An Effective Practical Model-Based Detectability Tool

Neal Snooke !, Chris Price !

Y Aberystwyth University, Department of Computer Science, Ceredigion, SY23 3DB, United Kingdom
nns{cjp} @aber.ac.uk

ABSTRACT

This paper builds on the ability to produce a com-
prehensive automated set of component fault—
observation relations for vehicle on-board sys-
tems using qualitative model based reasoning
techniques. Observations are typically expen-
sive (in the broadest sense) and the problem ad-
dressed by this paper is how to allow selec-
tion of a set of observations that fulfils the de-
tectability/diagnosability requirements of the sys-
tem. This paper documents a tool that provides an
engineer with easy access to information about
diagnostic capability via a matrix visualisation
technique. The focus of the work was for the fuel
system of an Uninhabited Aerial Vehicle (UAV)
although the tool has also been used on auto-
motive electrical systems, and is applicable to a
wide range of schematic and component based
systems.

1 INTRODUCTION

This paper describes a tool for assisting engineers in
deciding what sensors are needed on a system and
what observations need to be made in order to be able
to detect the occurrence of all possible component fail-
ures in that system. The paper also considers the exten-
sions needed to make the detectability tool into a more
general diagnosability tool. The detectability tool fits
into the following process illustrated in Figure 1.

A system schematic is combined with models
of component behaviour and general domain based
knowledge to predict the behaviour of the system in
the presence of a wide range of component faults in a
variety of important system states.

Symptoms are generated in the form of a logical ex-
pression involving observations of the system that im-
plicate one or more faults when the expression is satis-
fied. The algorithm for generating the symptoms uses
functional knowledge to allow detailed symptoms to
be generated despite incomplete coverage of system
states.

The focus of this paper is on a technique to allow
the engineer to perform this task, with software tool

Structure of system
(schematic)

Component library

[oTTTTTTTT T ‘
Behaviour of
components

|
|
|
|
|
]
| Fault mode
|
|
|
|
|
|
L

Comprehensive model-
based simulation of system
(FMEA)

Functions of
system

Supplementary
(manually generated)
symptoms

behaviour
of components

diagnostic system
(Bayesian)

ranked fault
list

On-board or workshop based diagnostic system

Figure 1: Detectability Process Diagram

assistance. The result of the endeavour will be a set of
symptoms that can be used directly as a simple symp-
tom based diagnostic system that triggers fault indica-
tions when the relevant observations are seen, or alter-
natively can be used in a more sophisticated Bayesian
diagnostic system that includes probabilistic informa-
tion regarding the reliability of sensors, likelihood of
faults, and empirical knowledge of symptoms.

1.1 Why Detectability/Diagnosability is
Important

In most systems there are various costs (financial,
mass, layout, harness complexity) involved with each
sensor, resulting in a need to compromise between di-
agnostic capability and sensing and therefore a mini-
mal set of the most useful and obtainable observations
need to be selected. Due to the complexity of the map-
ping between sensors, symptoms and faults it is a non
trivial task for an engineer to decide on a sensor strat-
egy without tool assistance. Typical issues that require
consideration are:

e Which faults are detectable/diagnosable by the
sensor strategy?

e Which additional sensors could be included to de-
tect/diagnose additional or critical faults?

e What is the best ‘diagnostic value’ that can be ob-
tained by adding additional sensors.

Some existing optimisation methods are very spe-
cific solutions to an individual system e.g. (Maul et
al., 2007; Mushini and Simon, 2005) and do not sup-
port schematic and component library based analysis.
Other approaches are generic but require significant
modelling effort to enable varied additional applica-
tion specific information to be taken into account (De-
bouk et al., 1999; Travé-Massuyes et al., 2006). Even
when the information required to assess diagnosability
can be modelled, the problem has large search spaces
and techniques such as genetic algorithms (GA) are
often used to find solutions (Spanache et al., 2004,
Mushini and Simon, 2005; Maul ez al., 2007).

1.2 Why Assistance rather than Automation is
the Right Solution

The engineers building the diagnostic system interact
with the tool to decide an effective set of sensors for
the system. From an academic point of view, this
seems like the wrong thing to do. Instinctively, it is
felt that the optimal set of sensors can be generated
from the model. However, engineer control over sen-
sor selection is necessary for several reasons:

1. Experience shows that in many cases there are
simply too many additional application specific
considerations that an engineer can resolve, but
which would be difficult to provide to a fully au-
tomated system. For example, there are spatial
constraints associated with adding new sensors
for electrical systems, where an engineer may
know where it is feasible to add sensors, but with-
out a detailed and 3D spatial model integrated
with the electrical circuit description it is impos-
sible for an automated system to decide.

2. A second example is the knowledge of which sen-
sors are required to achieve basic system func-
tionality. Such sensors have a very low cost to
any diagnostic system, whereas other sensors are
added for diagnostic purposes only and so have
a higher diagnostic cost. System engineers will
know these things due to their in depth functional
and causal understanding of the system architec-
ture, but it is very difficult to extract this informa-
tion from a system diagram.

3. As a final example, an engineer may know that
some parameters are very noisy and should per-
haps be avoided (or require additional processing)
as inputs to a diagnostic system, for example a
fuel level sensor on an aerobatic aircraft.

4. Modelling could be provided for all of the above
situations, however the investment in modelling is
high for relatively low return, and we take the al-
ternative approach of providing tools that support
relatively simple models but allow the engineer to
easily make decisions and understand the effects
on the potential diagnosability of the system.

Essentially, the system model does not include
enough knowledge to generate the best sensor selec-

tion solution, and is unlikely to ever have that knowl-
edge. The system described enables the engineer to
combine the missing knowledge with an efficient in-
cremental sensor selection method, to evolve an effec-
tive solution to the sensor selection problem. Feedback
from the sensor selection tool shows the engineer how
far they have progressed in ensuring detection cover-
age for all areas, and indicates the sensors that are most
likely to improve fault detectability.

1.3 Structure of the Paper

Section 2 of this paper briefly summarises the way
in which model-based reasoning is used to generate
symptoms that could detect component failures in a
system.

Section 3 explains the graphical matrix representa-
tion of detectability in the tool, and how it links sensor
readings that can be observed to failures that may oc-
cur.

Section 4 gives details of how the tool can calculate
for a given set of sensor readings which extra sensor
reading(s) to add to improve the failure detectability
by the greatest amount.

Section 5 presents a novel way of presenting the
present state of the detectability of the system, so that
the engineer has the best information on what further
sensor readings might be of assistance.

Section 6 extends the work to helping with the task
of sensor selection.

Section 7 looks at further work, including the poten-
tial of this tool for helping ensure that every potential
component failure is individually diagnosable.

2 MODEL BASED GENERATION OF
SYMPTOMS

Automated failure mode and effects analysis (FMEA)
is a technique that is used to provide a comprehensive
and consistent description of the effects of component
faults (Price et al., 1997; 2006), and is in use in com-
mercially available electrical deign analysis tools.

More recently, we have extended this research to
assist in generating on-board diagnostic systems for
unmanned aerial vehicles (Downes, 2007). One of
the results from the ASTRAEA work was the ability
to generate a set of operating state specific symptoms
for monitoring a system on a UAV. This work has re-
cently been protected by BAE systems patent applica-
tion 1107160.2.

Each symptom is characterized by a tuple of
(Ce, Oe, F) where both C'e and Oe are logical expres-
sions and F is a non empty set of component faults that
are indicated when the symptom is satisfied.

C'e characterizes the operating state of the system
when the symptom is applicable and is termed the
symptom condition expression. If Ce is false then the
symptom is considered invalid and cannot be used. Ta-
ble 2 gives example symptoms for the UAV case study.

Oe is a set of sensor observations comprising the
symptom and is termed the symptom expression.

Table 1 shows the possible application of a symp-
tom.

The third row illustrates a ‘negatable’ symptom able
to exonerate faults (—F") and is the reason for Ce

Table 1: Symptom states

Ce Oe | Faults indicated

false | false | (0 (no fault information)

false | true | 0

true | false | —F (@ for non negatable symptoms)
true | true | Fimplicated

expressions. We have observed that allowing negat-
able symptoms typically leads to fewer symptoms
but requires more terms in the expressions than non-
negatable symptoms. The ability to exonerate faults
when observations are absent is important when the
symptoms are used in some forms of on board diagno-
sis based on for example Bayesian networks.

Based on automotive systems analysed for auto-
mated FMEA, we find there are typically hundreds
of qualitatively distinct faults (several for each com-
ponent) and several potential observations associated
with each component (Price, 2000). We have found
that the number of symptoms generated using our tech-
niques is of the same order as the number of poten-
tial component faults, and so for these systems it is
feasible to use visual matrices depicting observation-
symptom-fault relationships as proposed in the next
section.

3 REPRESENTATION OF DETECTABILITY

The mapping from selected observations (switch states
and sensor measurements), through available symp-
toms to observable component faults is illustrated by
the matrices in the generic example in Figure 2. This
figure is intended only to show the form of the matri-
ces: for a real system there may be hundreds of rows
and columns, and it is the visual correlations present in
the matrices that provide information to the engineer
(zoom/pan is available for larger matrices).

SYMPTOMS
Sy S11

My

<+ OBSERVATIONS

Figure 2: Observation - Fault Matrix

The engineer can affect this matrix by clicking on
the Observation boxes, in order to say that the spe-
cific observation chosen is available or not available.
As they do this, the symptoms also become available
or not available, and the component faults become de-
tectable or not detectable.

Meaning of the Observation boxes in Figure 2:

Green Tick: This means that the engineer has chosen
that the observation will be available to the diag-
nostic system.

Red Cross: This means that the engineer has chosen
that the observation will not be available to the
diagnostic system.

Grey box: This means that the engineer has not yet
chosen whether the observation will be available
to the diagnostic system.

Meaning of the Fault boxes in Figure 2:

Green Tick: This means that at least one of the set of
symptoms that indicate the fault is observable.

Red Cross: This means that none of the set of symp-
toms that indicate the fault is observable (because
the engineer has stated that some of the observa-
tions that make up each symptom relevant to this
fault are not available).

Grey box: This means that none of the set of symp-
toms that indicate the fault is yet observable, but
at least one set of symptoms has not yet been
ruled out by the engineer.

At the start, all of the boxes in the Observation array
and the Fault array are grey, as no observations have
been included or ruled out. Boxes in the top symptom
matrix are grey if an observation is part of a symp-
tom, and white if it is not. So for example, Symptom
S1 only includes Observation M1, and so the M1 box
in the column for S1 would be grey at the start, and
the other boxes would be white. Boxes in the bottom
symptom matrix are grey if the presence of that symp-
tom indicates the fault, and white if it does not.

As the engineer includes or excludes observations,
the available observations are propagated to infer de-
tectable faults in the following way:

Propagating Green Ticks: When an observation is
included by the engineer, then put a pale green
dot in the top left matrix for each symptom that
has a grey box in the row for that observation.
If all observations that comprise a symptom are
available, then change all non-white boxes in the
column into green ticks (for top and bottom ma-
trix). Where a green tick has been added to the
bottom matrix, also put a green tick next to the
fault on that row (i.e. that fault is now detectable).

Propagating Red Crosses: When an observation is
excluded by the engineer, then put a red cross in
the top left matrix for each symptom that has a
grey box in the row for that observation. Change
all grey boxes in that column in the bottom matrix
to pink dots (as that symptom cannot now be de-
tected). Where a pink dot has been added, and all
of the grey boxes in the row for that fault are now
pink dots, change them to red crosses, and put a
red cross next to the fault (because all possible
symptoms that could detect it have been explic-
itly ruled out).

Table 2: Example symptoms

[Ce [Oe [F
TVL_RL_LH.position=="‘isolation’ TVL_FL_LH.tellback=="‘crossover’ TVL_FL_LH.stuck_crossover
TVL_RL_LH.position=="‘crossover’ A OC_WT_RH.tank_level=="higher than | TP4_FL_LH.fracture
CP_FL_LH.control==‘on’ expected’ TP2_FL_LH .fracture

TP4_FL_LH.partialblocked

CP_FL_RH.Control==‘on’ A
TVL_RL_RH.position==‘normal’

FT_FL_RH.flow=="low’

FL1_1_FS_RH.partialblocked
TP5_FL_RH.partialblocked

4 RECOMMENDATIONS FOR
OBSERVATION SELECTION

There are usually a set of observations that will def-
initely be available to the diagnostic system, such as
changes of operating state. There are also observations
that that the engineer knows will be important in the di-
agnosis of a required set of faults. These observations
can be selected, and some faults will then be marked as
observable, using the process described in the previous
section. At some point, the question will arise of how
to choose the next set of observations that diagnose the
maximum number of faults.

The problem of finding n additional observations
that allow the maximum number of faults to be de-
tected is exponential in the number of additional ob-
servations if a brute force search is carried out. Due
to the localisation of observation - fault relationships,
it is only useful to use small numbers for n, until a
new ‘block’ of elements (observations, symptoms and
faults) is identified.

For an exhaustive search, if n is the number of addi-
tional observations required and r is the number of un-

. . . !
selected observations remaining, there are ————
(nx(rl—n))

combinations of observations to consider.

In the early stages, systems tend to have a few crit-
ical observations that provide big diagnostic returns
and so a relatively small n is adequate to find these,
and once a good number of the observations are deter-
mined, becomes small allowing larger n in reason-
able time. However, by this stage, symptoms and faults
tend to be closely coupled, and so adding an observa-
tion only covers a few additional faults, and therefore
the next best n observations provides a superset of the
faults that can be obtained by the next best n — 1 ob-
servations.

Our experience is that a good strategy is to consider
a small combination of extra observations and then in-
vestigate why there are alternatives, make a selection
(noting any significant effects on the matrices), and
then consider subsequent observations associated with
the next region of system structure and behaviour.

For a partially selected set of observations for the
fuel system of a UAV, Figure 3 shows the next possi-
ble pairs of observations that are most effective, along
with the faults that those observations monitor. These
can be speculatively selected, and their potential effect
on the matrix representation will be shown in yellow
rather than green, as illustrated in Figure 4. If the en-
gineer is happy with that effect, he can include the ob-
servations in the set of accepted observations, and they
will be propagated in green as normal.

5 FOCUSING ON THE DETECTABILITY

To gain a much better understanding of the relation-
ships contained within either matrix they can be au-
tomatically reformed into an ‘approximate diagonal
form’ which places all the non empty matrix elements
as close to an imaginary line from top-left to bottom-
right as possible (this is the purpose of the “Order”
buttons on the tool interface in Figure 4). The algo-
rithm used is similar to the well known bubble sort ap-
plied alternately to row and columns, with the ordering
comparison based on the imbalance of the number of
non zero cells from the diagonal. Since the matrices
are not generally square a true diagonal matrix in the
mathematical sense is not possible.

1 -

o -l | ||

5 =
3 = R
@® MidPoint of row 1 = 1*5/3 = 5/3

Weight of row 1 =0-5/3 + 4-5/3 = -5/3 +7/3=2/3

B MidPoint of row 1 = 2*5/3 = 10/3
Weight of row 2 = 1-10/3 + 2-10/3 = -7/3 + -4/3 = -11/3

o = o

1 -

T
]]
']
' i
| H
v i
i
i
i

2 -
3 - o)

@ MidPoint of row 1 =1*5/3 = 5/3
Weight of row 1 =1-5/3 +2-5/3 = -2/3 +1/3=-1/3

@ MidPoint of row 1 = 2*5/3 = 10/3
Weight of row 2 = 0-10/3 + 4-10/3 = -10/3 + 2/3 = -9/3

Figure 5: Producing the diagonal matrix

The concept of a row (or column) weight is used to
describe the number of cells in either a row or column
to either side of the imaginary diagonal line across the
matrix. Figure 5 shows an example 6 by 4 matrix.
The mid point of rows 1 and 2 are shown by the filled
symbols. The weight of each row is calculated as the
sum of the distance (as a cell count) of each active cell
(shown grey in Figure 5) from the mid point. In the up-
per matrix of the example row 1 has a weight of % and

row 2 has a weight of f%. By extension, the columns
can be similarly considered. If the imbalance of two

~Measurement selection information

v

v

v il

Use 2 measurement(s) 210 combinations (Find best >>)

2

>

> 4

>

v [l Best2

[Best measurement search results
| Best 1

measurements provide an additional 6 faults

1 combinations include PT_FL_LH.presssure
1 combinations include PT_FL_RH.presssure
combinations of 1 measurements provide 2 groups of faults

¥ [Set of faults
v [Fauhls

TP5_FL_LH.blocked
(] TP6_FL_LH.blocked
TP5_FL_LH.partialblocked
| | TP6_FL_LH.partialblocked
TP7_FL_LH.blocked
TP8_FL_LH.blocked
@l Measurement combinatior
Set of faults
measurements provide an additional 80 faults

combinations of 2 measurements provide 2 groups of faults

Figure 3: Fuel System - Result of search for two additional observations

rows is defined as the weight of row n—the weight of
row n + 1, then the rows are swapped if the imbalance
is greater than zero unless the result of swapping the
rows creates a larger imbalance for the rows. In the

example the imbalance is 2 — (—41) = 12, This is
greater than zero and therefore the rows are swapped
to produce the matrix shown in the lower part of Fig-
ure 5, in which the imbalance is —% — (—3) = §.
Since 3 is less than 1 the reordered matrix is consid-
ered closer to diagonal than the original and the swap
is retained. A similar procedure is then carried out be-
tween rows 2 and 3, and so on. The overall effect of
swaps is to reorder the lists of observations, symptoms,
and faults. Each pair of rows are repeatedly considered
in the manner of a bubble sort, using the weight mea-
sure as the ordering criterion. However, in contrast to
a standard sort, the weight of a row changes (and is
therefore recalculated) when it is moved. The sort is
undertaken alternately on rows and columns.

Once each pair of row and column sorts is com-
pleted, the total imbalance of the entire matrix is cal-
culated as the imbalance sum of all rows plus all
columns. The alternate sorting of rows and columns
continues until no further reduction in the total matrix
imbalance can be achieved. Once the chosen matrix is
in diagonal form, the unshared axis of the other ma-
trix is sorted to make it as diagonal as possible. At
this point the majority of the weight of the matrix is
balanced around the diagonal as closely as possible.
This has the effect of bringing related observations and
symptoms (or symptoms and faults) together on the
diagonal and allows the user/engineer further insight
to the diagnostic capability of the system by produc-
ing visual blocks of colour representing the relation-
ship between groups of observations, symptoms and
faults. Disjoint blocks also graphically illustrate parts
of the system that are diagnostically separate, for ex-
ample sets of symptoms and observations that are the
only possibility for diagnosing a set of faults for some
part of a system.

Each row or column sort is effectively a bubble sort
with a worst and average O(n?) complexity where n

is the number of observations, or symptoms, or faults
dependent on which dimension is being sorted.

However the matrices have two characteristics that
in practice seem to make the average complexity of
the whole algorithm not much worse than this. Firstly
the matrices are rather sparse and secondly there is
a strong relationship between groups of elements on
each axis. For example, we find (and would expect) a
related set of faults that can be diagnosed by a related
set of symptoms using a related set of observations.
The algorithm will only need a single sort on one di-
mension for a matrix that has a perfect simple diago-
nal form since the order of one axis can be arbitrary
and the elements moved onto the diagonal by reorder-
ing the other. The more ‘imperfect’ the final diagonal
matrix in the sense of the number of empty elements
between the diagonal and any non zero element in the
result, the more iterations of the row and column sort
sequence could be needed. This is because the solu-
tion may require (worst case) a specific ordering of
each axis. The sparseness of the matrices combined
with the systematic effects of faults and the structure
of the system cause the matrices to have a good ‘com-
pact’ diagonal form, and in fact they will only be use-
ful if this is the case. Therefore only a small number
of iterations of the sorting should be required, and this
has been observed experimentally. We also observe
that the algorithm is converging towards the solution
and therefore once the first sort is completed on each
axis, subsequent sorts start with most of the elements
already in the correct order. The visual effect is that
non empty elements ‘bubble’ along the diagonal until
each group of elements has achieved its best order on
the diagonal.

In Figure 6 the remaining elements have been di-
agonalised on the fault symptom matrix and groups
of related faults are clearly seen, each block tends to
be related to a different system function, due to struc-
tural locality. Hovering the mouse over each block and
looking at the symptom conditions easily reveals the
states of the system involved, for example the block
under the mouse pointer is related to the sidelights and
the yellow (light coloured) selected symptoms are all

Symptoms

L3

FAULT

TP5S_FL_RH fracture
SYMPTOMS75
WHEN
CP_FL_RH.Control on AND
TVL_RL_RH.position normal
OBSERVE
FT_FL_RH.flow none

~3/23 measurements indicate 80/184 faults using 6/168 symptoms, 0 faults not diagnosabl

Measurement

[= ..]

_ Selectall

_ Clearall

NEREODDDOD "

Scale 3

Pl

Fault

<<Order

alr

EEO0DDDEEORENEEEECDDDODDDEEDDREDDDD ©

Figure 4: Aircraft fuel system matrix example

related to the dip lights.

The aim is to assist in the selection or rejection of
observations, and therefore any elements that are al-
ready resolved (red or green) are NOT included in the
process and are moved to the bottom or right of the
matrix and do not participate in the sorting. This is
why the diagonal line does not extend the full size of
the center left matrix in Figure 6. It is useful to re-
peatedly make the matrices diagonal as an interactive
activity during the measurement selection process as
diagnostic characteristics are discovered.

6 EXTENSION TO COVER SENSOR
PLACEMENT

The aircraft fuel system example in the previous sec-
tions of this paper had a predefined set of sensors and
observable settings. For other systems the task may be
to determine which sensors to add to build a diagnostic
system. We concentrate on sensors that measure sys-
tem parameters within the domain of the simulation,
so for example in an electrical network, rising tem-
peratures as a fault symptom could not be produced
as a symptom unless the simulation were to include
a thermal model. For systems that include diagnosis
specific sensors (e.g. vibration sensors) from other do-
mains, hand crafted or externally generated symptoms
can easily be added to the symptom set and included
in the overall detectability analysis, if required.

It is easy to allow the diagnostic generator to have

access to any system (simulation) parameter, and as an
example we present an automotive daylight running
lights system (DTRL) allowing the current in every
wire in the system as a possible sensor input. Perhaps
unsurprisingly, many symptoms are generated based
on the function output observations (lamps) and the
inputs that are the triggers for the functionality that
will cause activity at the observation point. The matri-
ces show which observations are diagnostically equiv-
alent for various sets of faults, for example the verti-
cal ‘stripe’ pattern in the Figure 7 fault-symptom ma-
trix. Figure 7 also demonstrates critical input as a long
horizontal bar in the center of the measurement matrix
(lighting switch position), without which most faults
cannot be diagnosed. The bar is (green) light coloured
because it is clear it must be selected for the majority
of the symptoms to be usable.

The lower right of the Figure also demonstrates a
situation where three equivalent alternative observa-
tions may be used. The number plate lamps have been
excluded because they are not directly observable by
a sensor, leaving a choice between W16 and W27.
W27 was chosen and this makes 6 symptoms redun-
dant (red), although there is no effect on the number of
faults that can be diagnosed.

Following the process until all faults are accounted
for results in the statistics in Table 3. Many systems
exhibit this law of diminishing returns as each extra
sensor pinpoints fewer faults.

FAULT
W978_3.fracture
SYMPTOM S44
WHEN

rMeasurement selection |nformaOBSERV[

W978_4.Flow inactive

~2/55 measurements indicate 17/46 faults using 2/87 symptoms,
Symptoms

Switch_Lighting_S100.Switch3wayPosition sidelights

0 faults not diagnosabl

(A Measurement
(‘)

_ Selectall 12

_ Clearall)

(&)

)

D@D

Scale 3
 ————"

Fault

]

<<Order

(DDDOD

Use 2 measurement(s) 1225 combinations Find best >>

T . -
¥ [Best 1 measurements provide an additional 9 faults

¥ [l Total 3 measurements usec
[| 1 combinations include W948_2.Flow
[71 1 combinations include W948_1.Flow
]
[—— - ——) TIES

easurement search results m

Figure 6: Diagonalisation Example

Table 3: DTRL sensor selection

Observations Faults Symptoms
Selected Detectable | Used

(55 total) (46 total) (87 total)
2 17 2

3 19 4

4 28 6

5 35 8

6 38 10

8 42 11

9 43 13

10 44 15

11 45 16

12 46 18

7 FURTHER WORK AND CONCLUSIONS
7.1 Documentation of Engineering Decisions

The detectability tool described here works with engi-
neers enabling them to enhance its recommendations
with their knowledge of the characteristics of the sys-
tem. They can decide to exclude observations because
they know that in practice those specific observations
are not reliable. They can include extra sensors be-
cause they are the fastest or most efficient way of de-
tecting problems. At the moment, such decisions are
only recorded as an observation being “’in” or “out”. It
would be good to have the option of recording the ra-
tionale behind such decisions, at least as an option for
the users.

7.2 Diagnosability

Presently, many symptoms implicate a number of com-
ponent faults. For example, in the fuel system of the
UAV that we studied, a loss of flow in one of the
fuel lines under normal running might imply a pos-
sible leak in a number of pipes or tanks, or a problem
with one of several pumps. It is precisely this quality
that makes the detectability tool so effective. Selecting
the best two or three extra observations often covers a
significant number of faults for precisely this reason.

It may be possible to adapt the tool from ensuring
that all faults can be detected, and instead consider
whether all significant faults can be uniquely identi-
fied from the available sensors. The focus of such
work is likely to be either making decisions about con-
tinued safe operation, or repair. If the focus was safe
continued operation, then for the fuel system it would
be necessary to partition component faults into ones
that would demand an engine shutdown, and ones that
could be compensated. If the focus was repair, then
the fuel system would need to be partitioned by least
replaceable unit (LRU), and the system could search
for sensor combinations that uniquely distinguish be-
tween LRUs.

In either case, it should be possible to adapt the work
described here to give appropriate support to engineers
concerned with guaranteeing diagnosability.

7.3 Conclusions

The matrix visualisation technique described in this
paper provides engineers with valuable feedback on
the extent to which all possible component faults in a
system are detectable by a specific set of observations.
A detectability tool based on this technique works in-

Symptoms

~2/55 measurements indicate 17/46 faults using 2/87 symptoms, 0 faults not diagnosable

Measurement

o

W16.Flow
Lamp_Rear_Number_Plate_RH_A1...

_ Selectall o
Clearall Wl

S —

DORD

W964 ow
Lamp_Rear_Number_Plate__LH_A...
WY ow

Scale 3

]l

—E—"

Fault
)71

<<Order

RRRRDC
)

<« »

=

~Measurement selection information

Use 3 measurement(s) 26235 combinations (Find best >>

¥ [0 Set of faults

» [] Faults
¥ @ Measurement combination 1
(7] w16.Flow
Switch_Lighting_S100.Switch3wayPosition
¥ @ Measurement combination 2

Lamp_Rear_Number_Plate__LH_A128.rearlamp
[} switch_Lighting_S100.Switch3wayPosition
v .
(7] wW27.Flow
Switch_Lighting_S100.Switch3wayPosition

A

v

C b <>

Figure 7: Instrumented DTRL system

teractively with the engineer to select a set of observa-
tions that cover all fault possibilities. By assuming that
all values in the system might be observable, the tool
can also be used by the engineer to decide on a sensor
strategy for the system.

ACKNOWLEDGEMENTS

Aberystwyth University’s work on the ASTRAEA
project was funded by the Welsh Assembly Govern-
ment, by BAE Systems and by Flight Refuelling Lim-
ited. The ASTRAEA project was co-funded by the
Technology Strategy Board’s Collaborative Research
and Development programme, following an open com-
petition. This work is protected by BAE Systems
patent applications (0910145.2 and 1107160.2).

REFERENCES

(Debouk et al., 1999) R. Debouk, S. Lafortune, and
D. Teneketzis. On an optimization problem in sen-
sor selection for failure diagnosis. In Procs 38th
IEEE Conf. on Decision and Control, pages 4990—
4995. U. Mich, 1999.

(Downes, 2007) C. Downes. Astraea T7: an architec-
tural outline for system health management on civil
UAVs. In Procs 2nd Autonomous Systems Confer-
ence, IET, November, 2007.

(Maul er al., 2007) W. A. Maul, G. Kopasakis, L. M.
Santi, T. S. Sowers, and A. Chicatelli. Sensor se-
lection and optimization for health assessment of

aerospace systems. Technical Report NASA/TM—
2007-214822, http://gltrs.grc.nasa.gov/, 2007.

(Mushini and Simon, 2005) R. Mushini and D. Si-
mon. On optimization of sensor selection for air-
craft gas turbine engines. In I8th Int. Conf. on
Systems Engineering, pages 9-14. ISBN: 0-7695-
2359-5, August 2005.

(Price et al., 1997) C. J. Price, D. R. Pugh, N. A.
Snooke, J. E. Hunt, and M. S. Wilson. Combining
functional and structural reasoning for safety anal-

ysis of electrical designs. Knowledge Engineering
Review, 12(3):271-287, 1997.

(Price et al., 2006) C. J. Price, N. A. Snooke, and
S. D. Lewis. A layered approach to automated elec-

trical safety analysis in automotive environments.
Computers in Industry, 57(5):451-461, 2006.

(Price, 2000) C. J. Price. AutoSteve: automated elec-
trical design analysis. In Procs ECAI-2000, pages
721-725, 2000.

(Spanache et al., 2004) S. Spanache, T. Escobet, and
L. Travé-Massuyes. Sensor placement optimisation
using genetic algorithms. In Procs DX04, pages
179-183, 2004.

(Travé-Massuyes ef al., 2006) L. Travé-Massuyes,
T. Escobet, and X. Olive. Diagnosability analysis
based on component-supported analytical redun-
dancy relations. IEEE SMC Part A, 36(6):1146—
1160, 2006.

