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ABSTRACT

This paper builds on the ability to produce a com-
prehensive automated Failure Modes and Effects
Analysis (FMEA) using qualitative model based
reasoning techniques. The automated FMEA pro-
vides a comprehensive set of fault—effect rela-
tions by qualitative simulation and can be per-
formed early in the design process. The compre-
hensive nature of the automated FMEA results in
a fault-effect mapping that can be used to investi-
gate the diagnosability of the system. A common
requirement is to facilitate cost reductions by re-
moving sensors or to improve diagnosability by
including additional sensors. Measurements are
typically expensive (in the broadest sense) and
the problem addressed by this paper is how to al-
low select a set that fulfills the diagnosability re-
quirements of the system. This paper documents
a technique that provides an engineer with easy
access to information about diagnostic capability
via a matrix visualisation technique. The focus
of the work was for the fuel system of an Unin-
habited Aerial Vehicle (UAV) although the sys-
tem has also been used on an automotive electri-
cal system, and is applicable to a wide range of
schematic and component based systems.

1 INTRODUCTION

This paper presents a technique to allow an engineer
to investigate the relationship between sensor selec-
tion and the ability of a one step diagnostic system
to detect faults. It has been developed as part of AS-
TRAEA (ASTRAEA, 2009), a pioneering £32 mil-
lion UK aerospace programme which is addressing
key technological and regulatory issues in order to
open up non-segregated airspace to uninhabited au-
tonomous aircraft.

Automated failure mode and effects analysis
(FMEA) is a technique that is used to provide a com-
prehensive and consistent description of the effects of
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component faults (Price er al., 1997; 2006). The re-
sults can be used to generate symptoms for an onboard
diagnostic application. Conceptually this is the pro-
cess of generating an effect — fault mapping from the
fault — effect mapping provided by the FMEA while
excluding effects present within nominal observations.
It is not the purpose of this paper to describe in de-
tail the transformation of the FMEA into a set of di-
agnostic symptoms but rather to use the symptoms to
assist diagnosability assessment. The FMEA based
diagnostic system has a comprehensive fixed set of
symptoms that detect as many of the faults itemised
in the FMEA as possible, and is more closely related
to a manually coded set of diagnostics than traditional
run time consistency or abductive MBR approaches
(Peischl and Wotawa, 2003) that compare the results
of running an on-board system model with actual ob-
servations (Struss and Dressler, 2003; Struss, 1992;
Reiter, 1987).

The proposed diagnostic system is limited to the
operating modes considered in the FMEA, and it can
only detect faults defined in the component library but
it does have advantages of fast on-board execution,
comprehensive analysis of all possible symptoms, and
behaviour that can be validated for certification pur-
poses. This allows combinations of measurements to
form symptoms that may not be immediately obvious
to an engineer and in any case would be very tedious
(and potentially error prone) to generate manually.
Symptoms are generated effortlessly since no addi-
tional modelling is required beyond that to produce the
FMEA. The FMEA requires a library of components
with failure modes, system schematic, and operating
scenaro (Price et al., 1997). The system behaviour
is simulated from a schematic based structural model
and compositional component (nominal and failure)
behaviour models. This ensures the correct (qualita-
tive) effects are available for structural and functional
failures thus allowing wider range of failures than a
purely structural model, but without the arbitrary mod-
elling decisions associated with manually produced
causal models (Console et al., 1989). While mul-
tisignal and dependency modelling approaches such as
TEAMS-RT (Deb et al., 1995) allow sophisticated test



sequencing and do not require fault models thus al-
lowing unforseen faults to be diagnosed, there is sub-
stantial modelling effort required specifically to sup-
port the diagnosis and diagnosability investigations in
this approach.

It is useful to note that the qualitative simulation
means that exact systems parameters are not required
allowing a broad analysis early in the design cycle. For
example we may have the topology of a new aircraft
fuel system design concept but the pipe lengths may
not yet be known, however the symptom when valve
a open and pump b on then pressure in pipe x low
for potential faults {blockage in pipe y, valve 7 stuck
open} can be generated. In the Automotive industry
electrical systems suffer from these issues to an even
greater extent, where system and harness designs must
be proposed and analysed for failure characteristics
prior to the availability of detailed spatial or compo-
nent parameter information. Qualitative measurements
allow broad regions of system (mis)behaviour to be
treated by a relatively small set of symptoms which is
good for assessing broad diagnosability issues. Using
the qualitative rules on-board requires some additional
work and in practice measurement thresholding and a
Bayesian network that allows weighting of fault types
and measurement reliability has been used to rank di-
agnoses for the ASTRAEA project, however for the
purpose of investigating diagnosability at design time
for a topologically complex electrical or fluid flow sys-
tem, the qualitative regions of behaviour provide rele-
vant details based only on logical diagnostic espres-
sions of qualitative measurements.

An onboard diagnostic system will only have access
to a limited number of measurements, and the ability
to rapidly investigate at early design stages which mea-
surements may be useful for fault detection is valuable.
When many hundreds of these symptoms are possi-
ble, each requiring selections of measurements, we
find that by providing or excluding measurements the
set of usable diagnostic rules and hence system diag-
nosability and isolatability is changed. Measurements
are typically expensive (in the broadest sense) and the
problem addressed by this paper is how to allow select
a set that fulfills the diagnosability requirements of the
system.

The Automated FMEA report itself contains a high
level description of fault effects in terms of the failure
of system function, however more detailed information
concerning every variable and signal in the system is
produced by the simulation, and diagnostic rules can
therefore be generated utilising very detailed informa-
tion. In most systems there are various costs (financial,
mass, layout, harness complexity) involved with each
sensor, resulting in a need to compromise between di-
agnostic ability and sensing and therefore a small set
of the most useful and obtainable measurements need
to be selected. Due to the complexity of the mapping
between sensors, symptoms and faults it is a non trivial
task for an engineer to answer these questions without

tool assistance. Typical issues that require considera-
tion are:

e Which faults are diagnosable by the system?

e Which additional sensors could be included to di-
agnose additional or critical faults?

e What is the best ‘diagnostic value’ that can be ob-
tained by adding additional sensors.

Some existing optimisation methods are very spe-
cific solutions to an individual system e.g. (Maul et
al., 2007; Mushini and Simon, 2005) and do not sup-
port schematic and component library based analy-
sis. Other approaches are generic but require large
modelling effort to enable varied additional applica-
tion specific information to be taken into account (De-
bouk et al., 1999; Trave-Massuyes et al., 2006). Even
when the information required to assess diagnosability
can be modelled, the problem has large search spaces
and techniques such as genetic algorithms (GA) are
often used to find solutions (Spanache et al., 2004,
Mushini and Simon, 2005; Maul et al., 2007). Ex-
perience shows that in many cases there are simply
too many additional application specific considera-
tions that an engineer can resolve but which would
be difficult to provide to a fully automated system.
For example spatial constraints associated with adding
new sensors for electrical systems where an engineer
may have a good idea where it is feasible to add sen-
sors, but without a detailed and 3D spatial model in-
tegrated with the electrical circuit description it is im-
possible for an automated system to decide. A sec-
ond example is the knowledge of which sensors are
required for basic system functionality and therefore
have a very low cost to any diagnostic system and
those which are present for diagnostic purposes only.
A system engineer will know this due to his in depth
functional and causal understanding of the system ar-
chitecture but it is very difficult to extract this infor-
mation from an electrical circuit diagram. As a final
example an engineer may know that some parameters
are very noisy and should perhaps be avoided (or re-
quire additional processing) as inputs to a diagnostic
system for example a fuel level sensor on an aerobatic
aircraft. Modelling could be provided for all of the
above situations however the investment in modelling
is high for relatively low return, and we take the al-
ternative approach of providing tools that support rel-
atively simple models but allow the engineer to easily
make decisions and understand the effects on the po-
tential diagnosability of the system.

The following sections of this paper firstly outline
the FMEA generated symptoms and their characteris-
tics and we briefly describe a software tool to allow
an engineer to explore the diagnostic system using a
simulator. A graphical matrix approach is presented
to assist an engineer to quickly visualize the diagnos-
tic behavior of the system. This allows rapid investi-
gation of the sensor selection and placement options
available. The technique has been used on several case
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Figure 1: Fuel system schematic



studies including an aircraft fuel system and an auto-
motive Daylight Running Light (DTRL) electrical sys-
tem and these systems with differing diagnostic char-
acteristics are presented as case studies to illustrate the
diagnostic system generation.

2 SYMPTOM GENERATION AND THE
DIAGNOSTIC SYSTEM

Given a set of symptoms S7..Sy derived from an
FMEA, each symptom is comprised of a tuple of
(Ce, Oe, F') where both C'e and Oe are logical expres-
sions and F is a non empty set of faults that are indi-
cated when the symptom is satisfied. Each of these as-
sociated faults will have produced an abnormal set of
observations in the FMEA that will lead to the symp-
tom being satisfied. Ce specifies when the symptom
is applicable and is termed the symptom condition ex-
pression. If Ce is false then the symptom is considered
invalid and cannot be used. Oe is termed the symptom
expression. If C'e A Oe evaluates true then one or more
of the faults I are indicated. Table 1 shows the possi-
ble states of a symptom.

Table 1: Symptom states

Ce Oe | Faults indicated

false | false | @ (no fault information)

false | true | 0

true | false | —F () for non negatable symptoms)
true | true | Fimplicated

The third row illustrates a ‘negatable’ symptom able
to exonerate faults (—F") and is the reason for Ce
expressions. We have observed that allowing negat-
able symptoms typically leads to fewer symptoms
but requires more terms in the expressions than non-
negatable symptoms. The ability to exonorate faults
when observations are absent is important when the
symptoms are used in some forms of on board diagno-
sis based on for example Bayesian networks.

Both C'e and Oe are logical expressions formed
from boolean observations and the usual logical oper-
ators. Observations may be formed from any available
sensor reading, variable, state or system parameter that
can be observed. Inputs (externally controlled values)
are also considered as measurements and in fact the
diagnostic system does not need to differentiate inputs
and outputs during symptom generation or when in
use, although observations that are required in the con-
ditional part of a symptom often turn out to be inputs
to satisfy the definition of a symptom. Most sensors
produce measurements and a comparison operator is
normally used to create an observation (e.g. pressure
< 5, or flow # high). The use of a qualitative simulator
(Price et al., 2003; Lee and Ormsby, 1991; Lee, 2000;
Snooke, 2007) makes it unnecessary to consider nu-
merical values at the symptom generation stage since
all measurements produced by the simulator are from

qualitative quantity spaces for example ‘high’, ‘zero’
‘lower than expected’ etc. Typical symptom exam-
ples for the system in Figure 1 are shown in Table 2.
The example symptoms demonstrate qualitative anal-
ysis; in the final row we see that when the pump (CP)
is on and a valve (TVL) is set, a low flow transducer
(FT) observation indicates a possible blockage in two
places.

Based on the systems analysed for automated
FMEA from the automotive application areas we find
there are typically hundreds of qualitatively distinct
faults (several for each component) and several po-
tential measurements associated with each component
(Price, 2000). Although a symptom can predict any
number of faults, and a fault can be predicted by any
number of symptoms, we have found that the number
of qualitative symptoms generated is of the same or-
der as the number of faults considered in the FMEA.
Informally this seems to be for the following reason.
Useful symptoms do not require more than few mea-
surements, and in fact symptoms that require many
measurements (>10) are disallowed because they gen-
erally occur due to artifactual issues associated with
incomplete exercising of the system state space by
the FMEA, or due to approximations in the compo-
nent behaviour modelling. In addition if a reason-
able level fault isolation is possible (and we assume
it is given the above observation of several measure-
ments per component), symptoms on average predict
a relatively small number of faults and because symp-
toms are generated to be as specific as possible each
fault is on average predicted by a relatively small num-
ber of symptoms. Therefore on average the number
of symptoms is of the same order as the number of
faults, and since symptoms may require several mea-
surements but measurements are on average present in
more than one symptom the number of measurements
is also of the same order as the number of faults. For
these systems it is feasible to use visual matrices de-
picting measurement-symptom-fault relationships as
proposed in the next section.

An example automatically generated diagnostic sys-
tem with 168 symptoms produced from an automated
FMEA is illustrated in Figure 2 for a twin engine air-
craft fuel system in Figure 1 with 184 possible faults.
The tool in the Figure allows an engineer to exercise a
diagnostic system by inserting known faults in the top
panel. The values determined by the simulation are
immediately shown in middle section. The functions
are derived from a functional model of the system and
provide interpretation of the behaviour for presentation
to an engineer in an FMEA output (Bell et al., 2007,
Bell and Snooke, 2004; Snooke and Bell, 2002). Func-
tions are not used in the evaluation of the symptoms
(but do have a role in their generation) and are only
shown in the interface to allow easy recognition of the
overall effect of the fault to the user. The lower part of
the screen shows the results of the diagnosis. On the
left are all symptoms where C'e = true. The symp-



Table 2: Example symptoms
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Figure 2: Diagnostic evaluator interface

tom set is negatable and therefore a check in the I/E
column of Figure 2 indicates that Oe = true for the
symptom and therefore indicates a set of faults. There
is no check in the I/E column if Oe = false and in this
case the symptom will exonorate associated faults. A
simple ranking of faults is provided based on the sum
of the total number of symptoms indicating and ex-
onerating each fault (shown in parenthesis). In this
example there are nine top ranking faults and these
are in fact indistinguishable from the sensing available.
The real diagnostic system includes other information
about symptom and measurement confidence, using
Bayesian methods to provide more fine grained fault
ranking. This tool simply allows the symptom gener-
ation to be exercised. Further down the list faults may
have negative scores, showing that there is evidence
from the symptoms that those faults are not present.

The engineer can select or deselect any sensor and
the effect on the diagnosis is shown instantly and this
is useful to check the applicability of specific measure-
ments in specific fault scenarios, however it is not suf-
ficient to enable an engineer to decide on a set of sen-
sors which will cover all possible faults on the system,
due to the number of operating modes and faults pos-
sible. It s this issue that provides the main focus of the
remainder of this paper.

3 FAULT MATRICES

The relationship between observations (sensor mea-
surements), symptoms and faults can be represented
using two 2 dimensional matrices as shown by a
generic example in Figure 3. This Figure is intended
only to show the form of the matrices, for a real system
there may be hundreds of rows and columns, and it is



the visual correlations present in the matrices that pro-
vide information to the engineer (zoom/pan is avail-
able for larger matrices). A graphical method to as-
sess competing requirements was also described by
(Thompson et al., 1999) however this was aimed at
architectural choices rather than sensor selection.
Each symptom is represented by a column in the
matrices on the left of the Figure. In the upper matrix
any measurement included in the C'e or Oe expression
for a symptom 1is indicated by non empty element in
the column representing that symptom. In the lower
matrix the set of faults indicated by each symptom is
indicated by a non empty element in the column rep-
resenting that symptom. The top matrix shows which

SYMPTOMS
S1 S11

My

MEASUREMENTS

Mz

7 Fy

FAULTS

Fg

Figure 3: Measurement - Fault Matrix

measurements are required for each symptom and the
lower matrix shows the faults that each symptom can
diagnose. A colour coding system is used to indicate
the status of each element and these change as addi-
tional measurements are included or excluded in the
measurement vector (top right). Green indicates that
an item is available to the diagnostic system (also a
small tick is shown for clarity) and grey indicates that
the item forms part of a diagnostic relationship but is
not available because it needs a measurement not yet
observable to the diagnostic system. Red is used to ex-
plicitly exclude items - for example when the engineer
has decided that a measurement is not available.

Once a measurement is made available it appears as
a green element in the measurement vector (top right)
and also as green elements for the symptoms that re-
quire it in the corresponding row in the top matrix.
Any symptoms that have all the necessary measure-
ments available to evaluate their C'e and Oe expres-
sions have the appropriate element coloured green in
the row vector on the (centre left) indicating that the
symptom can be fully evaluated and hence used to di-
agnose its associated faults. The lower left matrix col-
umn elements represent associated faults diagnosable
by an available symptom, and are coloured green to

indicate a diagnosable fault. Finally any faults that
have one more more available diagnosing symptoms
are coloured green in the faults vector (lower right). A
lighter green colour (centre dot) in the top matrix in-
dicates that a measurement is available to a symptom
but the symptom requires further measurements.

If a measurement is excluded by the engineer then
it will be coloured red (a small cross shown) and any
symptoms and faults that therefore cannot be diag-
nosed also turn red. Notice that it is necessary for all
symptoms that can diagnose a fault to be excluded be-
fore the fault is not diagnosable. Hence, cells that are
pink (dot) in the lower matrix indicate a symptom that
cannot be used for a fault that can be diagnosed us-
ing an alternative. Elements that form diagnostic re-
lationships but are undecided are coloured grey and
may therefore be included or excluded based on the
availability of undecided measurements. These will
be measurements that are neither chosen or excluded,
symptoms that require undecided measurements and
do not include excluded measurements, and faults that
could still be diagnosed if additional symptoms (mea-
surements) are included.

A real example for the aircraft fuel system is shown
in Figure 4. The GUI follows a similar structure to
Figure 3 with the measurement-symptom matrix at the
top left and the symptom-fault matrix lower left. The
measurements and faults are now shown as textual lists
with the order of the lists being the same as the rows
in the matrices. Measurements can be selected or de-
selected using the lists and the associated fault sta-
tus is updated, together with the colour coding of the
matrices. The yellow colour is used to allow sets of
measurements to be proposed prior to committing or
excluding them, allowing the incremental change in
faults that can be diagnosed to be observed.

The visible patterns in the matrices are formed by
the structure that exists in the fault behaviour of the
system. The patterns represent correlations between
measurements, faults and symptoms. In addition the
matrices are relatively sparse as expected since mea-
surements, symptoms and faults form (overlapping)
sets and subsets due to the structure of the system and
the predictable behaviour of the system in the pres-
ence of faults. Specific patterns in the matrices graph-
ically illustrate some characteristics of the diagnostic
system:

e Highly populated rows in the measurement-
symptom matrix shows measurements that partic-
ipate in many symptoms and are therefore impor-
tant to the diagnostic system.

e Similar patterns existing in more than one row
of the measurement-symptom matrix indicate that
there are several measurements required as a set,
for a given a set of symptoms. In practice we
find measurements (inputs) such as valve posi-
tions and switches that affect major system state
typically have this characteristic.
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Figure 4: Aircraft fuel system matrix example

e Highly populated columns in the measurement-
symptom matrix indicate symptoms that require
many measurements.

e Highly populated columns in the fault - symp-
tom matrix indicate symptoms that can diagnose
many faults. These are the symptoms that provide
cheap detectability, but poor fault isolation.

e Similar patterns in several fault - symptom
columns show that there may be a choice of
symptoms that diagnose the same set of faults.

The ordering of the measurements, symptoms, and
faults will change the appearance of the matrices and
where possible we would like to group related symp-
toms and faults into rectangular blocks that represent
alternative symptoms that have equivalent diagnostic
power. Reordering the matrices is discussed in section
4.1.

4 SENSOR SELECTION

Simply by selecting and deselecting measurements at
any point in the measurement selection process an en-
gineer can find out which (additional) measurements
provide the ability to detect many faults in the context
of the currently available measurements. In Figure 4
the user has already selected some measurements us-
ing the tick boxes and the result of this in terms of the

symptoms and faults that can be diagnosed is shown as
green elements (darker) and as tick boxes in the fault
list.

There are usually a set of measurements that will
definitely be available to the diagnostic system, and
some that the engineer knows will be important in the
diagnosis of a required set of faults and these can be
selected. At some point the question will arise as to the
next set of measurements that diagnose the maximum
number of faults.

The problem of finding n additional measurements
that allow the maximum number of faults to be de-
tected is exponential in the number of additional mea-
surements if a brute force search is carried out. Due
to the localisation of measurement - fault relationships
it is only useful to use small numbers for n, until a
new ‘block’ of elements (measurements, symptoms
and faults) is identified. For an exhaustive search if n
is the number of additional measurements required and
r is the number of unselected measurements remaining
there are m combinations of measurements to
consider. We has observed that in the early stages sys-
tems tend to have a few critical measurements that pro-
vide big diagnostic returns and so a relatively small n
is adequate to find these, and once a good number of
the measurements are determined, r becomes small al-



lowing larger n in reasonable time, although by this
stage symptoms and faults tend to be closely coupled,
so adding a measurement gains a few additional faults,
and therefore the next best n measurements provides a
superset of the faults that can be obtained by the next
best n — 1 measurements.

The best solution may not necessarily be included
in best solutions for larger numbers of measurements
so strict hill climbing solutions do not work in gen-
eral and allowing the engineer to choose n based on
the visible structure of the matrices provides a reason-
able compromise. No attempt has been made to im-
prove the search using other methods (e.g. backtrack-
ing heuristics) because the major issue is that there are
often many possible solutions for ‘next best’ combina-
tions of n measurements often due to symmetry in de-
signs, or sensors equivalent for some diagnostic aspect,
or simply different parts of the system structure all of
which require the same number of (different) measure-
ments. For example there is little point in being able
to diagnose a left hand circuit aircraft fuel system fault
and not an equivalent right circuit fault so a symmet-
rical left and right of sensors would be added elimi-
nating the alternative left or right permutations from
the next set of measurements. Our experience is that it
is better to only consider a small number of measure-
ments and then investigate why there are alternatives,
make a selection (noting any significant effects on the
matrices) and then consider subsequent measurements
associated with the next region of system structure and
behaviour.
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Figure 5: Fuel System - Equally good measurements

The results of a search for the maximum number of
faults diagnosable from n measurements naturally fall
into a hierarchy presented to the user that gives access
to the alternative solutions.

1. Top elements of the hierarchy specify the max-
imum number of additional faults can be diag-
nosed for each additional measurement set size

from 1..n. In the subsequent example in Figure
9, the phrase “Best 2 measurements provide 80
additional faults” is seen in the lower right.

2. For each of the elements in item 1 the total num-
ber of different measurements involved in any of
the possible solutions are listed. For example
“Total 6 measurements used” indicating that there
are 6 distinct measurements that are used in some
combinations (in pairs for best 2 measurements)
to form the best solutions.

3. There are often several different sets of measure-
ments that can diagnose exactly the same set of
faults. This forms the next grouping under item 1
for example “4 combinations of 2 measurements
provide 2 groups of faults” in Figure 5. This
means that there are 2 distinct sets of faults di-
agnosable but 4 different pairs of measurements
that have been found that are relevant to the 2 sets
of faults.

4. The sets of faults are itemised together with the
measurements required for each fault set is given
under item 3 showing which different measure-
ments can be used to detect the set of faults. Often
there will be several similar sets of measurements
with only one different measurement alternative.

The engineer can select any set of measurements at
any level in the above categorisation simply by select-
ing any item in the hierarchy as illustrated in Figure 5.
The impact on the symptom set and fault set is shown
highlighted in yellow on the matrices as in Figure 4
where a whole set of measurements has been selected.
By selecting alternately different groups of measure-
ments the diagnostic effect can be visualised. For ex-
ample some sets of measurements provide very small
changes to a set of faults whereas others may provide
for diagnosis of a completely different set of faults.
Hovering over the matrices instantly produces a tooltip
that identifies what the element represents (see Figure
4).

4.1 The diagonal matrix

To gain a much better understanding of the relation-
ships contained within either matrix they can be au-
tomatically reformed into an ‘approximate diagonal
form’ which places all the non empty matrix elements
as close to an imaginary line from top-left to bottom-
right as possible (this is the purpose of the “Order”
buttons on the tool interface). The algorithm used is
similar to the well known bubble sort applied alter-
nately to row and columns, with the ordering compari-
son based on the imbalance of the number of non zero
cells from the diagonal. Since the matrices are not gen-
erally square a true diagonal matrix in the mathemati-
cal sense is not possible.

The concept of a row (or column) weight is used to
describe the number of cells in either a row or column
to either side of the imaginary diagonal line across the
matrix. Figure 6 shows an example 6 by 4 matrix.
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Figure 6: Producing the diagonal matrix

The mid point of rows 1 and 2 are shown by the filled
symbols. The weight of each row is calculated as the
sum of the distance (as a cell count) of each active cell
(shown grey in Figure 6) from the mid point. In the up-
per matrix of the example row 1 has a weight of % and

row 2 has a weight of — 1?1 By extension, the columns
can be similarly considered. If the imbalance of two
rows is defined as the weight of row n—the weight of
row n + 1, then the rows are swapped if the imbalance
is greater than zero unless the result of swapping the
rows creates a larger imbalance for the rows. In the
example the imbalance is % — (—%) = % This is
greater than zero and therefore the rows are swapped

to produce the matrix shown in the lower part of Figure

6, in which the imbalance is —1 — (—2) = . Since
8 is less than & the reordered matrix is considered

3 3
closer to diagonal than the original and the swap is re-

tained. A similar procedure is then carried out between
rows 2 and 3, and so on. The overall effect of swaps
is to reorder the lists of measurements, symptoms, and
faults. Each pair of rows are repeatedly considered in
the manner of a bubble sort, using the weight mea-
sure as the ordering criterion. However, in contrast to
a standard sort the weight of a row changes (and is
therefore recalculated) when it is moved. The sort is
undertaken alternately on rows and columns.

Once each pair of row and column sorts is com-
pleted the total imbalance of the entire matrix is calcu-
lated as the imbalance sum of all rows plus the imbal-
ance sum of all columns. The alternate sorting of rows
and columns continues until no further reduction in the
total matrix imbalance can be achieved. Once the cho-
sen matrix is in diagonal form the unshared axis of the
other matrix is sorted to make it as diagonal as pos-

sible. At this point the majority of the weight of the
matrix is balanced around the diagonal as closely as
possible. This has the effect of bringing related mea-
surements and symptoms (or symptoms and faults) to-
gether on the diagonal and allows the user/engineer
further insight to the diagnostic capability of the sys-
tem by producing visual blocks of colour represent-
ing the relationship between groups of measurements,
symptoms and faults. Disjoint blocks also graphically
illustrate parts of the system that are diagnostically
separate, for example sets of symptoms and measure-
ments that are the only possibility for diagnosing a set
of faults for some part of a system.

Each row or column sort is effectively a bubble sort
with a worst and average O(n?) complexity where n
is the number of measurements, or symptoms, or faults
dependent of which dimension is being sorted. How-
ever the matrices have two characteristics that in prac-
tice seem to make the average complexity of the whole
algorithm not much worse than this. Firstly the ma-
trices are rather sparse and secondly there is a strong
relationship between groups of elements on each axis.
For example we find (and expect also) a set of faults
that can be diagnosed by a set of symptoms using a set
of measurements. The algorithm will only need a sin-
gle sort on one dimension for a matrix that has a per-
fect simple diagonal form since the order of one axis
can be arbitrary and the elements moved onto the di-
agonal by reordering the other. The more ‘imperfect’
the final diagonal matrix in the sense of the number
of empty elements between the diagonal and any non
zero element in the result, the more iterations of the
row and column sort sequence could be needed. This
is because the solution may require (worst case) a spe-
cific ordering of each axis. The matrices are relatively
sparse for the reasons outlined in section 2 and this
combined with the systematic effects of faults and the
structure of the system cause the matrices to have a
good ‘compact’ diagonal form, and in fact they will
only be useful if this is the case. Therefore only small
number iterations of the sorting should be required this
has been observed experimentally. We also observe
that the algorithm is converging towards the solution
and therefore once the first sort is completed on each
axis, subsequent sorts start with most of the elements
already in the correct order. The visual effect is that
non empty elements ‘bubble’ along the diagonal until
each group of elements has achieved its best order on
the diagonal.

The aim is to assist in the selection or removal of
measurement and therefore any elements that are al-
ready decided are NOT included in the process and are
moved to the bottom or right of the matrix and do not
participate in the sorting. This is why the diagonal line
does not extend the full size of the center left matrix in
Figure 12 (discussed later) which is also an example
of a diagonal symptom-fault matrix showing blocks of
elements that represent distinct sets of symptoms that
diagnose distinct sets of faults for an automotive sys-
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tem. It is useful to repeatedly make the matrices diag-
onal as an interactive activity during the measurement
selection process as diagnostic characteristics are dis-
covered.

5 EXAMPLE

The benefits of the diagnosability matrices are best
illustrated by a worked example of how an engineer
might use the information to select a set of sensors
and generate a diagnostic system. Consider the air-
craft fuel system example of Figure 4. In Figure 7 the
measurement matrix has been diagonalised and most
measuremets set undecided, and we see that the ma-
jority of measurements are needed in several symp-
toms because of the horizontal bars in the matrix. If
the user/engineer knows that the measurements from
the flow meters are definitely available to the diagnos-
tic system, then these can be selected in the measure-
ment list by checking boxes as shown, resulting in the
appropriate cells in the matrices turning green. How-
ever, it can be seen on the fault matrix that no cells
turn green demonstrating that making these measure-
ments available to the diagnostic system would not be
enough to allow it to diagnose any fault. The summary
at the top of the window notes that we have chosen
to make 2 measurements visible but this would not al-

low diagnosis of any faults (0/184). The information
“0 faults are not diagnosable” refers to the as yet un-
decided measurements and hence by adding additional
measurements we could still be able to diagnose all the
faults. If measurements are excluded then the number
of undiagnosable faults may rise, and some systems
may have undiagnosable faults even with all available
measurements if the FMEA had faults that provide no
observable abnormal effect.

The pump control values are computer controlled
and hence available to a potential diagnostic system
(the engineer knows this even though the FMEA was
only performed on the fluid system), and can be se-
lected, in Figure 8. It can then be seen that these ob-
servations are part of a symptom superset of the flow
values and so the user may appreciate that it might be
better to use them as a starting point instead of the flow
meters. The flow meter measurements could be des-
elected, but this might lead to un-diagnosable faults.
In use, none of the cells in the symptom-fault matrix
turn red when the flow meter measurements are de-
selected, which indicates that no faults are precluded
by not using the flow meter measurements, i.e. there is
always an alternative symptom available.

The user can request an exhaustive search for the
next best n measurements that provide the maximum
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number of fault detections. The search space can be
large so the application firstly will inform the user of
the search space size. In the example of Figure 9 these
are as follows:

1. 21

210 (as selected in the example of Figure 9)
1330

5985

20349

54264

116280

352716

The result of a search for the next best two measure-
ments is seen in Figure 9. The user is able to select the
sets of measurements by clicking on any of the items
under “Best measurements search results” and will im-
mediately see the affected measurements, symptoms
and faults highlighted (not shown in the Figure). At
each level all of the measurements related to lower
level categories will be selected. Also in this list a
darker font is used to distinguish parts of a measure-
ment set that are not part of a shorter best solution. It
can be seen on lower right of the Figure that by adding
one additional measurement six faults can be detected
(i.e. the left pressure sensor detects 6 blockage faults
in the left system and the right pressure sensor detects
6 blockage faults in the right system). However, it also
possible to detect 80 faults by adding two measure-
ments. Selecting on the Total 6 measurements mes-
sage expands it to display all measurements involved
in any pairs that provide these 80 faults, as shown in
Figure 5.

The skilled user will appreciate that there are two
groups of faults that can be detected (left and right
variants). Considering the first set of faults, it is ap-
parent that the flow meter measurement is common,
plus either of the left flow or return valves. An engi-
neer would know that both valves are, in fact, mechan-
ically slaved and so the measurements are equivalent,
save for a mechanical linkage failure!. If it is known
that the flow valve is most closely connected to the
actuator and return valve slaved to it then this is the
one to choose. Thus, the flow left and right meters
and flow valves are selected as it is pointless to diag-
nose only left or right systems. When this is done, it
can be seen at the top of the resulting window shown
in Figure 10 that 116 of the 184 faults are now diag-
nosable using 6 measurements, and these are shown
as diagnosable (green) in the lower matrix and fault
list when this is scrolled. Viewing a schematic of the
system colour coded to indicate diagnosable faults will
clearly show that the main fuel and supply return faults
are detectable with the subset of symptoms selected at
this point. The skilled user/engineer can continue this

® N R » N

'the mechanical aspects of the system are not modelled
or included in the FMEA in this example

process of selecting measurements and reviewing the
resulting symptom/fault displays until an optimal se-
lection of measurements is made, ideally one that re-
sults in all faults being diagnosable with no fault being
un-diagnosable using a minimal number of measure-
ments.

It is possible to include features other than simply
the number of faults diagnosed in the definition of best
measurements, e.g. the ability of the diagnostic system
to isolate faults based on the number of different sets
and intersections of sets of faults diagnosed by each
symptom. Weighting of measurements and/or faults
according to physical features such as cost, accessibil-
ity or severity is also possible where such data can be
obtained, and will result in modified orderings and se-
lections.

6 SYSTEM INSTRUMENTATION

The aircraft fuel system example in the previous sec-
tions of this paper had a predefined set of sensors and
observable settings. For other systems the task may be
to determine which sensors to add to build a diagnostic
system. We concentrate on sensors that measure sys-
tem parameters within the domain of the simulation,
so for example in an electrical network, rising tem-
peratures as a fault symptom could not be produced
as a symptom unless the simulation were to include
a thermal model. For systems that include diagnosis
specific sensors (e.g. vibration sensors) from other do-
mains, hand crafted or externally generated symptoms
can easily be added to the symptom set and included
in the overall diagnosability analysis, if required.

It is easy to allow the diagnostic generator to have
access to any system (simulation) parameter, and as an
example we present an automotive daylight running
lights system (DTRL) allowing the current in every
wire in the system as a possible sensor input. Perhaps
unsurprisingly, many symptoms are generated based
on the function output observations (lamps) and the
inputs that are the triggers for the functionality that
will cause activity at the observation point. The matri-
ces show which observations are diagnostically equiv-
alent for various sets of faults, for example the ver-
tical ‘stripe’ patterns in the Figure 11 fault - symp-
tom matrix. Figure 11 also demonstrates critical input
as a long horisontal bar in the center of the measure-
ment matrix (lighting switch position), without which
most faults cannot be diagnosed. The bar is (green)
light coloured because it is clear it must be selected
for the majority of the symptoms to be usable. The
lower right of the Figure also demonstrates a situation
where three equivalent alternative measurements may
be used. The number plate lamps have been excluded
because they are not directly observable by a sensor,
leaving a choice between W16 and W27. W27 was
chosen and this makes 6 symptoms redundant (red),
although there is no effect on the number of faults that
can be diagnosed.
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In Figure 12 the remaining elements have been di-
agonalised on the fault symptom matrix and groups
of related faults are clearly seen, each block tends to
be related to a different system function, due to struc-
tural locality. Hovering the mouse over each block and
looking at the symptom conditions easily reveals the
states of the system involved, for example the block
under the mouse pointer is related to the sidelights and
the yellow (light coloured) selected symptoms are all
related to the dip lights. Following the process until
all faults are accounted for results in the statistics in
Table 3. Most systems exhibit this law of diminishing
returns as more sensors are required to identify fewer
faults.

7 CONCLUSION AND FUTURE
ENHANCEMENTS

The work presented in this paper builds on the recently
developed capability to develop symptom sets based
on an automated simulation based FMEA. It provides
an engineer with tools to investigate the diagnostic
ability of a system or product based on existing or
additional sensing. Both on board and workshop di-
agnostic systems could be produced and evaluated by
modifying the visibility of the available observations.
The tools have been applied to a number of systems
including an aircraft fuel system containing 98 compo-

Table 3: DTRL sensor selection

Measurements Faults (46 | Symptoms
(55 total) total) (87 total)
2 17 2

3 19 4

4 28 6

5 35 8

6 38 10

8 42 11

9 43 13

10 44 15

11 45 16

12 46 18

nents and 239 possible faults [Snooke(07] and a number
of automotive electrical systems.

Sometimes diagnostics require specific computa-
tions or information from additional domains and these
cannot be included unless the system simulation pro-
duces the relevant measurements. For specialist di-
agnostic data it is possible to include a module into
the system that produces any such computed results
using the usual component modeling capabilities in-
cluding state machines and general computations. The
symptom generator will then utilize any of these spe-
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cialist measurements that fulfill a diagnostic capabil-
ity, allowing an engineer to experiment with a number
of possible specialist measurements, to determine how
well they perform. Some systems contain distinct op-
erating modes and symptoms often relate to specific
modes only due to their condition expressions. These
modes could be identified and included in the diag-
nostic generation process to allow choices to be made
concerning when faults can be detected during system
operation. A good deal of this information is already
contained in the functional description of the system
and it may therefore be possible to indicate selected
information on the matrices via additional colouring
or symbolism.

The tool concentrates on optimizing the total num-
ber of diagnosable faults. In some applications the
ability to isolate faults (to a replaceable unit) and the
ability to diagnose faults in specific operating modes
is important. Various graphical notations could be de-
veloped to visualise these relationships by colour or
spatial grouping or possibly a hierarchical version of
the matrices that allow rows or columns to be aggre-
gated, such an approach may also help in the presen-
tation of very large systems if there are disjoint sec-
tions to the diagnostic structures present in the matri-
ces. In addition there are a number of ranking mea-
sures that may be available for fault types, component
failure instances, or affected system functions, all of
which could be used to guide the sensor selection ad-
visor. These additions are feasible future additions to
the tools that would allow a more tailored diagnostic

system to be generated.

There are a few additions to the graphical interface
that would improve the tool, for example the ability
to select elements by region in the matrices, and to
present lists of the elements within these selected re-
gions for inclusion or exclusion. The ability to view
the current set of diagnosable faults and measurements
needed by (for example) colouring or labelling compo-
nents on the original system schematic as each selec-
tion is made may be a useful way of assessing diag-
nosability.
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