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Abstract.
Failure Modes and Effects Analysis (FMEA) is a widely used

reliability engineering method that provides direct product
based evidence of quality, however its application to software
is infeasible without automated analysis tools. This paper de-
scribes the application of a functional modelling method that
when combined with a component - connection model of soft-
ware, and qualitative fault propagation, enables automated
Software FMEA (SFMEA). The result is a broad analysis of
fault behaviour using abstract models directly produced from
the implementation. A small example code fragment demon-
strates the nature of the analysis provided by this novel tech-
nique and illustrates how the results could be used.

1 Introduction

The increase in the use of software within the electromechan-
ical engineering community where failure analysis is widely
used has produced interest in extending FMEA into the soft-
ware itself [3, 14, 6, 8] however there has been little progress in
developing an FMEA style analysis for general use in software
engineering.

This paper proposes that SFMEA will assist software engin-
eers to improve the uniformity of software quality by provid-
ing an analysis that is based on a detailed analysis of the im-
plementation behaviour while providing a broad and abstract
consideration of hypothetical fault effects. With suitable tools a
SFMEA will provide the ability to find potential problems that
may not be detected by either testing or high level design ana-
lysis. The paper is structures as follows. Firstly, the the main
characteristics distinguishing the proposed SFMEA from other
software analysis methods are discussed in section 2. We then
describe a functional interpretation model in section 3 recently
developed for hardware analysis and outline our use of it for
software. A running example is developed throughout the pa-
per to illustrate the concepts and concludes in a complete auto-
mated FMEA illustration. Section 4 will describe a qualitat-
ive fault propagation based analysis method for software be-
haviour. The FMEA analysis algorithm is then described in
section 5 leading to the production and discussion of failure
modes in section 6.
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2 A novel software analysis

The achievement of software quality levels is almost exclus-
ively based around standards that define development pro-
cesses and practices. While development processes are vitally
important (in any engineering endeavour) they do not guar-
antee the quality of a product. As observed [12] we should
look for evidence of software safety and quality. To perform
such a task requires identification of the functional require-
ments followed by an analysis of the possible failure modes
of the product, mapped to the effects on the safety/quality re-
quirements. Testing is often the only evidence based analysis
performed and although testing can initially give indications
of quality, once the results are used to improve the software,
the tests are no longer a reliable indication of overall quality. It
is likely that the system outside of the scope of the actual tests
performed is near the quality achieved at the very first exe-
cution of the code. Put another way, testing only finds faults,
it does not help prevent or assess them. The reason for this
is clear. Tests can only ever verify a tiny sample of the expec-
ted behavioural envelope of the software and they are often
focused on verification of nominal function.

The idea of FMEA for software may appear to be a con-
tradiction. Software codes do not wear out or suffer hidden
manufacturing (replication) faults and since in essence soft-
ware is pure logic, it is easy to be seduced into believing it
can and will be perfect. In contrast, all physical system engin-
eers accept that both their product and the environment it op-
erates in will be subject to failure and experience shows that
(although it is less readily accepted) this also the case for soft-
ware. Formal methods are often proposed as the solution to
the problem however they can be difficult to use, specification
capture remains a problem, and pragmatically these methods
are too expensive for the majority of software. All substantial
software will enter unanticipated regions of behaviour during
its life and all software will have to deal with external failures
(either from hardware or other software) and of course no mat-
ter how much range and consistency checking is done it will
always be possible for an incorrect but valid input to exist and
it is useful to know, when this happens, how badly it may af-
fect the system.

An FMEA aims to locate the worst case effects of a com-
prehensive set of hypothetical faults or system failure modes.
FMEA does not verify functionality - that is a primary role of
testing - a nominally functioning system is assumed and the



analysis is only concerned with the effects of potential internal
or external faults. This requires a more abstract analysis than
testing. In particular code execution is not feasible and as far as
possible specific values are not considered unless they have a
very special behavioural significance. Traditional FMEA tasks
have benefited from qualitative techniques [15, 10] that allow
prediction of worst case effects for whole regions of system be-
haviour, since even non software systems may have too many
parameters and attributes to test all numerical value permuta-
tions.

All software processes input values to produce output val-
ues and therefore the most concrete form of any fault is its ef-
fect on the production of output. Faults may take a number of
forms with basic faults concerning missing, unexpected, mis-
timed or incorrect values. Some applications will benefit from
higher level abstraction and interpretation of these outputs.
For example resource problems such as lack of processor per-
formance or memory may affect output timing and require an
in depth understanding of the behaviour of the computational
infrastructure, such as the operating system, and we will not
further consider specialised faults in this paper although they
clearly form part of a comprehensive system wide FMEA and
may be addressed with the use of suitable models of the relev-
ant computational infrastructure.

Part of the reason why faults are less predictable in software
is due to the complex structuring that is possible, whereas
physical constraints tend to limit structural complexity in
other engineering disciplines. For example physical compon-
ents require spatial partitioning and material strength consid-
erations together with many other aspects that lead to vis-
ible layers of structuring and separation of function. Mod-
ern software languages enforce high levels of structuring and
this helps to inherently constrain faults. Decades ago high
level languages introduced typed data and procedures to help
structure data and code and these have been refined ever since.
Recently OO methods help structure and partition data with
code. These methods make it possible to successfully construct
larger systems and for the same reasons make an FMEA ana-
lysis useful in that potential fault impacts are constrained2.
For example, in figure 1, a language has been used that sep-
arates memory into data and instructions and prevents data
from being executed. Moreover, structuring of the instructions
ensures that faults in some groups of instructions can only
affect some output (functionality). Also the language allows
the heap to be partitioned, preventing faults in some loca-
tions from propagating to others. Languages that support fa-
cilities such as arbitrary pointer arithmetic clearly allow faults
to propagate very widely. In the extreme, assembly language
code allows any part of the memory to be executed. This al-
lows virtually any fault to have unlimited effects and thus an
FMEA of the code could not make any effect predictions.

In summary SFMEA provides the following characteristics:

• an evidence based analysis that deals with a wide range
of possible behaviours at a lower level of precision, unlike
testing which provides precise behaviour with limited be-
haviour coverage.

• it assumes a wide range of hypothetical faults could occur

2 Malicious programs often exploit weaknesses in languages and com-
pilers to circumvent this structure and SFMEA does not intend to
address such issues.
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Figure 1. Failure domain localisation in software

and aims to determine the possible effects and assign signi-
ficance to them. Any statement, module or subsystem is as-
sumed to have the potential to fail or produce incorrect out-
put and the task is to prioritise the results to identify design
or implementation issues that might lead to faults having
disproportionate or unexpected consequences. Engineering
effort can then be expended to address the most significant
faults.

• aim to attain better uniformity of quality and identify areas
of design or implementation that allow significant failures
to occur.

• analysis can be carried out at any stage of the design - the
earlier the better - however for this paper we will analyse
the source code to correlate the potential effects of faults in
the system as implemented with the effects that are to be
expected from the high level design and functional specific-
ation.

3 Function Identification

Functional3 interpretation is a vital part of organising and ab-
stracting the results of structural and behavioural analysis into
the form an FMEA able to identify significant potential issues.
We use a definition of function described by [2] with some ad-
ditions (shown emphasised).

An object or system O has a function f if it achieves an
intended goal(purpose) by virtue of some external behavi-
oural trigger T resulting in the achievement of an external
behavioural effect E.

The predicate Tr(f) indicates that function f is triggered
and Ef(f) provides the truth of the effect. The four possible
function states: achieved; inoperative; failed and unexpected; are
provided by the predicates Ac(f), In(f), Fa(f), Un(f) respect-
ively:

In(f) ⇔ ¬Tr(f) ∧ ¬Ef(f)

Fa(f) ⇔ Tr(f) ∧ ¬Ef(f)

Un(f) ⇔ ¬Tr(f) ∧ Ef(f)

Ac(f) ⇔ Tr(f) ∧ Ef(f)

3 Here we use function in its teleological sense as distinct from its use
as a type of subroutine. In this paper the term method is used to
indicate such structural aggregations.



Functions may be decomposed into subsidiary functions[2]
to build a functional hierarchy. These decomposed functions
may be incompletely specified and fall into 3 categories that
specify a relationship between any pair of trigger, effect and
purpose. Some software may require use of a functional
model that includes a range of subsidiary function types. For
the purposes of a simple example we will consider the trigger
to be program execution and therefore all functions share the
same trigger and the only required subsidiary functions relate
effects to purpose using a purposive incomplete function
(PIF). The running example will involve a simple expenses
payment program with the following functions:

FUNCTION pay expenses
ACHIEVES pay money owed
BY

run program
TRIGGERS

PIF display expenses total
AND
PIF print cheque

FUNCTION make envelope
ACHIEVES allow delivery of expenses cheque
BY run program TRIGGERS address envelope

PIF display expenses total
ACHIEVES verify amount
BY

show expense items on screen
AND
show total on screen

PIF print cheque
ACHIEVES make payment
BY print in figures AND print in text AND print details

Notice here that in general the conjunction of two subsidi-
ary functions does not mean both sub functions are required
in any specific execution. If they are complete sub functions
with triggers and effects it is the triggers that determine which
are produced for a specific execution. If a fault causes one sub
function to fail the parent function fails but this does not mean
the system fails for any specific execution, but it will fail due
to the faulty sub function sometime.

3.1 Function failure risk

Generally for FMEA, a Risk Priority Number (RPN) is cal-
culated for each potential fault as the product of maximum
severity, detectability and occurrence values [13, 9]. The ab-
solute values of the numbers have little significance however
they provide a summary, allowing ranking and prioritisation
of perceived risk. For hardware systems an occurrence value is
used to indicate component reliability by providing likelihood
values for each fault. For external faults related to hardware
this approach should be possible, however for faulty software
elements occurrence is much more difficult to determine. It
has been suggested [11] that we might use software metrics
such as code complexity to provide occurrence values since
complexity has been shown to be linearly correlated to defect

rate. We use only severity and detection values until further
investigation has been carried out. For the purpose of FMEA
we require the severity and detectability of each potential
function failure and this information is provided within
the function description using the FAILURE CONSEQUENCE,
SEVERITY and DETECTABILITY. For the expenses example we
may enhance the function model as follows:

FUNCTION pay expenses ACHIEVES pay money owed
FAILURE CONSEQUENCE incorrect expenses payment
SEVERITY 9 DETECTABILITY 5

FUNCTION display expenses total ACHIEVES verify expense. . .
FAILURE CONSEQUENCE check expense total manually
SEVERITY 5 DETECTABILITY 6

FUNCTION print cheque ACHIEVES transfer money
FAILURE CONSEQUENCE Cheques to be written by hand
SEVERITY 8 DETECTABILITY 9

FUNCTION make envelope ACHIEVES allow delivery of cheque
FAILURE CONSEQUENCE Cheques to be delivered by hand
SEVERITY 6 DETECTABILITY 3

4 Fault propagation model

The behaviour of the system and fault effects are generated
with a fault propagation model outlined in this section. We
first convert the program into Single Assignment Form [7] to
clarify fault propagation through memory by allowing each sym-
bolic location to be written once only by adding a subscript to
each variable. An oracle (φ) ‘function’ is used to select from
several variables and produce a result variable subscripted Φ,
where non linear code requires execution information.

The analysis uses qualitative fault propagation. This notion
is supported by providing each variable with a fault domain,
F = {D, P, I}, where D is a definite fault, P is a possible fault,
and I is not faulty. Even if only ”definite” (certain) faults are in-
serted in a program the propagation may result in ”possible”
faults because value information is not used. Typically this in-
dicates that for some executions the value is faulty and for
other executions it is not. In this section we model how faults
may be combined by propagation through statements to provide
results for the fault function F(v) : M 7→ F.

A fault propagation graph for program p is defined FP =
〈M, A〉 treating memory M as vertices and statement frag-
ments A as directed arcs. If x, y ∈ M an arc (x, y) ∈ A exists
if a statement creates a potential fault propagation from x to y.
Each statement s responsible for a sub graph:

∃Ms ⊆M,∃As ⊆ A : FPs = 〈Ms, As〉
This sub graph represents the structure of the fault propaga-
tion model for the statement.

Considering statement 3 from figure 2 as an example we get
for FP3, M3 = {a1, a2, b1} and A3 = {(a1, a2)(b1, a2)} rep-
resenting the fact that the new value of a depends on the previ-
ous value of a and also b. The behaviour of the fault propaga-
tion for qualitative faults requires knowledge of the semantics
of the statement.

For a statement FPs = 〈Ms, As〉we define a fault propaga-
tion mapping between the variables Ms based on the state-



1,2 a=0; b=2; a1=1; b1=1;
3 a=a+b; a2=a1+b1;
4 for i = 0 to x { iterate {n = {1..x⊥},

b2.0 ≡ b1, c1.0 ≡ c⊥
5 if (j<constant) { if1=( j1<aconstant)

condition{if1

6 c=b; c1.n=b2.(n−1);
7 c=c*2; c2.n=c1.n*2;

} } cΦ1.n=φ( c1.(n−1), c2.n)
8 c=c+1; c3.n=cΦ1.n+1;
9 b=a; b3.n=a2;

} } bΦ1=φ( b1, b3.N )
cΦ2=φ( c1, c3.N )

Figure 2. Code Fragment and SAF

ment type and operators. For the basic math operators re-
quiring 2 operands F(m),F(n), producing a result F(r) then
FP = 〈{m, n, r}, {(m, r), (n, r)}〉 and the fault mapping model
provides F × F 7→ F. This is illustrated for a selection of ba-
sic operators in table 3. More complex expressions have fault
propagation tables generated by combining primitive operat-
ors according to the structure of the statement provided by the
AST.

+,−, ∗, &, | m
n

m < n
F(m) F(n) F(x)

I I I I I

I P P P P

I D D P P

P I P P P

P P P P P

P D P P P

D I D D P

D P P P P

D D P P P

Figure 3. Fault model

4.1 Condition statement propagation

For each variable x assigned within the sub blocks of a condi-
tion we have the graph fragment:

FPcond = 〈{xT , xF , xΦ}, {(xT , xΦ)(xF , xΦ)}〉

In addition faults in the condition value:

FPcond = 〈{cond, xΦ}, {(cond, xΦ)}〉

Figure 4 shows the fault value propagation model. The right
hand column includes constraints in parenthesis that can be
used to strengthen propagations in specific circumstances. The
top part of figure 5 shows the graph for the conditional state-
ment in example 2.

cond xT xF xΦ1

I I I I

I I P/D P/D (I if1)
I P/D I P/D (I if1)
I P/D P/D P/D

I P/D D/P P(D if1)/ P(D if1)
P/D P

Figure 4. Fault model for condition

a2

b1=2

a1=...

c3>1

b3>n

c  2

b  1

c3>n

c0

null

null

1

1/s

s

b3>n=a2

2

iteration statement -3

c1

c2b2 c1=b2 c2=c1*2
c1

if1

c 1<
<aconstant

condition

T

F

statement 5-7

c1>0

statement 5-7

c   1

c   1

b2>0

condition statement - 4

c3>1=c  1>1+1

c 3>n
=c  1>n

+1

a2=a1+b1

c1>n

statement 5-7

c   1

b2>n

a
2 =a

1 +b
1

Figure 5. Propagation model for example code fragment

4.2 Iteration statement propagation

Loops may produce a set of variables for a single assignment
statement. The loop statement produces a variable (xΦm) for
each accessible variable written in the statement block. The
loop has three significant propagation links covering the non
execution, single, and multiple executions for each variable.
Multiple executions require the model to include propagation
of values from the current or previous iteration only4 (if xb is
any variable) as follows:

Aloop =




(xa, xΦ) if null loop
(xa.1, xΦ) if single iteration
(xa.(n−1), xb.n) if multiple iterations
(xa.n, xΦ)

The lower section of figure 5 shows the fault propagation
model for the code in figure 2. By graph traversal we find:

Aloop = (a1, bΦ1)(b1, bΦ1)(a1, cΦ2)(b1, cΦ2)(c⊥, cΦ2)

4 This remains true if the loop contains conditions, since the condi-
tional statement always produces a new SAF output for each itera-
tion.



4.3 Modular structures

Method and procedure definitions represent a propagation
sub graph that is conceptually inserted for each calling state-
ment occurrence.

We propagate faults down through the abstract call tree
(ACT) using breadth first propagation, propagating as far as
possible at each level before inserting faults into subroutines.
Clearly some sections of the fault graph will be traversed more
than once both due to multiple calls instances and also when
additional faults appear at block inputs to a previously tra-
versed block. Using the qualitative faults, fault introduction
is monotonic in the sense that the fault propagation can only

map faults as follows: I
s∈S−→ {I|P|D}, D

s∈S−→ {P|D}, P
s∈S−→ P.

The order of propagation therefore does not affect the result
but may improve efficiency.

The qualitative nature of the analysis and fault mode be-
haviour makes it possible that the same permutation of faults
occur often making reuse of propagation results at the method
level a possible an area of future work.

4.4 Linking functions to behaviour

The functional model must be linked to the behaviour of the
program via the triggers and effects. For example triggers may
be an interrupt or the execution of the code representing an
event in high level programs. For our simple expenses pro-
gram the trigger for all of the program functions is simply the
action of running the program, which we consider as execu-
tion of the first line of code. The effects will be system outputs
and at the lowest level could be memory locations or ports that
influence external devices. At higher levels a system call and
its parameters may be considered as the output. All of these
forms of output can be treated as the execution of code that
assigns to a suitable set of variables in the ACT. In the simple
expenses example, effects are linked to the variables that rep-
resent the payment amount and employee number values that
are passed to output devices such as the display or printer. No-
tice that the engineer must decide on the system boundary. For
example, library code is often not of concern since it is either
trusted, has already had a separate FMEA performed, or the
code is not available. A concrete case is provided by a state-
ment (in Java) such as System.out.println(x) whereby
an output is attached to the variable xn accessed as the actual
parameter in the external println method.

Single variables are sometimes not enough to capture the
effects of a function and we therefore allow multiple variable
expressions to determine the truth of Ef(f). Logical operators
are used to combine variables where more than one output
provides the effect required of a function. Figure 6 shows how
the fault propagation results are combined.

Notice a disjunction of effects does not mean that in some
circumstances one effect is expected and in others the other is
expected. In that situation we actually have two functions with
different triggers and the trigger is the differentiating circum-
stance. If a fault occurs with only one element of a disjunction
the function will always still be achieved. Most software ex-
amples where we appear to have one effect OR another effect
are in fact two conjoined sub functions with different triggers.

The code extract in figure 7 could implement the expenses
payment problem. To avoid (in this compressed example) hav-

e1 e2 e = e1 ∧ e2 Ef(f) e = e1 ∨ e2 Ef(f)
I I I T I T
I P P F(poss) I T
I D I F(def) I T
D P P F(def) P F(poss)
P P P F(poss) P F(poss)
D D D F(def) D F(def)

Figure 6. Effect operators

ing to consider external library functions for I/O we treat as-
signment to some specific variables as the output of the pro-
gram. In this example the show expenses items on screen and
show total on screen effects both require interpretation of OUT-
PUT2, however these are in fact unique instantiations of a spe-
cific subroutine within a block. A dot notation is used to separ-
ate levels in the ACT (an IDE GUI can present the appropriate
call tree fragments). Thus the effects for the example are:

Expenses.findExpenseTotal#1.display.OUTPUT2
AND
Expenses.findExpenseTotal#2.display.OUTPUT2

IMPLEMENTS display result.show expense items on screen
Expenses.findExpenseTotal#3.display.OUTPUT2

IMPLEMENTS display result.show total on screen
Expenses.printCheque.PRINTER T

IMPLEMENTS print cheque.print in figures
Expenses.printCheque.PRINTER S

IMPLEMENTS print cheque.print in text
Expenses.printCheque.PRINTER P

IMPLEMENTS print cheque.print details
Expenses.produce envelope.OUTPUT ENVELOPE

IMPLEMENTS address envelope

4.5 Failure Reporting

The function model reports failure effects:

R(f) if Fa(f) ∨ Un(f)

In adddition we find that faults causing changes in execution
path can cause spontaneous operation when the trigger and
effects are in condition code.

R(f) if AcSp(f) ∨ InSp(f)

The consequences of failure are usually reported in an FMEA:

R(cf ) if Fa(f)

For Un(f) the function cannot be said to been achieved since
what has actually happened is merely an unexpected beha-
viour that can also be specified using UNEXPECTED CON-
SEQUENCES clauses in the IMPLEMENTS section. Significant
effects are reported

R(e) if (Tr(f) ∧ ¬e) ∨ (¬Tr(f) ∧ e)

For hierarchical function descriptions the state of parent func-
tion f is determined from subsidiary functions a, b where ⊗
indicates any boolean operator:

Tr(f) if Tr(a)⊗ Tr(b)



class Expenses {
double RATEA, RATEB;
double expense_cost=0;
double milage_cost=0;
int employee_no;

public void Expenses(float hotel, float
sundries, int milage,
String address, int emp) {

RATEA = 0.38;
RATEB = 0.31;
employee_no=emp;
milage_cost = calculateMileage(milage);
expense_cost = findExpenseTotal(hotel,

sundries);
printCheque(employee_no);
produceEnvelope(address);

}

public double calculateMileage(int miles){
double ar=0;
double br=0;
if (miles>400){

br=(miles-400)*RATEB;
miles=miles-400; }

ar=miles*RATEA;
return (ar+br);

}

private double findExpenseTotal(double hotel,
double sundries){

double result = hotel+sundries;
display("Hotel: ", hotel);
display("Sundries: ", sundries);
display("EXPENSES: ", result);
return result;

}

private void printCheque(int emp_no){
String comment="OUTPUT: ";
double total_cost=expense_cost+milage_cost;
String PRINTER_P = "Cheque"+emp_no;
employee_no=emp_no;
double PRINTER_T = total_cost;
double PRINTER_S = formatText(total_cost);

}

public void produceEnvelope(String address){
String OUTPUT_ENVELOPE=address+employee_no;

}

public void display(String prompt,
double answer){
String OUTPUT1 = prompt;
double OUTPUT2 = answer;

}

String formatText(double number){
...

}
}

Figure 7. Code for example

Ef(f) if Ef(a)⊗ Ef(b)

it is necessary to account for partial functionality. For subsi-
diary function conjunctions or disjunctions the most specific
risk consequences are included using the following rules allow-
ing partial functionality to mitigate failure, although of course,
the failure of the top level function is reported.

R(cf ) if and only if Fa(a) ∧ Fa(b)

R(ca) if Fa(a) ∧ ¬Fa(b)

5 Generating effects

Considering faults in every variable clearly produces a large
number of results even for a small fragment of code. The con-
sistency and abstraction of the results available using the func-
tional model. The result can initially be divided into external
and internal faults. The top section of Figure 8 shows the ef-
fects of external faults. A glance at this result verifies many
of our expectations. An error in the hotel or sundries inputs
causes a failure in pay expenses which is severe but because
the error will show up in the display expenses function fail-
ure, is detectable. A fault in the mileage input gets the highest
risk because only the print cheque function fails and this is
not as detectable. A fault in the address input, as we might
expect, can only causes a failure in the envelope production
resulting in a lower risk (the cheques are crossed). The vari-
able emp represents employee number and causes a failure in
both the printed cheques and envelopes. It gets a high value
because this fault is not detectable in the verification display.
This result might ask an engineer to question if the employee
number should be included in the display function to increase
the detectability of the fault.

The lower section of figure 8 contains variables that have
values that are not propagated from other points in the pro-
gram. We might consider these as a kind of ‘hard coded ex-
ternal input’. Both ar and br both assigned zero, however there
is no effect for ar but br can cause the print cheque function
to fail. Considering the code we find the initialiser br=0 con-
tains a value that can have an impact of the expenses payment
function.

6 Failure modes

The results can be automatically grouped by the permutations
of function failure. We propose these as the failure modes of the
software since they are related to the way that the fault propag-
ates through the system resulting in characteristic groups of
functions being affected. Figure 9 illustrates the failure modes
that occur for the example and associates the root cause mod-
ules. The following paragraphs illustrate the steps an engineer
might take to analyse these results.

The first row contains the faults that cause no failure. In this
example these are unused initialisers and unused results of
method calls but in general may represent redundant code or
code that does not contribute to an identified function of the
system.

The first real failure mode consists of a potential failure of
both display expenses total and print cheque and can only be
caused by failures in the Expenses() or FindExpenseTotal() meth-
ods. This seems reasonable and it makes sense that only vari-
ables associated with the two expense items are involved.



Block  Faulty Statement  Variable affected  Failure Mode
Sev/
Det  Potential Effects 

 Expenses(...){...}[#S4] Expenses(...){...}[#S4]
hotel[#V6]
sundries[#V7]

Pay Expenses failed; 
(because Display 
expenses total failed;Print 
cheque failed;) 9 5

 incorrect expenses payment, Need 
to check expense items total 
manually  Cheques must be witten 
by hand  

 Expenses(...){...}[#S4] Expenses(...){...}[#S4] milage[#V8]

Pay Expenses failed; 
(because Print cheque 
failed;) 9 8 Cheques must be witten by hand  

 Expenses(...){...}[#S4] Expenses(...){...}[#S4] address[#V9] Envelope failed; 6 3
 envelope must be addressed by 
hand

 Expenses(...){...}[#S4] Expenses(...){...}[#S4] emp[#V10]

Pay Expenses failed; 
(because Print cheque 
failed;) Envelope failed; 9 8

Cheques must be witten by hand   
envelope must be addressed by 
hand

 Expenses(...){...}[#S4] =[#S5]
RATEA[#V12]
RATEB[#V14]

Pay Expenses failed; 
(because Print cheque 
failed;) 9 8 Cheques must be witten by hand  

calculateMileage(...){...}[
#S19] =0[#S20] ar[#V32] All functions achieved 9 8

calculateMileage(...){...}[
#S19] =0[#S21] br[#V33]

Pay Expenses failed; 
(because Print cheque 
failed;) 9 8 Cheques must be witten by hand  

 
calculateMileage(...){...}[
#S19] (miles>400)[#S22] _ifcondition[#V34]

Pay Expenses failed; 
(because Print cheque 
failed;) 9 8 Cheques must be witten by hand  

 
calculateMileage(...){...}[
#S19] 

=((miles-
400)*RATEB)[#S24] br[#V36]

Pay Expenses failed; 
(because Print cheque 
failed;) 9 8 Cheques must be witten by hand  

 
calculateMileage(...){...}[
#S19] =(miles-400)[#S26] miles[#V37]

Pay Expenses failed; 
(because Print cheque 
failed;) 9 8 Cheques must be witten by hand  

Figure 8. Summary FMEA for external inputs

S U M M A R Y
Blocks Faults Failure Mode
[#S1'class Expenses{}' , 
#S4'Expenses(...){...}' , 
#S19'calculateMileage(...){...}' , 
#S30'findExpenseTotal(...){...}' , 
#S39'printCheque(...){...}' , 
#S53'display(...){...}' ]

[#V1'RATEA' , #V2'RATEB' , #V3'expense_cost' 
, #V4'milage_cost' , #V5'employee_no' , #V32'ar', 
#V59'comment' , #V74'prompt' , #V77'OUTPUT1' 
] []

[#S4'Expenses(...){...}' , 
#S30'findExpenseTotal(...){...}' ]

[#V6'hotel' , #V7'sundries' , #V43'hotel' , 
#V44'sundries' ]

[Display expenses total, 
Print cheque]

[#S4'Expenses(...){...}' , 
#S19'calculateMileage(...){...}' , 
#S30'findExpenseTotal(...){...}' , 
#S39'printCheque(...){...}' , 
#S56'formatText(...){...}' ]

[#V8'milage' , #V12'RATEA' , #V14'RATEB' , 
#V20'milage_cost' , #V24'expense_cost' , 
#V30'miles' , #V33'br' ,  #V35'RATEB' , #V36'br' , 
#V37'miles' , #V38'br' , #V39'miles' , 
#V40'RATEA' , #V41'ar' , #V60'total_cost' , 
#V61'expense_cost' , #V62'milage_cost' , 
#V63'PRINTER_P' , #V66'PRINTER_T' , 
#V67'PRINTER_S' , #V79'number'] [Print cheque]

[#S4'Expenses(...){...}' , 
#S39'printCheque(...){...}' , 
#S50'produceEnvelope(...){...}' ]

[#V9'address' , #V64'employee_no' , 
#V70'address' , #V72'OUTPUT_ENVELOPE' , 
#V73'employee_no' ] [Envelope]

[#S4'Expenses(...){...}' , 
#S39'printCheque(...){...}' ]

[#V10'emp' , #V16'employee_no' , #V57'emp_no' 
] [Print cheque, Envelope]

[#S53'display(...){...}' ] [#V75'answer' , #V78'OUTPUT2' ] [Display expenses total]

Figure 9. Example result - failure modes



The print cheque failure mode has most faults and also can
be caused by the greatest amount of the code (not surprising
since this the only major purpose of the code). If the produceEn-
velope() or display() methods had appeared we would be con-
cerned.

Failure of the envelope function is caused by faults in the
produceEnvelope() method as is to be expected and if the Ex-
penses() method was a cause for concern then given a suitable
GUI/IDE we find that only the address variable within this
high level method causes the failure mode which makes sense.
The PrintCheque() method appears anomalous however. Why
would a fault in the module associated with printing cheques
cause a failure in Envelope production? Again the system can
report that this could occur if there was a fault in the line
employee no = emp no. Indeed should the employee no instance
variable be set in this method? Why is the parameter emp no
being used when there is a class variable containing this in-
formation? These questions indicate that something is prob-
ably wrong with the implementation/design of this method
or class.

The print cheque and envelope failure mode might seem
unlikely at first glance until we see that potential faults are
related to employee number which appears on both the envel-
ope and cheque but is not used in the display expenses func-
tion. By adding the employee number to the display expenses
function we would cause the failure mode to be replaced with
one that contains print cheque and envelope and display ex-
penses thereby reducing the RPN for these faults.

When considering the set of failure modes produced it
seems useful to consider:

• Are any of the failure modes unexpected ? Put another
way are we happy that a fault could cause each set
of failed/spontaneous functions. Are unexpected failure
modes due to implicit assumptions?

• Do the structural components of the software that cause
each failure mode seem reasonable? Given a knowledge of
the design, are there any packages/modules/functions etc
where it is unclear that they should be able to cause a fail-
ure mode ? An engineer could accept an effect at any level
of structural blocking allowing many other faults at lower
levels to be removed from consideration.

For both of these questions it possible to provide more inform-
ation about how the faults propagate through the software
at various levels of detail by providing call graphs, program
slices and the conditions that must exist to produce the failure
mode.

7 Conclusion

This paper demonstrates the concept of an FMEA analysis
where software plays the major role in the system being
analysed. Since many faults occur not with the high level
design for which many tools already exist, but at the inter-
face between design and implementation choices, we use an
analysis that considers the behaviour of the actual implement-
ation.

A functional model allows interpretation of faults analysed
by static analysis allowing system specific failure modes to be
produced. We have demonstrated the kind of results that an

automated FMEA may be able to produce and how an engin-
eer may process them, however for life-sized systems failure
mode prioritisation and presentation requires further research.

The functional model constitutes the main additional cost
apart from consideration of the results. The functional model
is however simple and may be of benefit as a design doc-
ument in its own right since it clarifies the purpose of the
system, the decomposition of this purpose, and how it is to
be achieved by the system. Although they have not been de-
scribed in this paper, the functional model supports function
sequences and timing constraints[1], and thus should be able
to describe sophisticated software behaviour. The meta func-
tion descriptions available in the function model can be in-
cluded in the future to allow the analysis to include fault mit-
igating, warning, recharging functions that interpret, for ex-
ample, exception handlers and resource control. There are a
number of issues that need to be resolved with respect to con-
ditional triggers, subsystem inclusion, and fault reporting in
deep function hierarchies. For real systems, library code and
operating systems are used, where there is no access to poten-
tial failure modes and fault propagation. A tool would there-
fore require the ability to provide descriptions of external fault
propagation models.

The proof of concept prototype has demonstrated the feas-
ibility of a SFMEA analysis although it requires more develop-
ment to the behavioural model including shape analysis tech-
niques [16], and software diagnosis models [5, 4] to allow the
behavioural model to propagate faults through abstract dy-
namic data structures, aliased variables and multiple points of
execution. A usable tool would require sophisticated report-
ing, tracing and explanation functions supported by a GUI.
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