
Model-based Failure Modes and Effects Analysis of
Software

Neal Snooke1

Abstract. Failure Mode and Effects Analysis is widely used in en-
gineering hardware systems to help in understanding the effects of
potential failures and the faults that cause them to occur. The analy-
sis is iterative leading to improvements in the design until the risks
associated with potential failure modes are reduced to an acceptable
level. Interest in applying the technique to software has increased in
recent years, particularly among embedded software developers who
are already familiar with the benefits of FMEA analysis. Several au-
thors discuss experiences of performing manual FMEA of software
however there has been no attempt at automating the (very tedious)
analysis. We describe a model based approach inspired by both work
in diagnosis of software and the success of model based automated
FMEA for hardware.

1 Introduction

The notion of Software Failure Modes and Effects (SFMEA) analysis
has been proposed in the embedded systems community for at least
two decades. The motivation has been both the success of FMEA as
a standard (IEC 61508) technique to improve reliability and safety
and the increasing contribution of software to many products. The
inevitable consequence being the incresing proportion of safety and
reliability problems attributable to software failure.

Traditional FMEA is a time consuming and tedious process that
requires the effort of skilled engineers. Manual SFMEA promises to
be even more expensive and has therefore only been documented in-
dustrially for systems such as aircraft [9], spacecraft [7], and military
applications. Application of model-based reasoning (MBR) tech-
niques has progressed automation of the analysis required to produce
an FMEA to the point of deployment in the Automotive industry
[12]. Recent research into MBR of software for diagnosis [16] pro-
vides the potential for the development of automated SFMEA meth-
ods.

2 SFMEA characteristics and benefits

FMEA assesses the risk of a significant failure of a system. For soft-
ware there are three causes of failure:

1. Abnormal value input to the software from its environment.
2. Failure in the hardware upon which the software is executed.
3. Logical/algorithmic/semantic error in the implementation code (a

bug).

The first cause is applicable to all software although it is impor-
tant to note that a fault does not necessarily produce an out of range

1 Computer Science Dept, University of Wales Aberystwyth ,UK email:
nns@aber.ac.uk

value. Input checking cannot therefore preclude FMEA, although it
will help prevent certain faults causing catastrophic effects such as
premature termination. This analysis has been attempted manually
by tracing input variables through a system [5]. In another example
some administrative automation is provided by a database to assist
by extracting variable symbols from the code and providing support
in producing the documentation [10].

The second cause is applicable to embedded microprocessors with
limited memory error checking but does not apply to sophisticated
architectures. Though important to some applications, these faults
produce effects that are hard to predict and are not considered further
in this work.

Code bugs are the third source of the failures that occur in well
tested code, often after the system has been deployed for a long
time. Such faults occur because a previously unused region of the
behaviour of the software has been encountered. This may be due to
some external change such as an upgrade to another system, or sim-
ply that the user has done something new given the viewpoint of the
internal behaviour of the code. At a functional level the user may not
even consider anything different has been attempted.

Given that formal methods are rarely applied, for a variety of rea-
sons, and testing can never cover all states of non trivial software,
much effort in S/W engineering is employed in developing sound ar-
chitectures and design. As with other areas of engineering good basic
design makes a successful product possible but does not guarentee it
will work. As noted by [15] ‘Software architectures use abstractions
which hide details that must be revealed for safety engineering’. For
software the devil really is in the detail and while good design strat-
egy such as high cohesion and low couplng will help to prevent small
faults having serious consequences, it is the implementation details
that determine the nature and consequences of a fault.

We can characterize a SFMEA as an analysis to determine the im-
pact of hypothetical faults in the system. For software all faults may
be represented as an abnormal value. The analysis is a worst case
scenario and therefore should consider all possible effects of a faulty
value. The main objective of SFMEA is to establish what the effects
of a faulty value might be and not the programming error that lead
to it. Once the risk associated with the fault has been assessed there
are many tools and processes that may be used to modify the risk
ranging from more testing to exteme measures like parallel execu-
tion of independently implemented systems or redesign using formal
development methods. Generally the response might be to identify
and remove unintended interactions and improve error checking for
example.

This implies that the analysis should be at a level of abstration that
does not care for examplewhena value might be used, how many
times a loop may execute before an output is affected, which branch

221

of a conditional is taken, which particular instance of execution of a
statement propagates a fault. SFMEA is not concerned with:

• Verification of nominal behaviour/functionality.
• Functional test generation or test execution.
• Dealing with dynamic behaviour or object instance details.

We propose that SFMEA will fill the gap between abstract metrics
that assess overall design strategy, and testing that can only verify an
small part of the system behaviour.

Several authors have documented the identification of input and
output variables and the propagation of the source of each input to
the destination of each output variable. Goddard [5] introduces the
identification of software ‘threads’ as the data flow mechanism for
tracing postulated failures to system effects. Lutz [7] uses a forward
search to derive an effect for each potential faulty value and a back-
ward search to examine the possibility of occurance of each failure
mode. Bowles [1] also traces the effects of critical variable failures;
however the manual analysis allows for a more detailed explanation
of system level effect. For example ‘if the set-point variable exceeds
the allowed tolerance high the ball will stabilize at some point above
the set point’. This level of reasoning considers the important thresh-
olds in the system and links the system behaviour to each fault. This
result would require knowledge of the software and of the external
system to be controlled. Models of the system may be combined with
an analysis of the software, but we leave this as future work. Finally
Ozarin [10] uses a database to allow engineers to identify directly
affected variables (ie local propagations), allowing the tracing of ef-
fects to be divided into small steps to avoid the analysis becoming
too complex and effects being overlooked. A certain amount of au-
tomation is provided to extract variable names and modules from the
code to allow easy selection from pull down lists. While this assists
production the report, the analysis remains essentially a manual pro-
cess.

3 Automated analysis

The Functional Dependency Model (FDM) is a result of recent work
in software diagnosis [4, 8, 3, 16] and is suited to the task of prop-
agating abstract faults in software. A model is generated from soft-
ware source code (or possibly a graphical language) and represents
statements as components linked by the variables forming the nodes
of a dependency graph. Programming languages concentrate on the
control flow and due to the reuse of memory (variable names) mask
the data flow. The FDM provides each new assignment of a variable
with a new index thus making the data flow explicit allowing propa-
gation of faults. The result is a model that can predict which output
variables are affected by a potentially faulty input or what the effect
of a faulty internal variable might be.

A formal definition is provided in [8], here we suffice with an in-
tuitive example produced from a code snippet provided by [10]. For
the code in figure 1 the model shown in figure 2 is generated. Each
successive asignment to a variable is provided with a unique sub-
script and the dependencies are tuples in the form(A,B) whereB
is the set of variables that A depends on. Generally the model is for
internal processing and would not be presented in graphical form.

An engineer will use the results of fault propagation to determine
the functional effects of the fault thus allowing an intelligible report
to be produced. To achieve this a simple functional labeling system
similar to the one presented in [11] can be adopted to interpret the
behavioural outputs. Since we are not dealing with values it is sim-
ply necessary to identify the outputs that contribute to each function

void sub1(void){
1. E=0;
2. A=B+C
3. D=B*C
4. J=1;
5. if (A<0) {
6. B=0
7. C=0
8. Call sub2()

}
else {

9. E=(C*D)+F
}

}

10. void sub2(void){
11. J=K-B
12. if(B==0 || C==0){
13. A=0
14. F=2

}
15. G=J*F

 }

Figure 1. Example code

of the software. These outputs may be I/O ports, memory mapped
devices, or calls to system functions that deal with input or output,
for example.

4 Determining Risk Priority

Automated FMEA analysis is only useful if the results are at a level
of abstraction that allows an engineer to easily assess each fault class
and effect. Fault equivalence classes [13] allow condensed output by
identification of all faults that lead to an identical effect. A Risk Pri-
ority Number (RPN) is assigned to each effect based on a product
of the howseverethe loss of functions is considered to be, howde-
tectable the loss of function is (either to the end user or engineer),
and anoccurencevalue to indicate how likely the fault is to occur.
Functional labeling not only allows abstraction of behaviour also pro-
vides a container for the Severity and Detectability knowledge of the
effects to be asessed.

Internal software faults cannot be assigned failure probabilities as
is done for hardware components. An analogy suggested by [14] is to
use a complexity measure related to the code containing the cause of
the fault, since complexity has been shown to be linearly correlated
to defect rate. Part of the purpose of the analysis is to help deter-
mine where critical sections of code are located and such a complex-
ity measure already attempts to determine this but without any real
knowledge of the structure or dataflow. A preferred measure for oc-
curence (that doesn’t pre-empt the result) is suggested by [10] who
uses the termspossibleanddefinite to indicate the possibility that
the faultmight or will produce an observable effect at a threatened
function output. This can be considered as a 3 level qualitative mea-
sure, and can be obtained by using a fault propagation model of each
statement. There are 3 possibilities:occ = 0; occ = 1; 0 < occ < 1.
Situations whereocc = 0 are not normally documented in an FMEA
unless all outputs have zero likelihood of being affected by a fault
(fault has no effect). In software this is likely to indicate that either
dead or redundant2 code has been detected or that faulty logic exists.

2 code that is executed but whose results cannot be used to contribute to an
output

222

A=B+C

D=B*C
A<0

B=0

C=0
Sub2

E=(C*D)+F

true

false

J=K-B

B==0 ||
C==0

true

false

A=0

F=2

G=J*F

E1

E2

Sub2

E=0

B0

C0

K0

G0

F0

B1

D0 D0

A3

A4

K0 J0

B1

C1

C1

A2

F1

F0

G1

F2

J0

A3

F2

G1

G0

F0

C0

C1

A1

A1

J2

F0

C1

G2

C2

E3

F3

B2

B1

B0

J0

A3

F2

J=1
J1

C1

G1

A1

F0

A1

(J0 {K 0, B1})

(G1 {J0, F2})

(A3 {A1, A2,B1, C1})

(F2 {A2, F1, B1, C1})

Sub2 dependencies:

(D0 {C0, B0})

dependencies:

(B2 {B 0, B1})

(J2 {J1, J0})

(A4 {A1, A3})

(E3 {E2, E1, A1})

(F3 {F0, F2, A1})

(G2 {G0, G1, A1})

(C2 {C0, C1, A1})

(E2 {F0, C0})

(A1 {C0, B0})

Figure 2. Example FDM

Each component in the model can affect the propagation of a faulty
value. Assignment statements for example will always produce a
faulty LHS given a faulty RHS. Some multiple input operators such
as +, -, * also have this characteristic if a single input is suspect be-
cause there is a 1:1 mapping between fault input and output. If both
inputs are suspect (ieocc 6= 0) there is the possibility that a correct
result is produced3 (simplest case for the commutative operations is
that input values are swapped). The table describes the possibilities
for the +,-,* operators.

Input a Input b output
definite definite possible
definite possible possible
definite impossible definite
possible possible possible
possible impossible possible

impossible impossible impossible

Conditional control statements tend to change definite faults into pos-
sible faults and require a more complex model. When the proposed
fault does not affect the operation of the condition input, and hence
does not alter the execution flow of the program, conditions for fault
propagation (particularly the conditions that must exist to preserve
definite faults) can be added to strengthen the results. This avoids

3 It may be useful to characterize such situations as ‘very likely’ to provide
finer granularity for occurence propagated through some operators if the
ranges of each input are large enough but we do not pursue this here

conditional statements weakening the occurrence values and high-
lighting the specific conditions where a fault can be masked. One
area of investigation will be to determine how useful (and complex)
these conditions become when analysing the behaviour of a failure.

5 Outline Example

Figure 3 shows the result of potential input failures using the model
in figure 2. The occurence values for input variables are provided by
an engineer based on the likelihood of the input being faulty and may
be derived from another FMEA or statistical hardware component
failure information.

The RPN value provides an indication of the faults that potentially
cause the most problematic effects and it can be seen that faults on
inputs B and C both belong to the same equivalence class although
they do have different risk priority. If required, an explanation can be
provided for specific faults by means of the paths through the code
shown by a program slice or the conditions that lead to a definite fault
as shown in figure 4

6 Detailed internal faults – bugs

Mutation testing is an approach used to improve the quality of testing
by inserting ’random’ faults in code and executing it. If one or more
tests fail then the proposed fault (mutation) is ‘killed’ and confidence
is increased that the test suite covers the area of the code appropriatly,
otherwise a new test is required that will fail in the presence of the

223

Fault input B:
Suspect function W definite failure
because output D[definite fault];
Function X, Y, Z have possible
faults because :
 A1 [definite] may cause fault in
statement 5 condition (A<0)

 void sub1(void){
2. A=B+C
3. D=B*C
5. if (A<0) {
6. B=0
7. C=0
 Call sub2()
 } else {
8. E=(C*D)+F
 }
 }
9. void sub2(void){
10. J=K-B
11. if(B==0 || C==0){
12. A=0
13. F=2
 }
14. G=J*F
 }

Fault input F:
Function Y definite fault if
 (E3 definite) S5 false
 (F3 definite) S5 true, S11 false
Function Z definite if
 (G2 definite) S5 true, S11 false

 void sub1(void){
 Call sub2()
8. E=(C*D)+F
 }
9. void sub2(void){
14. G=J*F
 }

Fault in input G:
Function G definite fault if
 (G2 definite) S5 true

Empty Code slice

Figure 4. Program slices

mutated program. At its most detailed level FMEA is related to mu-
tation testing since latent faults exist in software although they may
appearto develop over time because theuseof the software changes
sightly, causing an untested and faulty fragment of the behaviour
space to start affecting system function. Mutations can be viewed
as proposed fixes to potential (undiscovered) faulty behaviours.

Given a subset of the variables that the FMEA has shown to be
accociated with a high RPN, the statements that produce these vari-
ables can be considered as high risk and worth considering as po-
tential mutants. Assuming that tests of the software execution can be
captured, the possibility of considering some categories of possible
internal faults at the level of faulty statements can be investigated.
The aim is to detect possible faults not found by compilers. Faults
can be generated from simple rules that analyse the code and may
include functional modifications such as operator substitution, and
minor structural changes such as use of an incorrect variable with
a ‘similar’ symbol, or appearing on adjacent lines in the code. The
generation heuristics that can create mutations that include plausible
bugs is somewhat dependent on the language and is examined in the
literature [6]. Clearly certain faults are precluded in more strongly
typed/scoped languages and faults prevented by compilers are not
considered.

The large number of possibilities precludes manual consideration
of the possible effects of each proposed fault. The aim however is to
use verified tests (ie. capture executions of the system where an engi-
neer has indicated that correct behaviour was obtained) to exonerate
the majority of the potential faults by showing that the verified output
wouldnothave been achieved in the presence of any of the proposed
mutations. The vast majority of mutations will either:

• allow tests to be dismissed immediately because no behaviour dif-
ference is found following the mutant statement or the statement
is not executed during the test.

• cause tests to produce a different value that will propagate rapidly

to an output. A minimum number of tests should therefore be re-
quired since one test failure is enough to ‘kill’ the proposed mu-
tant.

• cause tests to produce a different value or cause a change in con-
trol. Many other variables are likely to be affected, only one of
which needs to reach an output to kill the mutant.

Therefore the only computationally expensive mutants are those that
produce a non-local behaviour difference for many tests that do not
propagate to an output. This is the situation when a value is stored
internally or a state change made that does not contribute to an out-
put during the test. The FMEA however can explain what code must
be executed to make the fault visible thus providing a hint as to an
enhanced test.

The remaining possibilities either form equivalent code, indicate
undetected faults, or poor test coverage. For these the model can pro-
vide information about the potential effects of the failure and condi-
tions that must exist to allow the fault to be made visible.

6.1 Generating Tests

Development methods may include low level tests as part of the basic
functional testing such as JUnit tests in Java.

A mechanism to capture the variable values during execution of
the test is required to enable local propagation through the mutated
model. The mechanism to achieve this is present in debugging tools;
however there are some practical issues because of the quantity of
data that could potentially be generated and the need to avoid storage
of repeated execution of statements with the same values.

For embeddeded types of system we might capture executions of
the software in the simulated environments that are often used to pro-
vide input values and model the hardware aspects of the system. In
this situation an engineer simply needs to verify that the software
functions correctly (ie all outputs had the expected behaviour). It is
worth noting that a single execution may produce many tests of a sin-
gle statement. This is useful where the values are different but pro-
duces a requirement to find a compact representation of an execution
log continaing repeated values.

6.2 Exonerating Mutations

The internal faults considered thus far modify behaviour for every
execution of a section of code. (Although the two behaviours might
have a significant overlap, for example< used where<= intended)
Certain faults, for example run time faults that are often captured via
exception mechanisms, occur because an undefined (or unintended)
part of the behaviour of an otherwise correct statement is being used.
One example of this could be overflow of an 8 bit counter during the
increment causing its value to be reset to zero. In this situation a po-
tential failure mode of increment operator behaviour will occur if the
value 255 occurs. Since the system will be designed to avoid these
failures by not operating in this region of behaviour, it is not likely
that a test will exercise them, therefore the only way to exonerate
them is to show that they cannot occur within the specification of the
system. In some cases value range propagation may achieve this. For
the remainder there is either a potential problem, complex logic that
prevents the problem, or unspecified application constraints. It would
appear that all of these are worth highlighting to an enginer so that
the constraints/assumptions can be made explicit or the documenta-
tion updated to explain assumptions so they are understood during
subsequent maintenance of the code.

224

Function Y, Z

Function W[d] , X, Y, Z

Cause Effect SummaryFailure Mode

Input B

Input C

Input F

Input G

D [d], B, J, E, F, G, C

F, E, G

G

Function W: Sev. 4. Det 8. output D
Function X: Sev. 6. Det 2. output J
Function Y : Sev. 2. Det 1. output F, E
Function Z: Sev. 1. Det 9 output G

Function Z

Sev DetOcc RPN

4

7

2

3

4 8

4 8

128

224

18

27

Input K 3 G, J Function X, Z

Function W[d] , X, Y, Z

[d] indicates definite fault
[p] indicated posssible fault

D [d], B, J, E, F, G, C

6 2

91

91

36

Figure 3. Example outline FMEA for inputs shown in figure 2

E=(C*D)+F

E=(C*D)-F

E=(C+D)-F

E=(C*D)-E

Relevant Inputs: A1, C0, D0, F0

Relevant outputs:E3

E=D*(C-F)

C0=2, F0=0, D0=3,
A1=-1,
masked fault (E3=0)

E2=6, E3=0

E2=5, E3=0

E2= undef , E3=0

E2=6, E3=0

E2=1, E3=1

E2=1, E3=1

E2= undef, E3=undef

E2=-2, E3=-2

E2=6, E3=6

E2=5, E3=5

E2=6, E3=6

E2= undef, E3=undef

C0=2, F0=0, D0=3,
A1=1,
E3=6

C0=2, F0=3, D0=2,
A1=3,
E3=7

Test1 Test2 Test3

D=B*C

example
mutations from

Relevant Inputs: B0, C0,

Relevant outputs:D0

C0=2, B0=0, E0=2,
D0=0

D0=0

D=E*C

D=B-C

D=B+C

D=C*B

D0=2

D0=-2

D0=4

C0=2, B0=1, E0=3,
D0=1

D0=-1

D0=3

D0=1

D0=6

C0=2, B0=2, E0=3,
D0=4

D0=0

D0=4

D0=4

D0=6

example
mutations from

Figure 5. Example mutation analysis

225

6.3 Mutations in the example

Extending the analysis to include each of the internal variables al-
lows the use of occurence values from the 3 levels identified in sec-
tion 4. One posibility is to map the ‘possible’ level to 5 and ‘definite’
to 10. A fault inD0 for example causes a definite fault in function
W only giving an RPN of 8*4*10 = 320.E2 causes a possible fault
in function Y and an RPN of 2*1*5 = 10. Where a statement con-
tributes to more than one function the highest risk value is taken. A
threshold may be set to select variables for further analysis that have
the highest risk potential. The statements that generate each selected
variable are used to generate mutations that represent both statement
level behaviour changes, such as operator substitution, and structural
changes such as variable substitution.

Figure 5 shows the effect of using 3 tests to investigate 4 possi-
ble mutations of statement 3. The first test exonerates (in bold type)
all but one mutant. The second and third tests fail to remove the mu-
tant; however, notice that it is not necessary to consider those already
eliminated (shownemphasized). In this example we have found an
exactly equivalent program. In practice the mutant generation heuris-
tics would avoid generating such obvious examples.

The second statement (9) mutated in figure 5 only affects function
Y. The occurence value from a suspect statement was identified on a
three level scale and for a fault in Statement 9E2 is definiteE3 is
possible making and occurance of 10 (2*1*5=10). According to the
FMEA input C provides a higher risk for function Y than a failure
of statement 9 and therefore we may decide it is not a priority for
mutation testing. Several possible mutants are shown in figure 5 to
illustrate several tests that eliminate all the selected mutants.

7 Limitation and further work

Several aspects of the FDM model are not covered by the example.
Most notably iteration statements can be transformed into a sequence
of conditional to preserve an acyclic FD graph. Alternatively by al-
lowing cycles in the graph and using a traversal algorithm that detects
cyclic behaviour in the occurence propagation the close mapping to
program statements can be preserved and will be discussed in a fu-
ture paper.

Real software also contains features including dynamic data struc-
tures, pointers/ aliasing, and recursion are not considered here. Some
of these features have already been considered in the context of
model based debugging and the next step will be to determine the
characteristics relevant to SFMEA. The proposed SFMEA approach
is applicable to any imperative software; it should be possible to gen-
erate the models from many high and low level languages given the
established work in program transformation that supports data flow
analysis [2]. Some applications such as embedded controllers are par-
ticularly suitable for initial investigation. They have a small and sim-
ple interface (via hardware connections), well defined and reasonably
distinct functions, and often no dynamic data structures.

Predicting the nature of failure modes that include timing and con-
trol loop stability are relevant to embedded systems and have previ-
ously proven problematic for a manual software FMEA. A detailed
knowledge of the dynamic behaviour is required and the proposed
models cannot provide this. Given that verification of the nominal
operation of the system is not part of an FMEA, knowledge regard-
ing the potential function failures is enough detail and further in-
vestigation of exactly how behaviour might be modified is part of
the investigation that may be carried out upon consideration of the
FMEA result.

Many of the programs used in embedded systems are auto coded
from state chart style models. These descriptions also hide the use
and reuse of variables and a future step will be to analyse failure
propagation in these models.

REFERENCES
[1] J. B. Bowles, ‘Failure modes and effects analysis for a small embedded

control system’, inAnnual Reliability and Maintainability Symposium,
pp. 1–6. IEEE, (January 2001).

[2] J. Collard,Reasoning about program transformations: imperative pro-
gramming and flow of data, Springer-Verlag, ISBN 0-387-95391-4, 1st
edn., 2003.

[3] L. Console, G. Friedrich, and D. Dupre, ‘Model-based diagnosis meet
error diagnosis in logic programs’, inIJCAI 93, pp. 1494–1499, Cham-
bery, (August 1993). Morgan Kaufmann.

[4] G. Friedrich, M. Stumptner, and F. Wotawa, ‘Model-based diagnosis of
hardware designs’,Artificial Intelligence, 111(2), 3–39, (1999).

[5] P. L. Goddard, ‘Software fmea techniques’, inReliability and Main-
tainability Symposium, pp. 118–123. IEEE, IEEE, (January 2000).

[6] W. E. Howden, ‘Weak mutation testing and completeness of test sets’,
IEEE transactions of Software Engineering, 8(4), 371–379, (1982).

[7] R. Lutz and R. Woodhouse, ‘Experience report: Contributions
to sfmea requirements analysis’, in2nd International Confer-
ence on Requirements Engineering, pp. 44–51, available from
http://ieeexplore.ieee.org/, (April 1996). IEEE.

[8] C. Mateis, M. Stumptner, and F. Wotawa, ‘Debugging of java programs
using a model-based approach’, in10th International Workshop on the
Principles of Diagnosis (DX’99), pp. 166–173, (June 1999).

[9] D. Nguyen, ‘Failure modes and effects analysis for software’, inAn-
nual Reliability and Maintainability Symposium, pp. 219–222. IEEE,
(January 2001).

[10] N. Ozarin and M. Siracusa, ‘A process for failure modes and effects
analysis of computer software’, inAnnual Reliability and Maintain-
ability Symposium. IEEE, (January 2002).

[11] C. J. Price, ‘Function-directed electrical design analysis’,Artificial In-
telligence in Engineering, 12(4), 445–456, (1998).

[12] C. J. Price, D. R. Pugh, N. A. Snooke, J. E. Hunt, and M. S. Wilson,
‘Combining functional and structural reasoning for safety analysis of
electrical designs’,Knowledge Engineering Review, 12(3), 271–287,
(1997).

[13] C. S. Spangler, ‘Equivalence relations within the failure mode and ef-
fects analysis’, inRAMS 99. IEEE, IEEE Press, (January 1999).

[14] S.R.Luker, ‘Failure mode, effects and criticality analysis (fmeca) for
software’, 5th Fleet Maintenance Symposium, 731–735, (Oct 1995).
Virginia Beach, VA (USA).

[15] K. Wong, ‘Looking at code with your safety goggles on’, inAda-Europe
International Conference on Reliable Software Technologies (LNCS
1411), pp. 251–262. Springer, (1996).

[16] F. Wotawa, ‘Analysing models for software debugging’, in12th Inter-
national Workshop on the Principles of Diagnosis (DX’01), pp. 197–
204, (June 2001).

226

