX
S

(�(S)� �(S))2:

If dr is defined as the dynamic range �, the signal to noise ratio in dB can thus be defined as:

SNR = 10 log10(
dr(�)2

dL2(�; �)2=(i:j)
);

and the NMSE as:

NMSE =
dL2(�; �)2P

S
�2 :

In the literature, compression ratio is usually expressed either in terms of the number of
bits required per pixel (bpp) or in terms of the compressed image representation size as a
percentage of the original image representation size. i.e. 5% means a ratio of 20:1.

7.2 Example of the coefficient truncated DWT

In the following sections compression ratios are given for the entire image to allow comparison
with other methods.
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When we consider variable quality within one image structure other factors such as the
accuracy of segmentation, and the probability of artefact masking are required in addition.
The following sections give results for the encoder when integer truncation of the coefficients
is performed.

7.2.1 Code 1

Section C.2 gives symbol 1 data for the image ’head55’. The number of occurrences for each
code are shown for each scale, with all coefficients being quantized to integer values.

These tables clearly show the clustering of symbols. For the high frequency coefficients
most are in the short run length/ small valued coefficient region, with a gradual shift to short
run length/ larger valued coefficient for lower frequency coefficients.

7.2.2 Compression ratio

The number of bytes used for coefficients at each scale for "head 55" within this (excluding
entropy coding tables) image are:

Scale Code-1 Code-2 Total
5 133 81 214
4 386 314 700
3 1117 1140 2257
2 3264 4098 7362
1 9492 14189 23681

Total 14392 19822 34214

and the error introduced by integer quantizing of the coefficients is:

maximum pixel error 1
ave pixel error 0.0805
SNR 52.1 dB

A plot of the spatial relationship of the error (figure 7.1) reveals no correlation between image
structure and error. This is due to the error being caused by truncation of noise in the original
image.

7.2.3 Smallest coefficient truncation

By setting the smallest coefficients to zero, run lengths will be increased and Code-2 bit volume
reduced. The following table gives the compression obtained, and error characteristics
introduced by this simple scheme. Figure 7.8 shows these graphically and figure 7.3 shows
the appearance of errors for a range of values.
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Figure 7.1: Error distribution by integer truncation of coefficients (max. error 1 pixel level)

Range deleted Max. PE Ave PE SNR % of original
round to int. 1 0.0806 52.1 52.2

-2..2 5 0.738 47.8 34.7
-5..5 9 1.501 42.3 21.5

-10..10 16 2.231 38.5 13.3
-15..15 27 2.763 36.2 9.2
-20..20 32 3.178 34.7 7.3
-30..30 39 3.836 32.8 4.8

Figure 7.2 shows the degradation of the image when the coefficients in the range -15 to
15 are set to zero, and the rest quantized to integer values. 7.2(a & b) show the original
and encoded image (respectively) with intensity window adjustment to show the detail of
the background noise. 7.2(c & d) are original and encoded images (respectively) at normal
contrast, and 7.2(e & f) are exploded portions of the image to highlight the degradation in
low contrast areas. The proportion of storage for each scale and general error measures are:

Scale Code-1 Code-2 Total
5 60 115 175
4 173 291 464
3 449 658 1107
2 1000 1121 2121
1 1309 1026 2335

Total 3211 2991 6122

maximum pixel error 27
Ave. pixel error 2.765043
nmse 0.028358 %
SNR 36.239494
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and we can observe that fine detail is missing at this ratio (9.2 %) though the unzoomed
appearance is convincing for gross and medium detail recognition purposes.

Figure 7.3 shows pictorially the distortion introduced by smallest coefficient truncation
for the ‘head55’ test image for a range of truncation sizes, and figure 7.4 gives the same result
for an artificial test image. Notice many more large coefficients occur in the artificial image,
and hence how comparatively low the compression ratio is.

7.3 Including the CST and CM curves

A modification to the basic algorithm above was to provide quantization of the coefficients
according to the CM theory in section 6.3.3. The smallest quantization error used determines
a notional value of C (ideally, the visibility contrast threshold) this value is then adjusted for
each scale according to section 6.3.2. Therefore, we have a new quantizer for each level. The
number of symbols required is thus reduced dramatically by this quantizing procedure, with
the more accurate representation of smaller coefficients for each scale to take account of CM
effects.

The symbols generated (figure 7.6) show two additional peaks in the frequency of symbols
generated for high frequency components. These are produced as a result of the interaction
of the exponential coefficient distribution (figure 6.8) and the non linear quantizer (figure 7.5).
The compression ratio was retained at producing 9.2% for comparison by setting C to 11.5
with the number of bytes used for part of the coefficient space as follows:

Scale Code-1 Code-2 Total
5 51 67 118
4 204 183 387
3 625 421 1046
2 1567 710 2277
1 1945 423 2368

Total 4405 1786 6191

The overall distortion/ compression introduced was:

maximum pixel error 27
Ave. pixel error 2.550
SNR 36.8

which we can compare with the same image compressed to the same ratio using JPEG1 as:

maximum pixel error 28
Ave. pixel error 2.562
SNR 36.64

1Filesize as produced by the implementation within XV Version 3.01 Author John Bradley, GRASP Labs
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(a)

(e) (f)

(b)

(c) (d)

Figure 7.2: Example: original (a, c, e). DWT integer truncation (b, d, f) at 9.2%
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(a)

(e) (f)

(b)

(c) (d)

>30

>15

>51.72bpp

0.736bpp

0.384bpp

Figure 7.3: Example: head55 image (a, c, e); active coefficients (b, d, f)
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(a)

(e) (f)

(b)

(c) (d)

4.20bpp

3.73bpp

2.77bpp >5

>15

>30

Figure 7.4: Example: test image – integer truncation
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indicating that even if we use numerical quality measures the DWT is no worse than JPEG.
Figure 7.72 has been produced by exactly the same method as figure 7.2 and shows a
comparison of the NLQ technique against the JPEG algorithm. We have noted that the
’blocking’ artefacts of JPEG are becoming visible at this ratio, and in addition we believe the
overall visual quality of our algorithm at this compression ratio is higher, though the error
measures above indicate a similar quality.

If we consider the range of quality possible, it becomes clear from figure 7.8 that this
method does not approach the exact bit pattern of the original at the same storage size. This
is due to the non-linear quantizer having the effect of ‘over quantizing’ the small valued
coefficients and always allowing some error in the larger ones. To avoid this at low ratios
the quantizer threshold curve needs to flatten towards a linear quantizer once the value of C
gets below the value that will cause less than 0.5 of a pixel intensity level in the reconstructed
image. Assuming that the model of CST and CM accurately models the visual system, and the
intensity between two pixel levels in the original image has itself predetermined the contrast
sensitivity threshold for the given pixel size, then C can be set to 0.5 to obtain the best visual
quality.
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Figure 7.5: Quantization scheme

The compression ratio versus quality is plotted in figure 7.8. In these measurements we
have not included the storage required for the symbol frequency information for the Huffman
tables. However as the number of symbols is relatively low (30-45 for ‘head55’) the storage
required to store the frequency of each is less than 2 bytes, giving at worst 450 bytes to store

2NOTE: Due to the halftoning algorithms used to reproduce these images certain artefacts are introduced, the
most apparent being the large step between white and the lightest grey, this is not visible on the actual images. In
addition, the reproduction quality of all the images is relatively low, thus masking much of the errors. It is clear
that the difference between 7.7(e & f) is far more marked on the soft copy with (f) providing a sharper image.
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(a)

(e) (f)

(b)

(c) (d)

Figure 7.7: Example at 9.2%: JPEG (a, c, e). WT NLQ (b, d, f)
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these tables for all 5 scales, possibly considerably less. For larger images the amount of space
required for the tables (as a % of total storage) will decrease further. The compression ratio
will not be affected significantly by this omission particularly as, in addition, it is usually
possible to model the tables.
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Figure 7.8: Efficiency comparison

7.4 Progressive enhancement using bit plane coding

The bit plane enhancement approach is used on the rounded integer representations of the
coefficients. These have not been quantized using the CM curve, though the number of bits
of accuracy for each scale is determined according to the CST curve. A future enhancement
will be to use the CM curve to generate a non-linear embedded quantizer, although we then
have to make design decisions as it cannot be one hundred percent efficient for the complete
range of quality. The SNR for ‘head55’ is plotted on figure 7.8 and performs well although
for high compression ratios the quality of fine detail is not as good as the CM based NLQ
even though the SNR figure is similar. A selection of the run length symbol frequencies have
already been displayed in figure 6.11, and clearly exhibit similar distribution properties to the
coefficients themselves.
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7.5 Variable quality approaches

One of the aims of this thesis was to consider possible special techniques which might be
used on medical images, in particular for access over low to medium bandwidth channels.
The wavelet transform was chosen because it can provide the possibility of progressive
enhancement, enforced variable regional quality, SIMs, and fast implementation.

7.5.1 Progressive enhancement

Figure 7.9 shows an image with the left region at a better quality than the right region. This
example is given to show the capability of the algorithm, therefore the quality variation is
rather drastic and picks no specific anatomic region. (The initial version of this image used
the centre region as the best quality, but the difference was barely visible, due to the subject
of the image !)

(a) (b)

Figure 7.9: Example: regional variable quality (a) image, (b) absolute error

7.6 Comparison to other medical image compression

We can compare SNR values for some other medical image compression experiments and
although these figures would not necessarily reflect the outcome of a comparative ROC study,
we expect the fine and subjective details to be at least as good. The graph 7.10 gives typical SNR
of our NLQ algorithm DWT CM (NLQ) MRI in comparison to published results of several
other algorithms which have been investigated for medical use. Subband based DSA is a
subband coding approach to DSA images (Cetin, 1991) and DCT based Progressive CT was
a progressive enhancement technique based upon a novel quantization of the 32� 32 blocked
DCT transform (Elnahas et al., 1986). These images are of different types, which according
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to our previous discussion makes it possible that they could be compressed to different
ratios, however as none of the methods shown specifically used regional information and the
measurement is simply the SNR, the overall effectiveness of the algorithms is represented by
the graphs.
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Figure 7.10: SNR comparison

7.7 SIMS

The SIM for an image can be produced at a number of resolutions from 1
2 to 2j by scaling

the S2J coefficients by an appropriate amount. An example of possible SIMS for the ‘head
55’ image appears in figure 7.11 for reconstruction without any compression. So far only the
encoding of the detail coefficients has been considered. This is because the transform has
been continued until so few smooth coefficients remained that they could be stored as their
integer representation with negligible effect on the overall compression ratio. It is possible
however that encoding a larger section of smoothed coefficients (i.e. the SIM) directly might
be more efficient as at such scales many image types have characteristic features, enabling
predictive encoders based on model images to work effectively. Alternatively, DPCM is likely
to be fairly efficient due to the lack of HF components and presence macro image detail. The
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(a)

(e)

(b)

(c) (d)

(f)

Figure 7.11: Sims at various scales: expanded (a, c, e); natural size (b, d, f)

114



table in appendix C.4 gives the 8 � 8 and 16 � 16 smoothed coefficients for ‘head55’, where
these characteristics can be seen.
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Chapter 8

Implementation

8.1 Implementation environment

The algorithms described in this work were implemented using the ’C’ programming lan-
guage, in a UNIX environment. Although a complete application GUI was not built, the X-
Windows protocol and widgets were utilised for the graphical aspects of the experiments, as it
is believed that most of the facilities that would be required to create a complete application are
available. The parts of the encoder/decoder algorithms were implemented as independent
processes (e.g. decoder, decompressor, interface display) communicating via shared memory.
This approach has the advantage that one aspect of the system does not delay the others, in
particular the decompression (IDWT) does not delay the decoder, which can be allowed to
operate at its optimum speed.

8.2 Decoder/encoder implementation

This section describes an overview of the implementation of the encoder and decoder
algorithms. An outline of the major data structures and processing operations for the
progressive codec is given based on the outline algorithms previously described.

Figure 8.1 describes the structures required for implementation of the quantizing and se-
lection algorithm in figure 6.13 using bitplane selection and integer quantizing of coefficients.
The set of coefficients will have been generated as described in chapter 5.

The components of the encoder/ decoder are as follows:

Transform engine. The transform engine (not shown in figures 8.1) will have produced a set
of coefficients with appropriate properties.

Probability tables/Entropy coder tables. Some types of entropy encoding require the prob-
ability of each symbol to be known in advance. This is then used to generate a set of
variable length codes to map the input symbols to an output bit stream.
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Huffman tree. The encoded bit stream is decoded by searching a tree built by the decoder.

Coefficient array. Complete set of transform coefficients

Bit plane mask. To enable individual coefficients to be built up or selected at increasingly
better approximations, the bitplane mask is an array showing the next most significant
bit to be considered by the decoder for each coefficient. This mask can then be used to
provide the position for each new bit, after which the mask is rotated bitwise to the next
lower power of two. Any zero or completed coefficients will have an empty (0) mask.

Run length Generator. Generates the zero run lengths of non zero coefficients between
insignificant1 bits.
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Figure 8.1: Quantizer operation

The decoding of coefficients is shown in figure 8.2 and has essentially the inverse operation
of the encoder. Once again the bit plane mask structure is used to keep track of which parts
of coefficients have been received.

For a non-progressive application of the encoder/decoder the bitplane mask is not re-
quired, as complete coefficients are received after each Code-1.

1the term ‘insignificant bits’ is used to indicate bits above the range used by a particular Code-2 Variable Length
Integer
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Figure 8.2: Decoder operation

8.3 Structure of the encoded data

Two versions of the encoded bitstream have been used in this work. The first was used
for compression in non-progressive mode to a file, referred to as file mode . The second is
designed for transmission in progressive mode referred to as transmit mode. The second
structure can of course also be used to create a file but can only allow non-interactive
progressive decoding. For a remote image database, images would be stored in files in
the first format which can be more efficiently read than the second. The best ultimate image
quality would be determined by this file. Once this coefficient set has been read by the file
server (transmitter) the image can be re-encoded in interactive progressive update mode. A
number of issues are important to the implementation:

� The server can transmit the SIM after reading only a small part of the file.

� Generally no further updates can occur until the entire file has been read by the server.

� During the transmission the server is required to store the complete coefficient set plus
bitplane masks, plus a number of the Huffman tables (dependent on the number of
active bitplanes).

� The server never needs to perform a DWT.
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If the files are stored in some other format, then the server must decode this, create the
image pixels, and perform a DWT prior to starting the progressive transmission as above.

For non-interactive progressive enhancement applications then the file can be stored as it
will be transmitted, giving the server merely a read-transmit role. The structure of file mode
data is shown in figure 8.3.

error check byte

Vertical response

Horiz & Vert response

Horizontal response

model coefficients
Freq. tables or 

header

scale n

SIM

scale n-1

scale n-1

scale 1

Code-2
Code-1

Code-1

1 byte

Code-2
etc

Figure 8.3: File mode structure

The main features are that the Code-1 and Code-2 symbols are kept in their appropriate
pairs, and the addition of an extra byte referred to as the verification byte at the end of each
section allowed easy detection of most encoding errors (or errors in the encoder !). To allow
each section to start on a byte boundary padding bits were inserted between the last bit of a
plane and the verification byte. At the start of each section are stored the Huffman tables, or
the parameter models if used.

8.3.1 Huffman tables representation

The Huffman tables are stored simply as a set of frequency values with each value taking
either 8, 16, or 32 bits depending upon what the largest value is. The first byte indicates this
information (first 2 bits) with the remaining 6 bits giving the maximum bit count in the table.
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The second byte indicates the ZRL repeat code index. The first entry in the table will be the
repeat code (0, rc) code frequency with (repeat code+1)�bit count subsequent entries in the
table. Figure 8.4 gives clarification of this. The decoder can then build a binary tree from
these frequency values, with each symbol as a leaf node, to allow the incoming bit pattern to
be converted back into the correct symbol.

For the bitplane encoded approach a slight modification is required, hence when the
maximum bit count is set to zero, the repeat code index now specifies the number of entries
in the table. Also if the encoder is to work in interactive progressive mode then the minimum
value for the frequency for any code must be 1.

01 = byte
10 = 16 bit
11 = 32 bit

Maximum
Bit count

Repeat
Code
Index

File Mode

Runlength
Zero 
Max

0 1 

(1, 0)(0, RCI) (MBC ,RCI)

Transmit Mode

MZRL

Figure 8.4: Code-1 frequency information representation

For regions where it is more efficient to use the exponential model of coefficient probabil-
ities then the first two bits will be ’11’ indicating that the following bytes contain the floating
point �, � andK coefficients followed with the ZRL and frequency of this ZRL code. The type
of these was left as the standard floating point form on the machine we were using. However
the accuracy is not critical as long as the probabilities are generated from exactly the same
coefficients at both the encoder and decoder. Thus the coefficients could be represented as a
fixed point 16 or 32 bit binary number with success.

We need to decide when to model the frequency table for the Huffman encoder and when
to transmit the actual table. Obviously to decide this it is necessary to know how many
bits are required to store the table of frequencies, and how many extra bits are used when
encoding all the symbols due to the approximation introduced by the table.

The total number of bits for the encoded symbols can be calculated from:

Coded bits =
X

symbols
Code length� Frequency;

with the number of bits required for the table as we have stored it, whenFl is the largest value
in the frequency table, given by:

table size = 16 +Nsymbols �B; B =

8><
>:

8 if 0 � Fl < 28

16 if 28 � Fl < 216

32 otherwise
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If S(x) is the number of bits required for the representation of x then using the model the
number of bits will be:

Model bits =
X

symbols
Model code length� Frequency + S(�) + S(�) + S(K):

All of these values can be calculated relatively easily, and if the model is subsequently used
(if Model bits < Coded bits + table size) then the model code bits must be generated in in
any case, before encoding can commence.

8.3.2 Structure of transmit mode data

The data format for transmit or interactive mode, figure 8.5 is slightly modified to enable
individual bit planes or regions of bit planes to be transmitted as required.

error check byte

Vertical response

Horiz & Vert response

Horizontal response

model coefficients
Freq. tables or 

header
SIM

1 byte

etc

scale s,  plane p

scale s’,  plane p’

scale s’’,  plane p’’

scale 1,  plane 1

Data Bit (Code-2)
ZRL (Code-1)

ZRL (Code-1)
Data Bit (Code-2)

scale s’’,  plane p’’, region [tl, br]

section header

Figure 8.5: Transmit mode structure

8.4 Processing requirements

The structures and processing steps required in the server and remote machine are depicted
in figure 8.6. The main processing requirement of the decoder is the IDWT which must be
performed for each viewable progressive update. For the system to work really well this
should be implemented efficiently at a low level. It is likely that the use of DSP hardware to
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perform the transformation and thus relieve the workstation of this task, would allow more
sophistication for the user interface and other tasks. We have not pursued this area but note
that there is published material addressing the problem, for instance a comparison of DSP
and RISC processors for DWT implementation (Parikh & Baraniecki, 1993) although our filter
lengths are shorter than those used for their analysis.

inverse
transform

Coder decoder

decoder

transform
forward Coefficiemts displayimage

update

Coefficiemts

compressed file

Figure 8.6: Transmission/coding overview

8.5 Simple interactive protocol

Figure 8.6 describes a typical bidirectional communication between a receiver and transmitter
for a consultative or interactive session. Only one image has been allowed to be progressively
transmitted at a time to avoid having more than one complete set of coefficients stored in the
transmitter at any one time. Each section of coefficients contains a small header giving the
scale, plane, and region of the proceeding data. As yet a complete protocol and message set
has not been developed.

8.6 The image database server

The image server has the task of taking remote requests for images (plus other data) retrieving
this data from a file system, and sending it to a remote link. This task should not be too
demanding as the remote link is by definition slow compared to the processing capability of
the machine. Most of the operations consist of collecting bits from various coefficients, with
the entropy encoder being the most intensive operation.

8.7 The workstation client

The viewstation end of the link requires an IDWT to be performed for each viewable image
update. Essentially three processes are being performed in parallel:

Decoder. The decoder receives data from the external (H/W) interface and performs entropy
decoding where necessary and builds up the coefficient set.
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decompressor. When a new block of coefficients has been received the IDWT is performed
to build a viewable image. This task is possible in software, but would be better using
dedicated hardware.

User interface. User requests and all user I/O is directed through the UI which supports all
the facilities required by the user in a uniform way.

Figure 8.7 shows the main data paths between the above processes. This data transfer
was first implemented as UNIX pipes between the three UNIX processes, but this was too
slow for the amount of data required. Subsequently shared areas of memory were used with
each process sending a signal to co-ordinate access to the memory containing the coefficients.
For small images (e.g. 256 � 256) this worked well in nearly real time on a SUN SPARC1,
i.e. decoding and redisplay every few seconds for a simulated 64K/bit channel. For larger
images the decompression process became too slow for reasonable updates, and because of
the shared memory, could not easily be moved to another processor. However with a more
efficient implementation of the core IDWT or use of a dedicated H/W module this problem
will be alleviated.

Spatial
Information
Model

Coefficients
Update

Copy

Coefficients

CopyExtract
Scale TruncateInterface

Decompressor

X TerminalDisplay

DWT

Decoder

Bit Stream
Packet

Driver

Decoder

Figure 8.7: Image viewing
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8.8 Comment

The key parts of the image transmission system were implemented, with a simple mock up
user interface, supporting only those functions relevant to the operation of the transmission
and compression algorithms.
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Chapter 9

Conclusions and Future Work

9.1 Introduction

This final chapter presents a discussion of some of the aspects of what has been done. Where
further work is still to be done to complete the objectives, this is noted, along with possible
directions for future work and in some instances our expectations of results. Obviously any
items for which results have not previously been given are tentative, though the reasoning
which has lead to these expectations is given where possible.

9.2 Discussion

9.2.1 Wavelet encoding of imagery

In the process of designing a quantization strategy the goal is to minimise distortion within the
reconstructed image. The most commonly adopted approach is to attempt to minimise some
empirical measure, typically MSE or SNR. Although generally an image with a high SNR,
for instance, will be of subjectively good quality, when we start placing stringent conditions
upon the visual integrity of the image these simple measures do not necessarily reflect the
detail which can be extracted from the image by the human visual system. The problem
has been approached from the opposite direction and the image is encoded according to
what is known about the way the visual system acts. The resultant empirical measures show
the system to be competitive with current state of the art methods, and the appearance and
detailed examination of the resultant images appears to be superior (although we have not
verified this statistically with an ROC study yet).

It is quite obvious that the blocking artefacts which become obvious in some blocked
transforms at high compression do not appear in the same regular form, though of course
distortion is produced by the narrow filter DWT at high ratios, however it can be argued that
it is of a less distracting form to the visual system. The other main identifiable distortion
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artefact, known as ‘ringing’ or false edges around sharp contrast changes (HF components)
is also reduced in the DWT due to the localisation of the domain of each coefficient.

We believe that the application of the contrast masking curve improved the visibility of fine
detail for a given compression ratio to a greater extent than suggested by the SNR measure.
This is particularly true for medium ratios where the SNR and APE measures become
relatively poor, though the visual quality is good, and appears to contain greater detail.
It was gratifying to note that similar conclusion and quantization strategy between scales has
since been reached by another researcher through a rigorous mathematical derivation of a
similar problem (DeVore et al., 1992).

Considering the low quality part of figure 7.8 reproduced as figure 9.1 the bitplane
approach and CM give the same SNR, though the CM has superior visibility for fine detail.
These two curves diverge at about 0.6bpp due to the NLQ producing errors for large values
coefficients, though these are not visible. The NLQ reaches a maximum quality because of
this and should have the linearity of the quantizer increased for lower ratios, it would then
follow the SNR for the bitplane approach, which ultimately becomes integer rounding at
about 4 bpp.

9.2.2 Progressive enhancement

Progressive enhancement has been presented as an important feature of our solution though
it is true that progressive enhancement will always be an imperfect but important enabling
technology. In any situation where the user is involved directly in the enhancement process it
is a work around solution, as ideally instant full quality display is preferable. There are a few
situations where enhancement can be utilised unknown to the user as noted in section 3.10.1.
However if this technology can be used to widen availability of images and thus provide
benefit in, for instance, rural areas, then it has been worth the effort.

It was not a surprise to have read very little in the literature concerning the progressive
enhancement of medical images, mainly because the scenarios where we expect it to be
useful simply do not currently consider the possibility of having images available. It is
therefore impossible to judge the effect of this strategy on the user. We believe it is very much
a technology to enable experiments concerning the wider availability of medical images,
especially in rural areas and where smaller more localised hospitals can provide better care
by allowing aspects of diagnosis which do not require direct patient interaction performed
remotely.

9.2.3 Frequency table models

Using the exponential model to create the Huffman decoding tables was found to give a closer
results to the actual frequency tables for the interactive progressive enhancement situation.
The reason for this is due to the requirement for a symbol to be available for every possible
Code-1, as the actual codes are not known when the tables are generated.
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The actual frequency tables are not critical to the efficiency of the Huffman algorithm, in
the sense that an approximation will often produce identical length codes for each symbol.
Clearly, though it is important that a receiver can construct exactly the same bits for each
symbol. Therefore, if a model is to be used and particularly if it is specified by real coefficients,
the encoder/decoder must be able to calculate the same approximate frequency tables. To
ensure this, the encoder having found a suitable model, limits the accuracy of the coefficients
to a specified level, and calculates the frequencies which are then used to encode the symbols.
Providing that the calculation of the frequency tables from the model produce the same results
when rounded to integer values the decoder will function correctly.

As yet it is not clear how it is possible to determine when the model should be used
without first generating the Huffman tables (or at least the number of bits in each) for the
model. The processing to generate the table is not too great,and so this possibility has not
been investigated further, as a ‘trial and error’ approach is satisfactory..

9.2.4 Visual models

CST and CM have been utilised to improve the quantization strategy for the encoding
algorithm. There is another visual characteristic concerned with the visual detection threshold
at differing intensity values. The effects reproduced in the context of digital radiology (Sezan
et al., 1987) show that the eye is more sensitive at low to mid intensity ranges. Sezan utilised
non uniform quantization based on this to allow 8 bit quantization of 12 bit images, with a
good deal of success.

To apply this to the DWT would require modification of the quantizer based upon the
average intensity of the region within which each coefficient is represented. It is likely
that the smoothed S2j coefficients could be utilised for this, however this has not been
investigated yet because of the complication of integrating this together with the CM non
uniform characteristic. A second reason for avoiding this possibility is that according to a
recent report (Cox et al., 1992) such an approach can give radiologists the impression of a ‘flat’
and ‘unfamiliar’ image.

9.2.5 Anatomic models

In the future higher level processing of the images based upon knowledge about the acqui-
sition, structure, anatomy and variability of the various images will allow better and faster
segmentation of the images. Other systems currently within the scope of AI research will
allow the optimum compression to be created for each image dependent on a multitude of
factors.

9.2.6 Application to other fields

Medical images have been the only concern of this work. There are many other specialist
image related applications which might benefit from reduced bandwidth requirements. The
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basic strategy of the approach, and indeed the DWT should be applicable to most ‘natural’
image types, with the higher level information including object models and heuristics typically
being generated specifically for the application.

If only the DWT quantization and progressive enhancement, details are considered
applications such as remote picture database browsers are possible. Some features such
as the fast viewing of SIMS to allow the user to make more informed decisions about image
content before downloading large images, are easily supported.

9.2.7 Runlength encoding

To avoid producing many infrequently used runlength codes we have used a repeat code for
producing longer runlength sequences. This length has been somewhat arbitrarily chosen as
15 for the implementation. By making the RC larger then less RC symbols will be generated, at
the expense of having more infrequently used run length codes. Investigation of the optimal
run length repeat code has not been performed yet.

9.3 Important future additions

The following sections describe some aspects which we have not addressed, but which are
important to the area. Possible directions for study of these are noted where appropriate.

9.3.1 Multi frame images

The primary consideration in this work has been computed radiography applications, many
of the concepts however will apply to most other modalities. When there is an obvious extra
dimension to the data set, usually either a time sequence of images, or a number of spatial
slices of an object it is necessary to utilise the potentially very large correlation between these
images. A recent paper (Lee et al., 1993), which has investigated compression of CT images
based on the blocked DCT showed significant improvements in quality from the inter slice
compared with standard intra slice methods. The paper had two intriguing results, firstly
the SNR of the new method was no better than the inter slice version, and secondly readers
reported better quality perceived for 5:1 compressed images than the originals though no
difference in ROC was found. For this latter phenomena, a similar result appeared in our
work for single images and was attributed to the removal of some HF noise by the compression
algorithm.

The extension to multi slice data using the DWT has not been pursued although there is
an exciting possibility for a large improvement in compression ratios for such data using a 3
dimensional version of the DWT algorithm. The possibility of extending the transform itself
to three dimensions (i.e. filtering on X, then Y, then Z and thus creating a ‘cube’ of coefficient
space with 8 regions for each transform level), should be possible given the orthogonality of the
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transform. This would allow quantization between frames, so we could consider for instance,
HF vertical components which have changed a large amount since the last frame, and those
which have remained static. Therefore, the changes between frames at each resolution would
become apparent from the coefficients and we could quantize accordingly. For applications
like time sequences of images when a contrast dye is used this detail is particularly relevant.

9.3.2 Colour images

Colour images have not been considered as the majority of medical images are monochrome,
though some have artificial colour added at a later date. It will be possible to include a colour
component by encoding each colour channel (RGB or YUV) with a separate DWT. Other
well known features such as limiting colour resolution more than intensity resolution can be
utilised.

9.4 Conclusions

It is clear that the only acceptable method of evaluating the subject matter of this work,
prior to use in real medical situations is through ROC studies. This in turn would require a
full implementation of the system or functionally equivalent prototype. The work involved
would be substantial, specifically there are a few areas which still have to be fully addressed
to obtain the performance that we would like to achieve from the system.

To perform such a study would require the involvement of a substantial number of medical
staff, the use of expensive, already over utilised (where it exists) medical equipment.

This level of implementation has not been possible, but it was never the intention. The
original aim was to determine if it might be feasible to use the ISDN for diagnostic imaging
tasks. From the beginning it was apparent that compression of the data as well as how
it is accessed were expected to be key issues, and given that most general methods were
unsuitable, we were interested to try and find modifications, or other techniques which might
provide better results.

It is evident that the laws of information theory predict that the only way to improve
compression ratios without losing quality, is to restrict the possible images the system could
compress thereby placing more of the image information within the encoder/ decoder. It was
clear that medical images are definitely a small class of all possible images, but exactly how
to identify these characteristics and use them to our advantage is a difficult problem indeed.
The basic strategy would seem to be to characterise or model each image type to enable a
decoder to effectively make ‘assumptions’ due to information it can be equipped with. In
addition, if we are to compress beyond the redundancy (entropy), and as our models will by
necessity only be crude due to the range of variability within images which it is required to
represent, something will inevitably be lost. We consider that there are another two levels of
redundancy (redundant in the sense of not required for the purposes of the application).
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Firstly, when carefully applied, the limitations of the human visual system can be utilised
to remove information which cannot be seen (processed) by the observer. It is important
to realise that with modern image processing these details can sometimes be made visible,
indeed many processing techniques work, by moving details into the sensitive region of the
HVS. Obviously care must be taken to cater for this situation.

Secondly, it is sometimes possible to identify ‘macro redundancy’ in terms of the actual
composition or structures within the image and their contribution to the subsequent diagnostic
task. We have only considered the crudest, being the noisy background found on many
images, and for most applications considered to be of zero value, and thus redundant. Because
of the number of varying results in the literature considering quality requirements for various
image types, structures within images and observer expectations, we feel sure that additional
more subtle macro redundancies can be found for some types of image. To utilise such ideas
model based segmentation and labelling utilising domain knowledge to constrain location
of the structure of the image would be required. Following this AI techniques such as case
reasoning, and expert systems, could be used on these higher level abstractions of the image
structure to determine optimum compression efficiency for each region.

To utilise techniques such as these we have chosen to use the DWT to redistribute the
energy into a space where the HVS model can be utilised, and potentially some simple macro
redundancy in terms of regions as well. The Huffman encoder, though not a state of the art
lossless encoder provides good results at low cost, to remove residual correlation.

Looking well into the future it becomes reasonable that compression systems, and ‘auto-
mated image readers1’ would converge in the sense that abnormalities would be the part of
an image which the compression routine could not (or would not) compress well (it would
either have a good model, or spot as detail not required, for everything else). Of course
the compression itself would then become redundant as only the textual ‘radiologists report’
would need to be stored !

At the conclusion of the experiments performed in this work it has become clear that
there are benefits to be obtained in terms of economy and quality when transmitting and
archiving such data. Although there are many parts of this work which could be developed
further before an operational system is built, the effect of using general lossy image encoding
algorithms might well be considered a false economy.

1some experiments are being carried out in spotting specific abnormalities (cancer growths), and in (Dallas &
Roehrig, 1987) to locate vessels in soft tissue

131



Appendix A

Appendix A: Algorithms

A.1 � estimation

To find the value of � (Section 6.7.4.3) a simple iterative algorithm was used which repeatedly
adds or subtracts an error factor, which itself is halved whenever the sign of the error between
the real and modelled distributions changes.

An estimated value of � is produced by considering the gradient of the line joining the
two samples either side of the value closest to the 1=e point on the curve. The estimate is
usually within �1 so 0.5 is used as the initial increment.

� estimation
set adjustment to 0.5
while � not accurate enough

calculate error between real distribution and model using current � and �.
if the error has a different sign then

reduce the adjustment by 50% and change its sign
otherwise

if the error is greater magnitude than last time then
change the sign of the adjustment amount

add adjustment to �

The actual implementation has a few additional checks which allow a maximum number
of iterations (20) to be set. The error is the total difference between the real and modelled
distributions for non zero values of the real distribution. i.e.

P
(P (i)�Ke�(juj=�)

�

) for
P (i) 6= 0.

A.2 Forward transform code

The following constants are defined globally:
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C0 = (1+sqrt(3.0))/8.0*sqrt(2.0);
C1 = (3+sqrt(3.0))/8.0*sqrt(2.0);
C2 = (3-sqrt(3.0))/8.0*sqrt(2.0);
C3 = (1-sqrt(3.0))/8.0*sqrt(2.0);

Code to perform one layer of the two dimensional DWT transform.
/*--------------------------------------------------------------------------*/

void wavelet_transform(size)
/*--------------------------------------------------------------------------*/

int size;
{
p_type *column_ptr, *row_ptr;
int i,j;

column_ptr = parameters_out;
row_ptr = parameters_in;
for (i=0; i<size; i++){
daub4(row_ptr, column_ptr, column_ptr+(NUMBER_COEFFICIENTS*size/2), size);
row_ptr += NUMBER_COEFFICIENTS;
column_ptr++;

}
column_ptr = parameters_in;
row_ptr = parameters_out;
for (i=0; i<size; i++){
daub4(row_ptr, column_ptr, column_ptr+(NUMBER_COEFFICIENTS*size/2), size);
row_ptr += NUMBER_COEFFICIENTS;
column_ptr++;

}
}

Calculate one column of the output (input from one row of the input). The input ptr
points to a row of data to be transformed, the output ptr points to the top of the output row
(smooth part) the row size is the offset to add to get an element 1 row below the current.
/*--------------------------------------------------------------------------*/

void daub4(input_ptr, smooth_ptr, detail_ptr, size)
/*--------------------------------------------------------------------------*/

p_type *input_ptr, *smooth_ptr, *detail_ptr;
int size;
{
p_type *sav_ptr;
int i;
sav_ptr = input_ptr;

for (i=0; i<(size-2); i+=2){

*smooth_ptr = (p_type)(*input_ptr*C0 + *(input_ptr+1)*C1 +
*(input_ptr+2)*C2 + *(input_ptr+3)*C3);

*detail_ptr = (p_type)(*input_ptr*C3 + *(input_ptr+1)*-C2 +
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*(input_ptr+2)*C1 + *(input_ptr+3)*-C0);

detail_ptr += NUMBER_COEFFICIENTS;
smooth_ptr += NUMBER_COEFFICIENTS;
input_ptr += 2;

}

*smooth_ptr = (p_type)(*sav_ptr*C2 + *(sav_ptr+1)*C3 +
*(input_ptr)*C0 + *(input_ptr+1)*C1);

*detail_ptr =(p_type)(*sav_ptr*C1 + *(sav_ptr+1)*-C0 +
*(input_ptr)*C3 + *(input_ptr+1)*-C2);

}

To perform a complete decomposition leaving smooth coefficients determined by the value
of THE END.

/*--------------------------------------------------------------------------*/
void wavelet_coder()

/*--------------------------------------------------------------------------*/
{
static int size;

size = image_size;
while (size > THE_END ) {
wavelet_transform(size);
size = size/2;

}
}

A.3 IDWT Code

Perform one layer of the inverse DWT transform.
/*--------------------------------------------------------------------------*/

void inverse_wt(size, param_source)
/*--------------------------------------------------------------------------*/

int size; p_type *param_source;
{
p_type *column_ptr, *row_ptr;
int i,j;

column_ptr = param_source;
row_ptr = parameters_store;
for (i=0; i<size; i++){
inverse_daub4(row_ptr, column_ptr, column_ptr+(size/2), size);
row_ptr++;
column_ptr += NUMBER_COEFFICIENTS;

}
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column_ptr = parameters_store;
row_ptr = parameters_out;
for (i=0; i<size; i++){
inverse_daub4(row_ptr, column_ptr, column_ptr+(size/2), size);
row_ptr++;
column_ptr += NUMBER_COEFFICIENTS;

}
}

The following routine is the inverse of daub4.
/*--------------------------------------------------------------------------*/

void inverse_daub4(output_ptr, smooth_ptr, detail_ptr, size)
/*--------------------------------------------------------------------------*/

p_type *output_ptr, *smooth_ptr, *detail_ptr;
int size;
{
p_type *sav_smooth_ptr, *sav_detail_ptr, *sav_output_ptr;
int i;

sav_smooth_ptr = smooth_ptr;
sav_detail_ptr = detail_ptr;
sav_output_ptr = output_ptr;

output_ptr += 2*NUMBER_COEFFICIENTS;

for (i=2; i<size; i+=2){
*output_ptr = (p_type)(*smooth_ptr*C2 + *detail_ptr*C1 +

*(smooth_ptr+1)*C0 + *(detail_ptr+1)*C3);
output_ptr += NUMBER_COEFFICIENTS;

*output_ptr = (p_type)(*smooth_ptr*C3 + *detail_ptr*-C0 +
*(smooth_ptr+1)*C1 + *(detail_ptr+1)*-C2);

output_ptr += NUMBER_COEFFICIENTS;
detail_ptr++;
smooth_ptr++;

}
*sav_output_ptr = (p_type)(*sav_smooth_ptr*C0 + *sav_detail_ptr*C3 +

*smooth_ptr*C2 + *detail_ptr*C1);
sav_output_ptr += NUMBER_COEFFICIENTS;

*sav_output_ptr = (p_type)(*sav_smooth_ptr*C1 + *sav_detail_ptr*-C2 +
*smooth_ptr*C3 + *detail_ptr*-C0);

}

The routine to generate an image from a complete set of coefficients. A duplicate set of
coefficients is used to avoid corrupting the coefficient set in case of progressive enhancement.
/*--------------------------------------------------------------------------*/

void wavelet_decoder(parameters_in)
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p_type *parameters_in;
/*--------------------------------------------------------------------------*/

{

int size;

size = image_size;
while (size > THE_END && (size % 2) == 0) {
size = size/2;

}
memcpy(parameters_out, parameters_in, NUMBER_COEFFICIENTS*NUMBER_COEFFICIENTS*
sizeof(p_type));

size = size*2;
inverse_wt(size, parameters_in); /* result in parameters_out */

while (size < image_size) {
size = size*2;
inverse_wt(size, parameters_out); /* result in parameters_out */

}
}

A.4 Encoder

The basic encoder used the send symbols routine to transmit the Code 1 data. This in turn
utilises the storecode routine to accumulate the various bits into bytes. The codebits and len
arrays provide the coded form of each symbol and the number of bits required respectively.

/*--------------------------------------------------------------------------*/
void send_symbols(location, outputfile)
struct area *location;
FILE *outputfile;

/*--------------------------------------------------------------------------*/
{
int j, k, h, h1, zero_run;
int s1;

zero_run = 0;
storecode(0, 0, ’s’, outputfile); /* reset bitstream */
for (j=location->upper_left.y; j<location->lower_right.y; j++)
for (k=location->upper_left.x; k<location->lower_right.x; k++) {

h = (int)*(parameters_in+((k)*NUMBER_COEFFICIENTS)+j);
if ((h == 0) && (zero_run<(run_bits-1)))

zero_run++;
else {
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storecode(bits_in(h), zero_run, ’n’, outputfile);
zero_run = 0; }

*(size+((k)*NUMBER_COEFFICIENTS)+j) = (int)(1<<bits_in(h))>>1;
if (h<0)
*(parameters_in+((k)*NUMBER_COEFFICIENTS)+j) = (p_type)(h-1);

}
storecode(0, run_bits-1, ’n’, outputfile); /*over run with repeat code*/
storecode(0, 0, ’c’, outputfile); /* finish current byte */
}

/*--------------------------------------------------------------------------*/
void storecode(nbits, zero_run, mode, outputfile)

/*--------------------------------------------------------------------------*/
int nbits, zero_run;
char mode;
FILE *outputfile;
{
static int bits_fill, outbyte;
unsigned int code_bits, code_symbol, bitsctr, mask;
int code_index, num_bits;

switch (mode) {
case ’c’ : if (bits_fill != 0){

if (bits_fill <8)
outbyte = outbyte << (8-bits_fill);

fputc(outbyte, outputfile);}
fputc(sync_byte, outputfile); /* write a check

byte */
break;

case ’s’ : outbyte = bits_fill = 0;
break;

case ’n’ : code_index = nbits*run_bits+zero_run;

code_bits = len[code_index];
mask = 1 << (code_bits-1);
code_symbol = codebits[code_index];

for (bitsctr=0; bitsctr<code_bits; bitsctr++){
if ((code_symbol & mask )==0)

outbyte = outbyte << 1;
else
outbyte = (outbyte << 1)+1;

mask = mask >>1;
bits_fill += 1;

if (bits_fill == 8) {
fputc(outbyte, outputfile);
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outbyte = bits_fill = 0;
}

}
}

}

The following two procedures collect and send the actual coefficient data (Code 2) for a
specific region.

/*--------------------------------------------------------------------------*/
void send_coefficients(location, outputfile)

/*--------------------------------------------------------------------------*/
struct area *location;
FILE* outputfile;
{
int j, k, h;

store_coefficient(0, 0, ’s’, outputfile); /* reset bitstream */

for (j=location->upper_left.y; j<location->lower_right.y; j++)
for (k=location->upper_left.x; k<location->lower_right.x; k++) {

h = (int)*(parameters_in+((k)*NUMBER_COEFFICIENTS)+j);

if (*(size+((k)*NUMBER_COEFFICIENTS)+j) > 0){
store_coefficient(h, size+((k)*NUMBER_COEFFICIENTS)+j,
’n’, outputfile);

}
}

store_coefficient(0, 0, ’c’, outputfile); /* finish current byte */
}

/*--------------------------------------------------------------------------*/
void store_coefficient(h, bits_left, mode, outputfile)

/*--------------------------------------------------------------------------*/
int *bits_left, h;
char mode;
FILE *outputfile;
{
static int bits_fill, outbyte;
unsigned int code_bits, code_symbol, bitsctr, mask;
int code_index, num_bits;

switch (mode) {
case ’c’ : if (bits_fill != 0){

if (bits_fill <8)
outbyte = outbyte << (8-bits_fill);

fputc(outbyte, outputfile);}
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fputc(sync_byte,outputfile); /* write a check for debug*/
break; /* wavelet_module.c */

case ’s’ : outbyte = bits_fill = 0;
break;

case ’n’ :
mask = *bits_left;
for (bitsctr=0; (mask!=0); bitsctr++){
if ((h & mask)==0)
outbyte = outbyte << 1;

else
outbyte = (outbyte << 1)+1;

mask = mask >>1;
bits_fill += 1;
if (bits_fill == 8) {
fputc(outbyte, outputfile);
outbyte = bits_fill = 0;

}

*bits_left = mask;
}

}
}

A.5 Decoder

The following is the receiver version of send symbols. Tree is the Huffman decoder tree root
node from which the symbols are recovered as each bit is received.

/*--------------------------------------------------------------------------*/
void get_symbols(tree, location, inputfile)

/*--------------------------------------------------------------------------*/
struct hnode *tree;
struct area *location;
FILE *inputfile;
{
int j, k, h1, length, zero_run;
unsigned int symbol, mask;

mask = 128;
zero_run = 0;
getcode(tree, ’s’, inputfile); /* reset input */
symbol = getcode(tree, ’n’, inputfile);
length = symbol >> run_no_bits;
zero_run = symbol % run_bits;

for (j=location->upper_left.y; j<location->lower_right.y; j++)
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for (k=location->upper_left.x; k<location->lower_right.x; k++) {

if (zero_run==0){
*(size+((k)*NUMBER_COEFFICIENTS)+j) = (1<<length)>>1;
symbol = getcode(tree, ’n’, inputfile);
length = symbol >> run_no_bits;
zero_run = symbol % run_bits;}

else {
*(size+((k)*NUMBER_COEFFICIENTS)+j) = 0;
zero_run--; }

}
getcode(tree, ’s’, inputfile); /* reset input */
getcode(tree, ’y’, inputfile); /* check sync byte */
}

/*--------------------------------------------------------------------------*/
unsigned int getcode( tree, mode, inputfile)

/*--------------------------------------------------------------------------*/
struct hnode *tree;
char mode;
FILE *inputfile;
{
struct hnode *tree_climber;
static int inbyte, length, bitsctr;
static unsigned int symbol, mask;

tree_climber = tree;
switch (mode) {
case ’s’ : inbyte = mask = symbol = 0;

break;
case ’y’ : inbyte = fgetc(inputfile);

if (inbyte != sync_byte)
printf("found incorrect symbol-1 sync byte %c=%d\n",
inbyte, inbyte);
symbol = 0;
break;

case ’n’ :
symbol = -2;
do{
if (mask == 0) {
inbyte = fgetc(inputfile);
mask = 128; }

if ((inbyte & mask) == 0){
if (tree_climber->zero == NULL)
symbol = tree_climber->data_zero;

else
tree_climber = tree_climber->zero; }

else {
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if (tree_climber->one == NULL)
symbol = tree_climber->data_one;

else
tree_climber = tree_climber->one; }

mask = mask >> 1;}
while (symbol == -2);

}
if (symbol == -1) halt("error reading input");
return symbol;

}

The get coefficients routine is the receive version of send coefficients and builds up each
coefficient as the data is received.

/*--------------------------------------------------------------------------*/
void get_coefficients(location, inputfile)

/*--------------------------------------------------------------------------*/
struct area *location;
FILE *inputfile;
{
int j, k;

load_coefficient(NULL, 0, ’s’, inputfile); /* reset input */

for (j=location->upper_left.y; j<location->lower_right.y; j++)
for (k=location->upper_left.x; k<location->lower_right.x; k++) {
if (*(size+((k)*NUMBER_COEFFICIENTS)+j)>0)
load_coefficient((size+((k)*NUMBER_COEFFICIENTS)+j),
(parameters_in+((k)*NUMBER_COEFFICIENTS)+j), ’n’, inputfile);

}

load_coefficient(0, 0, ’s’, inputfile); /* reset input */
load_coefficient(0, 0, ’y’, inputfile); /* check sync byte */
}

There is obviously a large amount of additional code required to produce a workable
system, the above gives an outline of the key low procedures in the basic DWT and en-
coder/decoder.
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Appendix B

Appendix B: Wavelet Transform

B.1 Fast wavelet transform

A wavelet basis is constructed from a set of functions of the form

!a;b(x) = jaj� 1
2!

�
x � b

a

�
; a; b 2 R; a 6= 0;

generated from a single function w by dilation and translation.

A wavelet basis can only be formed from a set of functions which are linearly independent.
The representation is thus unique and an inverse transformation exists. A multi resolution
analysis by Mallat (Mallat, 1989) allows the function space L2(R) to be spanned by a set of
linearly independent scaled and translated wavelets, in scale space n and translated by k

when a = 2n is substituted above:

!n;k(x) = 2�
n
2 !(2�nx� k):

This primary wavelet function can be used in conjunction with a scaling function to
describe a wavelet basis:

!(x) =
X
k2Z

bk�(2x� k); (B:1)

�(x) =
X
k2Z

ak�(2x� k): (B:2)

It can also be shown that by choosing:

bk = (�1)ka1�k ; (B:3)

leads to the required orthogonality between ! and �. We therefore have a basis (or mother
function) B.1 with a scaling function B.2.
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The Daubechies wavelets defines class of scaling functions fN�jN 2 INg such that each
N� vanishes outside a finite interval, allowing a compact wavelet whose filters required to
produce the transformed function are short and the convolutions can be performed efficiently.

By combining the orthonormality condition:

hfifji =
Z 1

�1
fi(x)fj(x) dx =

(
�ij if i 6= j

0 otherwise
;

with the dilation equation B.2, with N� order 2, and f(x) = N�(x� k) and g(x) = N�(x� l),
(where k and l produce translated wavelets) we ensure the orthogonality between translates
of the scaling function:

1
2

X
m2Z

a(2k+m)a(2l+m) = �kl;
k; l 2 Z
0 � m < N

(B:4)

Daubechies shows also orthogonality for the wavelet function with bk defined as in
equation B.3, and finally between the wavelet and scaling functions.

The scaling function N� produces a series of wavelets with N giving a measure of the
‘smoothness’ of the wavelet. Approximation theory can be used to show that a scaling function
N� produces N th order convergent wavelet expansions. Consequently an additional set of
constraints can be placed on the coefficients ak to ensureN vanishing moments. For a detailed
analysis refer to the chapter by B. Alpert in (Alpert, 1992)

X
k

(�1)kakkj = 0; j = 0; :::; N � 1: (B:5)

Using this plus the orthogonality conditions B.4 a 2N equations in 2N unknowns can be
solved to produce the coefficients ak (hence bk).
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Appendix C

Data

C.1 Test images and datasets

We have used a number of images for testing purposes, however due to restrictions on the
printing process and to enable comparisons to be made a small CT head scan image has
been used for illustration throughout this document. Unfortunately it is impossible to notice
important defects on these halftone images, with the result that some have been processed to
highlight specific features.

C.2 Code-1 distribution example

The following tables show the number of occurrences of each Code-1 symbol for each part of
the ‘head55’ image, along with the (first order) entropy.

pgm_file_to_parameters head55.pgm
finished parameter_set_up OK
truncating to : 1

calc symbol probability (scale 128)
R\B 0 1 2 3 4 5 6 7 8 9 10 11 12 13

------------------------------------------------------------------
0: 0 7441 8385 5284 2973 1126 257 13 0 0 0 0 0 0
1: 0 2438 2399 922 275 57 17 0 0 0 0 0 0 0
2: 0 946 767 196 41 13 3 0 0 0 0 0 0 0
3: 0 387 295 53 6 3 1 0 0 0 0 0 0 0
4: 0 150 120 12 1 0 0 0 0 0 0 0 0 0
5: 0 55 39 7 0 1 1 0 0 0 0 0 0 0
6: 0 21 12 2 0 0 0 0 0 0 0 0 0 0
7: 0 8 8 0 0 0 0 0 0 0 0 0 0 0
8: 0 2 4 1 0 0 0 0 0 0 0 0 0 0
9: 0 4 1 1 0 0 0 0 0 0 0 0 0 0
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10: 0 2 0 0 0 0 0 0 0 0 0 0 0 0
11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: 0 1 1 0 0 0 0 0 0 0 0 0 0 0
13: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: 3 0 0 0 0 0 0 0 0 0 0 0 0 0

calc symbol probability (scale 64)
R\B 0 1 2 3 4 5 6 7 8 9 10 11 12 13

------------------------------------------------------------------
0: 0 1578 1748 1408 1213 916 439 107 32 0 0 0 0 0
1: 0 493 454 175 83 42 20 4 1 0 0 0 0 0
2: 0 181 152 44 7 4 0 0 1 0 0 0 0 0
3: 0 67 62 11 4 0 2 0 0 0 0 0 0 0
4: 0 35 19 5 0 0 0 0 1 0 0 0 0 0
5: 0 11 6 1 0 1 0 0 0 0 0 0 0 0
6: 0 5 1 1 0 0 0 0 0 0 0 0 0 0
7: 0 1 5 0 0 0 0 0 0 0 0 0 0 0
8: 0 3 0 0 0 0 0 0 0 0 0 0 0 0
9: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: 0 1 0 0 0 0 0 0 0 0 0 0 0 0
13: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: 3 0 0 0 0 0 0 0 0 0 0 0 0 0

calc symbol probability (scale 32)
R\B 0 1 2 3 4 5 6 7 8 9 10 11 12 13

------------------------------------------------------------------
0: 0 345 395 288 291 333 281 147 53 14 0 0 0 0
1: 0 101 87 28 18 12 8 7 1 0 0 0 0 0
2: 0 38 22 8 4 1 1 0 0 0 0 0 0 0
3: 0 12 7 4 2 2 0 0 0 0 0 0 0 0
4: 0 5 5 0 0 0 0 0 0 0 0 0 0 0
5: 0 1 1 0 0 0 0 0 0 0 0 0 0 0
6: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: 0 1 0 0 0 0 0 0 0 0 0 0 0 0
8: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: 3 0 0 0 0 0 0 0 0 0 0 0 0 0

calc symbol probability (scale 16)
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R\B 0 1 2 3 4 5 6 7 8 9 10 11 12 13
------------------------------------------------------------------

0: 0 63 65 64 66 90 90 88 56 14 2 0 0 0
1: 0 17 14 8 8 4 4 1 0 2 0 0 0 0
2: 0 3 5 1 1 0 0 1 0 0 0 0 0 0
3: 0 2 3 0 0 0 0 0 0 0 0 0 0 0
4: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: 3 0 0 0 0 0 0 0 0 0 0 0 0 0

calc symbol probability (scale 8)
R\B 0 1 2 3 4 5 6 7 8 9 10 11 12 13

------------------------------------------------------------------
0: 0 8 8 8 21 27 27 36 25 9 1 0 0 0
1: 0 0 1 2 2 0 2 1 1 1 0 0 0 0
2: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: 3 0 0 0 0 0 0 0 0 0 0 0 0 0

C.3 Code-1 distribution with nonlinear CM quantizer

The following tables show the number of occurrences of each Code-1 symbol for each part of
the ‘head55’ image, when quantized according to the CM and CST schemes.

Huffman coding parameters
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calc symbol probability (scale 128)
R\S 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0: 0 737 363 5 0 0 0 0 0 0 0 0 0 0
1: 0 318 88 0 0 0 0 0 0 0 0 0 0 0
2: 0 191 22 0 0 0 0 0 0 0 0 0 0 0
3: 0 149 21 0 0 0 0 0 0 0 0 0 0 0
4: 0 123 18 0 0 0 0 0 0 0 0 0 0 0
5: 0 92 11 0 0 0 0 0 0 0 0 0 0 0
6: 0 77 12 0 0 0 0 0 0 0 0 0 0 0
7: 0 66 9 0 0 0 0 0 0 0 0 0 0 0
8: 0 52 9 0 0 0 0 0 0 0 0 0 0 0
9: 0 52 11 0 0 0 0 0 0 0 0 0 0 0
10: 0 57 11 0 0 0 0 0 0 0 0 0 0 0
11: 0 43 6 0 0 0 0 0 0 0 0 0 0 0
12: 0 40 6 0 0 0 0 0 0 0 0 0 0 0
13: 0 47 9 0 0 0 0 0 0 0 0 0 0 0
14: 0 32 9 0 0 0 0 0 0 0 0 0 0 0
15:2391 31 8 0 0 0 0 0 0 0 0 0 0 0

calc symbol probability (scale 64)
R\S 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0: 0 1012 1190 189 0 0 0 0 0 0 0 0 0 0
1: 0 326 247 11 0 0 0 0 0 0 0 0 0 0
2: 0 160 76 4 0 0 0 0 0 0 0 0 0 0
3: 0 69 36 3 0 0 0 0 0 0 0 0 0 0
4: 0 48 18 3 0 0 0 0 0 0 0 0 0 0
5: 0 36 8 2 0 0 0 0 0 0 0 0 0 0
6: 0 24 6 1 0 0 0 0 0 0 0 0 0 0
7: 0 17 5 2 0 0 0 0 0 0 0 0 0 0
8: 0 6 4 0 0 0 0 0 0 0 0 0 0 0
9: 0 9 1 0 0 0 0 0 0 0 0 0 0 0
10: 0 9 7 3 0 0 0 0 0 0 0 0 0 0
11: 0 8 3 2 0 0 0 0 0 0 0 0 0 0
12: 0 11 2 2 0 0 0 0 0 0 0 0 0 0
13: 0 6 0 2 0 0 0 0 0 0 0 0 0 0
14: 0 10 2 0 0 0 0 0 0 0 0 0 0 0
15: 335 8 2 1 0 0 0 0 0 0 0 0 0 0

calc symbol probability (scale 32)
R\S 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0: 0 300 610 407 15 0 0 0 0 0 0 0 0 0
1: 0 61 64 20 0 0 0 0 0 0 0 0 0 0
2: 0 33 11 3 0 0 0 0 0 0 0 0 0 0
3: 0 18 5 1 0 0 0 0 0 0 0 0 0 0
4: 0 18 6 1 0 0 0 0 0 0 0 0 0 0
5: 0 10 5 1 1 0 0 0 0 0 0 0 0 0
6: 0 9 8 3 1 0 0 0 0 0 0 0 0 0
7: 0 5 3 3 0 0 0 0 0 0 0 0 0 0
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8: 0 7 1 1 0 0 0 0 0 0 0 0 0 0
9: 0 5 0 0 0 0 0 0 0 0 0 0 0 0
10: 0 7 3 1 0 0 0 0 0 0 0 0 0 0
11: 0 6 2 0 0 0 0 0 0 0 0 0 0 0
12: 0 4 0 1 0 0 0 0 0 0 0 0 0 0
13: 0 5 1 0 0 0 0 0 0 0 0 0 0 0
14: 0 3 0 0 0 0 0 0 0 0 0 0 0 0
15: 12 3 0 0 0 0 0 0 0 0 0 0 0 0

calc symbol probability (scale 16)
R\S 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0: 0 101 160 242 38 0 0 0 0 0 0 0 0 0
1: 0 20 15 8 2 0 0 0 0 0 0 0 0 0
2: 0 7 4 0 0 0 0 0 0 0 0 0 0 0
3: 0 10 3 5 0 0 0 0 0 0 0 0 0 0
4: 0 2 1 0 0 0 0 0 0 0 0 0 0 0
5: 0 1 0 0 0 0 0 0 0 0 0 0 0 0
6: 0 1 0 0 0 0 0 0 0 0 0 0 0 0
7: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: 3 0 0 0 0 0 0 0 0 0 0 0 0 0

calc symbol probability (scale 8)
R\S 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0: 0 15 39 95 27 0 0 0 0 0 0 0 0 0
1: 0 1 2 3 1 0 0 0 0 0 0 0 0 0
2: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15: 3 0 0 0 0 0 0 0 0 0 0 0 0 0
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C.4 SIM coefficient values

The following table contains the coefficient values representing the LF part of ‘head55’ for an
8� 8 and 16� 16 icon.

SIM coefficients 8x8
8091 8076 8040 8080 8107 8045 8080 8083
8080 8135 8113 7834 7192 7320 7890 8081
8148 7749 6675 6914 6791 6548 7307 8085
8171 6993 5950 6277 7274 6978 7523 7986
8105 6761 6021 6233 6188 6827 7323 7916
8140 6916 6414 6466 6171 6352 7371 8006
8155 7629 6912 6713 6477 6974 7957 8082
8091 8077 8027 7821 7801 8001 8050 8083

SIM coefficients 16x16
4043 4046 4048 4034 4025 4028 4034 4020 4018 4021 3978 3979 4021 4023 4040 4043
4043 4044 4048 4033 4022 4021 4027 4022 4039 4047 3975 3952 4023 4029 4040 4043
4043 4046 4045 4037 4036 4029 4014 4049 3907 3785 4042 4015 4057 4031 4038 4041
4043 4044 4043 4026 4089 4064 3978 3843 3554 3485 3372 3583 3758 3954 4039 4042
4045 4044 4037 4091 3692 3465 3574 3491 3465 3348 3288 3274 3542 3854 4037 4044
4043 4042 4108 3597 3420 3204 3096 3577 3578 3359 3345 3402 3436 3712 4041 4047
4043 4052 3908 3423 3138 3077 2876 3260 3632 3423 3229 3192 3364 3702 3953 4030
4041 4151 3554 3421 3088 2931 2798 3153 3728 3702 3714 3630 3749 3922 3938 4030
4040 4105 3533 3307 3167 2865 3127 3360 3221 3297 3458 3480 3592 3754 3897 4003
4040 4066 3538 3288 3139 2935 3171 3077 2763 3081 3314 3401 3501 3718 3877 3997
4046 4105 3514 3385 3242 3164 3019 3207 3096 3064 3350 3394 3539 3731 3914 4021
4039 4119 3580 3540 3306 3174 3302 3375 3042 2950 3402 3062 3464 3802 3987 4035
4044 4040 4066 3137 3455 3361 3229 3204 3166 3393 3058 3015 3730 3962 4037 4042
4043 4044 4050 3971 3512 3380 3512 3384 3483 3120 3271 3885 4019 4027 4042 4041
4042 4047 4045 4028 4035 3965 3737 3705 3555 3763 3973 3979 4029 4021 4040 4041
4042 4044 4044 4033 4033 4029 4032 4022 4014 3996 4011 4008 4028 4024 4040 4044
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Appendix D

Glossary of terms

The following terms have been used within this thesis. Many are industry standard, although
a few have been adopted in the absence of an obvious well known alternative for very
commonly used terms. Where necessary an explanation in the form of a footnote after the
first occurance in the text is given in the section indicated.

ACR – American College of Radiology.

APE – Average Pixel Error. Mean average of intensity quantization level differences between
two images.

Bpp – Bits per Pixel.

BISDN – Broadband Integrated Services Digital Network. High bandwidth fibre based ISDN.
See (Stallings, 1992) for a good text on the subject.

CM – Contrast Masking. A property of the HVS whereby the visibility of artifacts is reduced
in the vicinity of sharp changes in contrast (edges).

CRT – Cathode Ray Tube. Typical soft copy display device.

CST – Contrast Sensitivity Threshold. A property of the HVS whereby HF (edge) compo-
nents of low contrast have reduced visibility.

DCT – Discrete Cosine Transform.

DICOM – Digital Imaging COmmunications in Medicine. US standard for medical image
format, and hardware interfaces.

DPCM – Differential Pulse Code Modulation.

DFT – Discrete Fourier Transform.

DSA – Digital Subtraction Angiography. Medical imaging technique.
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DSP – Digital Signal Processor.

DWT – Discrete Wavelet Transform.

EOB – End Of Block.

FDDI – Fibre Distributed Data Interface. High speed digital network based on fibre optic
cable networks.

FOV – Field Of View.

GP – General Practitioner. also Doctor.

HIS – Hospital Information System. Computer based system which performs tasks such as
administration and billing.

HF – High Frequency. In the context of images, a rapid spatial intensity change.

HVS – Human Visual System.

IDWT – Inverse Discrete Wavelet Transform.

IEEE – Institute of Electrical and Electronic Engineers.

IFS – Iterated Function System. Also called fractal, the characteristic of self similarity of a
number of scales.

ISDN – Integrated Services Digital Network. Can be either narrowband or broadband, but
should be read as narrowband in this thesis. See (Stallings, 1992) for a good text on the
subject.

ISO – International Standards Organisation.

IT – Information Technology.

JPEG – Joint Photographics Expert Group.

LAN – Local Area network.

LF – Low Frequency. c.f. HF. In the context of images, a gradual spatial intensity change.

LQ – Linear Quantizer. Quantizer with equal spacing of thresholds.

LZW - Lempel, Ziv, Walsh. Encoder by Lempel and Zif with enhancements by Walsh.

LSB – Least Significant Bit of a binary number.

MAE – Mean Absolute Error. Distortion measure. See 7.1 for definition.

MAN – Metropolitan Area Network. c.f. LAN, with much larger geographical coverage.
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MIDB – Medical Image DataBase.

MPE – Maximum Pixel Error. For images, the largest difference in intensity of any pixel.

MRI – Magnetic Resonance Imaging.

MSB – Most Significant Bit of a binary number.

MSE – Mean Square Error. Distortion measure. See 7.1 for definition.

NEMA – National Electrical Manufacturers Association.

N-ISDN – Narrowband ISDN. 2B+D channel digital communication channels. B channels
are 64K bit/s and D channel is 16K bit/s used for signalling.

NLQ – Non linear Quantizer. c.f. LQ. Quantizer with variable spacing of thresholds.

NMSE – Normalised Mean Square Error. Distortion measure. See 7.1 for definition.

PACS – Picture Archiving and Communication System.

PICON – Picture ICON. Similar to SIM.

QMF – Qradrature Mirror Filter. A pair of filters whose combined output represents the
complete original signal.

RAID – Redundant Array of Internal Disks. Provides robust, reliable (large) storage.

RC – Repeat Code. Special code used when a runlength encoder finds a runlength too great
to be encoded. A RC is sent followed by the runlength code for the remainder of the
runlength. Several RCs can be sent if necessary.

RIS – Radiological Information System. A computer system dedicated to handling infor-
mation about radiological studies.

RISC – Reduced Instruction Set Computer.

ROC – Receiver Operating Characteristic. Method of determining the effects of systems or
procedures when dealing with tasks involving subjective analysis, by statistical means.

ROI – Region Of Interest. For images in this work. Some area of an image containing specific
characteristics or anatomical detail of particular interest.

SIM – Spatial Information Model. A small (low resolution) version of a real image.

SNR – Signal to Noise Ratio, dB. Distortion measure. See 7.1 for definition.

TCP/IP – Transmission Control Protocol/ Internet Protocol.

UI – User Interface.
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VLI – Variable Length Integer. An integer whose (positive) binary representation does not
contain any preceding zero bits.

VQ – Vector Quantization. Input symbols are mapped into a reduced set of symbols by
approximation to produce a compressed representation.

WAN – Wide Area Network. Larger geographical area than MAN, possibly worldwide com-
prising many sub networks.

WIMPS – Windows, Icons, Menus, Pointer, System.

WORM – Write Once Read Many. Usually with respect to optical disk storage devices.

WT – Wavelet Transform.

ZRL – Zero Run Length. Representing a sequence of zeros in a data set by a count of the
number of zeros in the sequence rather than the symbols themselves.
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