
LESSONS FROM ENGINEERING: CAN SOFTWARE BENEFIT
FROM PRODUCT BASED EVIDENCE OF RELIABILITY?

Position paper

Neal Snooke
Department of Computer Science, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingdom

nns@aber.ac.uk

Keywords: Software engineering, Model-driven engineering, Reliability, Failure modes and effects analysis, Verification

Abstract: This paper argues that software engineering should not overlook the lessons learned by other engineering
disciplines with longer established histories. As software engineering evolves it should focus not only on
application functionality but also on mature engineering concepts such as reliability, dependability, safety,
failure mode analysis, and maintenance. Software is rapidly approaching the level of maturity that other
disciplines have already encountered where it is not merely enough to be able to make it work (sometimes),
but we must be able to objectively assess quality, determine how and when it can fail and mitigate risk as
necessary. The tools to support these tasks are in general not integrated into the design and implementation
stages as they are for other engineering disciplines although recent techniques in software development have
the potential to allow new types of analysis to be developed and integrated so that software justify its claim
to be engineered. Currently software development relies primarily on development processes and testing to
achieve these aims; but neither of these provide the hard design and product analysis that engineers find
essential in other disciplines. This paper considers how software can learn from other engineering analyses
and investigates failure modes and effects analysis as an example.

1 INTRODUCTION

Software has become extremely complex and perva-
sive in a very few years, and the engineering tech-
niques to support its design and implementation are
lagging behind, resulting in many well documented
project failures, fragile and brittle systems, user frus-
trations, workarounds and occasionally hazardous
systems. Software is taking over many roles that only
a decade or so ago were performed by mechanical
electrical, hydraulic devices. In commerce and every-
day life we now depend on software performing a di-
verse range of tasks from maintaining critical medical
and financial information to entertainment systems.
This paper proposes that engineering techniques used
to develop software have not kept pace with the role
that software now plays, and in particular most soft-
ware does not provide satisfactory product based evi-
dence of its quality and safety.

In other disciplines, engineers routinely address
many non functional concerns such safety, quality,

reliability, robustness, maintainability, diagnosability,
degradation and prognosis to name a few. These con-
cerns are directly addressed at the design and imple-
mentation level and analysis techniques are used that
integrate into the design process and subsequently to
allow direct assessment of the product performance.
It is not merely enough to be able to make it work; to
attain the status of a properly engineered product we
must be able to objectively assess its quality, deter-
mine how and when it can fail and mitigate as neces-
sary. These capabilities are necessary when any com-
plex product is to be built to a specified quality, within
time and cost constraints.

Although the nature of software is different to
other engineering disciplines, there are many similar-
ities and analogies that could be exploited to improve
the software engineering endeavour by developing an-
alytical reliability engineering techniques. As new
software development abstractions and technologies
are developed the opportunity to support additional
engineering analysis should not be missed in the rush



to provide ever greater functionality at the expense of
poorly engineered products of extremely variable and
unknown quality.

The remainder of the paper will discuss the weak-
ness of current software development compared to
other engineering development. Several kinds of re-
liability analysis that might be adapted to software
are then considered together with the developments
in software technologies that are (or will) make such
analysis feasible. Finally we will consider software
failure modes and effects analysis in more detail as an
example of an analysis that might be adapted to soft-
ware, even though on the surface it appears that there
is no need since software does not age or wear out in
the same way that hardware components do.

2 THE LIMITATION OF
DEVELOPMENT PROCESS
AND TEST

The achievement of software quality levels is almost
exclusively based around standards that define devel-
opment processes and practices. While development
processes are vitally important (in any engineering
endeavour), as observed by McDermid (McDermid,
2001) they do not guarantee the safety of a product.
If fact even non safety critical software would benefit
from product based evidence of reliability and quality
characteristics.

Testing is the primary (and often the only) evi-
dence based analysis performed on software, and al-
though testing can initially give indications of qual-
ity, once the results are used to improve the software,
the tests are no longer a reliable indication of over-
all quality. The value of tests in assessing quality is
further reduced by hierarchical testing because lower-
level modules will themselves have been made to pass
a set of tests before being included in a system. It is
likely that the system outside the scope of the tests
performed is near the quality achieved at the very first
execution of the code (McDermid, 2001). Put another
way, testing only finds faults, it does not help prevent
or assess them. The reason for this is clear. Tests
can only ever verify a tiny sample of the expected be-
havioural envelope of the software and they are often
focused on verification of nominal function, with per-
haps a few limiting case examples. Other domains
such as electrical systems analysis also have an in-
finite number of possible numerical behaviours, but
for example, failure effect analysis is carried out by
abstracting these behaviours into qualitatively similar
regions, and concentrating on a worst case analysis.

All substantial software will enter unanticipated re-
gions of behaviour during its life and all software will
have to deal with external failures either from hard-
ware or other software, and for most software there
is limited understanding of how the system might be-
have.

Traditional formal methods are often proposed as
the solution to these problems, but they can be dif-
ficult to use, specification capture remains an issue,
and pragmatically these methods are too expensive
for the majority of software. Software Integrity Lev-
els are often used to demonstrate a specific level of
integrity(IEC61508, 1998) however SIL level speci-
fication most often results in a mechanism to change
product requirements into process requirements and
for higher levels may also require formal methods.
These mechanisms are typically very expensive to im-
plement and accordingly are used only for the highest
risk systems, leaving the vast majority of software de-
velopment relying solely on the talent and intuition of
software developers with a little testing to verify basic
functionality.

Testing covers a wide range of analysis, some of
which begin to move towards a wider ranging type
of analysis that can consider both more comprehen-
sive and/or abstract behavioural considerations, for
example functional analysis testing and cause-effect
graph testing. Other types of testing such as state-
ment coverage, path coverage, and modified condi-
tion decision coverage can help discover obvious in-
adequacies in test suites but they cannot reason about
overall behaviour and potential failure modes or prob-
lematic operating states. As far back as 1992 (Voas,
1992) proposed an analysis that identifies where faults
if they exist are more likely to remain undetected, and
although based on execution of test sets it in the spirit
of a broader assessment of quality.

Testing provides a very precise and accurate de-
scription of behaviour but as a result has low cov-
erage. What is missing are the lower precision but
higher coverage techniques, that can reveal more gen-
eral (good and bad) characteristics and potential prob-
lems.

Notice that lower precision does not imply inaccu-
rate. For example a simple analysis could abstract the
value of an input to good or faulty and propagate the
result to affected outputs of the system {good, defi-
nitely faulty, possibly faulty}. The analysis will be ac-
curate if it correctly categorises all outputs. At this
level we may not care about internal state, if it can
be shown that the fault can reach an output then the
system function(s) associated with the output are sus-
pect for this fault. Such an analysis could allow unde-
sirable characteristics of a system to be determined,



for example if the effects of hypothetical faults are
presented in terms of the system functions, any faults
that do not propagate within the input/output relation-
ships expected from system functions may be a con-
cern, particularly if the function is core or critical to
the application.

Notice the need in this example for some form of
functional description of the system that is formalised
enough to be used by an analysis tool. This is es-
sentially capturing higher level design knowledge to
assist the analysis, and techniques such as the Unified
Modelling Language (UML2) and Model Driven Ar-
chitecture (MDA) are starting to provide the higher
level information that will facilitate such a range of
analysis methods. As these modelling techniques are
developed the potential for design analysis should be
considered alongside the main focus of system speci-
fication and (automated) code generation.

3 KINDS OF ANALYSIS

Reliability engineering is concerned with ensuring a
system can perform its required functions for the re-
quired period of time. Reliability should be consid-
ered as part of both verification and validation activ-
ities since it is necessary to verify both that the de-
sign supports reliable provision of the functions of
the system via inherent (or architectural) reliability,
and subsequently to validate that the implementation
provides satisfactory failure characteristics consistent
with the expectations of the high level design. This
section will consider one area of validation that often
lacks a comprehensive analysis in software systems -
the failure characteristics of the system.

Software codes do not wear out or suffer manu-
facturing faults and since in essence software is pure
logic, it is easy to be seduced into believing that with
testing it will be perfect. In contrast, all physical sys-
tem engineers accept that both their product and the
environment it operates in will be subject to failure,
and experience shows that - although it is less readily
accepted - this is also the case for software. Faults in
physical systems are either due to manufacturing or
wear out, however faults in software are due to built
in flaws or unanticipated (hardware or software) op-
erating environments. The changing environment of
software often gives the end user the appearance of
ageing faults where parts of the software no longer
work properly and we are all familiar with the endless
updates that often then introduce new problems. Of
course the software never worked in the environment
that caused the failure, but to the user the environ-
ment may not appear any different, and even if it is,

the phrase “I don’t see why it should affect that...” is
commonplace from both end users and technical sup-
port staff. Probably the software was inherently frag-
ile in either its design or implementation and because
the testing only represented one specific instance of a
possible environment, a minor problem can propagate
and cause apparently unrelated failures.

For hardware devices it usually is possible to pro-
vide tests that will detect the vast majority of manu-
facturing defects, however for software it is impossi-
ble to provide sufficient tests to have anywhere near
the same level of confidence. The operating environ-
ment of software is also far more complex and diffi-
cult to specify compared to mechanical or electrical
systems (for example). The lack of wear-out makes
maintenance of software a much worse problem since
code can exist for an indefinite period of time and con-
tinuously form parts of new products. Of course it
is really the design being reused but for the reasons
above it is easy to reuse software in an environment
that uncovers latent faults.

The presence of wear-out faults ensures that hard-
ware engineers must use designs that are inherently
robust against failure and that failures are contained
as far as possible, and that in any case the worst ef-
fects of failures are assessed at design time. Un-
fortunately the lack of wear-out removes the focus
from these tasks in software design/implementation,
although clearly better consideration would lead to
higher quality software. Analysis methods that assess
failure mode behaviour include:
• Failure Mode and Effects Analysis (FMEA).

FMEA is an inductive bottom up approach that
analyses component (or input) faults on the be-
haviour of the system and its functions. SFMEA
is used to mean and FMEA targeted at software
to distinguish it from software that performs or
assists hardware FMEA. It is a comprehensive
analysis that considers large numbers of low level
faults and categorises the effects according to risk
based on the severity of functions potentially af-
fected and the detectability of the fault. The engi-
neer will assess the highest risk faults, and faults
that have unexpected consequences.

• Fault Tree Analysis (FTA) is a top down approach
that deduces the possible causes of undesirable
top level events. Fault tree analysis is good at
dealing with multiple faults, but when done man-
ually it is not good at finding all possible faults.

• Reliability Block Diagram is a diagrammatic
method for showing how component reliability
contributes to the success or failure of a complex
system. RBD is also known as Dependence Dia-
gram or DD.



The ability to perform such sophisticated analy-
ses relies on the fact that most faults lead to a spe-
cific behaviour or class of behaviours. Software, how-
ever, can have the highly undesirable characteristic
that any fault can lead to almost any effect, however
higher level programming languages and modelling
allow the compilers and transformation tools to pro-
vide behavioural and structural constraints that com-
bined with good system design limit failure modes
resulting in the possibility of a meaningful analysis.
Of course the tools used to transform models into
software must correctly enforce the required compu-
tational infrastructure, but as for current compilers,
widespread use, the relatively small and cohesive op-
erations involved and the mathematical formalisation
used ensures high reliability.

4 FMEA AS AN EXAMPLE

This section will outline the emerging software char-
acteristics that will facilitate the ability to objectively
analyse software reliability at design and implemen-
tation time using an FMEA approach.

A number investigations into Software FMEA
having been carried out, for example (Ozarin and Sir-
acusa, 2002; Nguyen, 2001; Bowles, 2001), however
such endeavours have been largely a manual task, ex-
tremely tedious and expensive in terms of engineer
time, and only justified for the most safety critical ap-
plications. Typically these analyses have been a re-
sponse to the requirement for a system FMEA in situ-
ations where the system contains software. The con-
cept of an FMEA focussed directly at software would
be valuable but will only be feasible when the analy-
sis can be carried out automatically and the software
engineer presented with a meaningful set of concerns.

Interest in SFMEA has been steadily growing and
some formal guidelines have been developed for ex-
ample the SAE G-11 RMSL division Software Re-
liability Subcommittee extending the Software Reli-
ability Program Implementation Guide SAE JA1003
(SAE-JA1003, 2004). However it is not the task
of those guidelines to develop new software analysis
techniques, and and the focus is on ensuring the best
available tools and practices are used to provide the
required level of quality.

In general the aim is not to produce an error
free system, but to demonstrate that the fault be-
haviour pertaining to both external and internal poten-
tial faults is understood and constrained. Therefore if
an software bug causes a module to produce an in-
correct result, the FMEA will have determined how
severe the impact on the system could be, and have

allowed actions to be taken to mitigate high risks. For
safety related systems the aim is only to ensure safety,
for other systems the aim is to ensure uniform quality
and reliability, so that for example faults in non essen-
tial functionality do not cause serious failures in core
functionality. Using a concrete scenario, faults that
can lead to loss of user entered data will typically be
higher risk than faults that simply require software to
be re executed, however risk is very much dependent
upon the specific application level functionality. Po-
tentially critical faults, critical modules or unexpected
failure modes can be identified and validation activi-
ties focussed. Implementation mistakes that lead to
undesirable or unexpected failure modes can be iden-
tified.

An FMEA is designed to extract specific abstract
characteristics of a system whilst basing its findings
on the details of the system design and implementa-
tion. It therefore has several properties that lead to a
different kind of analysis to those generally applied to
software:

• an FMEA aims to locate the worst case effects of
a comprehensive set of hypothetical faults or sys-
tem failure modes.

• FMEA does not verify functionality - that is a pri-
mary role of testing - and an adequately function-
ing system or design is the starting point.

• the aim is to identify failure modes. These are
characteristic ways the system can fail, usually
based in the way in which systems functions are
affected.

• Regardless of how much range and consistency
checking is done it will always be possible for an
incorrect but valid input to exist, and it is impor-
tant to know how badly it may affect the system,
such as which outputs can be affected and if any
longer term internal state might be corrupted.

These features imply that an abstract analysis is
required. For example data values may be considered
not as specific values but just as {faulty, nominal, pos-
sibly faulty}, if a behaviour data flow analysis is being
carried out using the actual code then all affected data
paths and affected control paths should be consid-
ered. For numerical variables a qualitative represen-
tation may be suitable, this approach has worked well
for automated FMEA generation of complex electri-
cal systems for example (Price et al., 1997; Lee and
Ormsby, 1993) that allow prediction of worst case
effects for whole regions of system behaviour since
even non-software systems may have too many pa-
rameters and attributes to test all numerical value per-
mutations. Software presents an even greater chal-
lenge in this respect since it contains vastly more non-



linear behaviours and states however techniques such
as abstract interpretation and model checking provide
formalisms, particularly if software is developed via
modelling techniques that explicitly support the tech-
niques by limiting unnecessary complexity. The key
will be to design and model in such a way that com-
plexity is constrained, hierarchical and compositional.

A way of interpreting the detailed analysis results
is required, so that failure modes can be identified.
The functions of a system are ideal since they have a
close link to the original requirements. The functions
must be captured in a form where they can be used
by an analysis tool. One such approach is the Func-
tional Interpretation Language (FIL)(Bell et al., 2007)
that has been successfully used to build hierarchical
functional models for electrical systems, and should
be general enough to apply to software. Such meth-
ods are designed to provide a formalised framework
that allows automated reasoning, while also provid-
ing an intuitive way for engineers to provide applica-
tion information. Some of the information is already
available, for example UML use cases identify user
level input/output relationships that have a close re-
semblance to the trigger/effect relationships that iden-
tify function state (inoperative, achieved, failed, unex-
pected) in the FIL.

Code execution is neither feasible nor required,
and specific values are not considered unless they
have a specific and distinct behavioural significance.
The analysis can be carried out at a number of lev-
els from system block diagrams, to state charts to the
code itself providing levels of effect detail. High level
analysis can demonstrate the effects of architectural
choices on potential failure behaviour, and low levels
can both verify that implementation details have not
modified the high level effects, as well as identify-
ing specific local vulnerabilities. Lower level or code
analysis must make use of pseudo-static methods that
abstract behaviour as necessary for failure analysis. In
an investigation into automated SFMEA (Snooke and
Price, 2008), the code is not executed and modified
functional dependency modelling (Chen et al., 2004;
Chen and Wotawa, 2003; Mateis et al., 1999) and data
path analysis combined with shape analysis (Corbett,
2000; Sagiv et al., 1998) that abstracts out the form of
data structures allow worst case effects to be consid-
ered. To take an example, if some code implements a
list, an error in the data value in the list will be pre-
dicted to propagate into any code that accesses the list.
It is not necessary to consider where (or even if) in an
execution cycle it will happen since sooner or later it
can. If a failure mode cannot happen for some (ap-
plication specific, or logical, or value related) reason
then documenting the implicit constraints and adding

the relevant checks into the code (possibly automati-
cally) will ensure that the system continues to exhibit
the required and tested behaviour.

We therefore envisage an analysis that does not
actually execute the code but is able to reason about
worst case analysis in the presence of faults. Clearly
the technicalities of such an analysis are complex
and some types of coding are more easily amenable;
for example embedded code that does not allow dy-
namic data structures is clearly much easier to anal-
yse. However as modelling and languages develop
more sophisticated ways to design software and pre-
vent programmer errors the constraints imposed also
make the analysis easier.

The failure modes of software based systems have
been considered by several studies (Raheja, 2005; Cz-
erney et al., 2005; Goddard, 2000). From these there
are a set of generic failure modes associated with soft-
ware, many of which are catastrophic at the level of
a software process such as failure to execute, exe-
cutes incompletely, failure to return from ISR. Others
such as coding errors, logic errors, I/O errors, exter-
nal hardware/software failure, definition of variables,
omissions in the specification, insufficient memory,
operational environment, resource conflict are gen-
eral and require specific instances to be considered
within the context of system functions and implemen-
tation. Hardware failures such as EMI/RFI, power
outage, corrupted memory, loose wires and cables are
not the concern of the software design, but rather of
the system architecture and can be addressed via ex-
isting hardware design techniques.

Other systems have similar distinctions for exam-
ple failures in electrical systems may cause catas-
trophic short-circuits and unexpected thermal over-
load in the wires of the system, but most affect only
(loss of) functionality. Design rule checking and good
design practice helps alleviate many of the catas-
trophic problems in electrical systems and in soft-
ware we have exception handlers, strong typing and
other widely used techniques to prevent catastrophic
execution failures. Functional failures are currently
much more difficult to assess and detect in software,
and such an analysis only makes sense once the sys-
tem structure and behaviour is somewhat localised.
The application specific failure modes then become
specific combinations of function failure, possibly in-
cluding an abstraction of the mechanism that causes
the failure.

In electrical systems physics provides fault local-
isation and results in limited effect propagation and
therefore most faults do not lead to total failure. In
software at the lowest level almost any fault is like this
and can also lead to almost any effect. For example



writing in assembly language on a Von Neuman archi-
tecture computer a fault leading to data being written
to the wrong address can lead to any effect when that
data is interpreted as an instruction.

Physical constraints such as spatial partitioning,
mass, manufacture cost and material strength consid-
erations tend to limit structural complexity, leading
to layers of structuring and separation of functions
which in turn limits fault impacts. One of the diffi-
culties with complex software systems is the relation-
ship between faults and effects. A minor fault can, for
example, cause cascading errors in a software system
or have almost invisible but very complex, subtle, and
long lasting side effects. The result is that software
often has very non-uniform quality in terms of the ef-
fects of potential failures, and it is not clear where
effort should be expended to improve quality.

Modern software languages both encourage and
enforce higher levels of structuring and enforced
properly by compilers this helps to inherently con-
strain faults. Decades ago, high level-languages in-
troduced typed data and procedures to help structure
data and code and these have been refined ever since.
OO methods provide common structures to partition
data with code. Aspect oriented programming further
abstracts cross cutting concerns such as logging, and
security and perhaps allows separate analysis of these
concerns, similar to the electrical, mechanical and hy-
draulic domain subsystems of products are analysed.
Gradually a computational infrastructure is emerging
that (once it is trusted) provides the analogy to the
physics of the engineering world. These techniques
make SFMEA analysis feasible in that they constrain
potential fault impacts.

As an example, structural constraints imposed by
the language can have a strong effect on the propa-
gation of detailed faults. For example, in figure 1,
a language has been used that separates memory into
data and instructions and prevents data from being ex-
ecuted. Moreover, structuring of the instructions en-
sures that faults in some instructions can only affect
some output (functionality). The language also al-
lows the data memory to be partitioned by typing and
data structure separation, preventing faults in some lo-
cations from propagating to others. Conversely lan-
guages that support facilities such as arbitrary pointer
arithmetic allow faults to propagate very widely, seri-
ously reducing FMEA efficacy.

However analysing even OO language code for
failure propagation is a difficult task, and the hope is
that approaches such as MDA may improve the sit-
uation and future developments will directly support
failure and other types of engineering analysis.

Behaviour outputinput

Data

Failure domain

Figure 1: Failure domain localisation in software

5 CONCLUSIONS

This paper argues that reliability techniques should be
developed that are of use in general software as well
as for traditional safety critical applications. Some
of the motivation does come from application areas
such as the automotive environment where software
is replacing hardware and there is a need for reliabil-
ity analysis for software equivalent to that once per-
formed on the hardware. The engineers working in
these domains are used to using many types of anal-
ysis to improve non functional product aspects. The
second part of the motivation comes from the obser-
vation that software is now very complex, with many
layers of abstraction that both provide the potential to
allow improved analysis but also provide the potential
for serious and difficult to find latent failure modes.

The fundamental assumption is that complex soft-
ware will encounter faults of one form or another,
from coding errors, to specification oversights and as-
sumptions about the operating environment; and we
need to be able to quantify the potential impacts of
faults and ensure acceptable behaviour in response
to faults. It is only with the advent of higher level
programming, specification and modelling techniques
that fault behaviour is constrained enough, to make
such an analysis feasible and hopefully the situation
will improve, particularly if new languages and mod-
elling provide a computational infrastructure that has
analysis designed-in rather than added-on. As pointed
out by (Leveson, 2004) characteristics such as safety
and reliability are emergent properties, and analysis
of such properties is possible for physical systems
because they can be analytically reduced. Feedback
loops and nonlinear behaviour create hard to anal-
yse emergent behaviour, therefore metamodelling that
limits the use of these characteristics and makes ex-
plicit the intended effects would be essential to fa-



cilitate non functional design analysis tasks. Some
work is already being done in the area of improving
the utility of higher level modelling, for example (Iwu
et al., 2007) proposes a Practical Formal Specification
that integrates with UML in the area of safety critical
development, however there is a need for improved
modelling with semantics that allow a range of low
effort light weight automated analysis for everyday
software.

This paper only sketches a vision, however there
are already many techniques available that can be
connected to develop novel types of analysis for some
languages and modelling environments. Engineer-
ing reliable software needs to be a combination of
a culture where failure modes are accepted, foreseen
and assessed combined with design and implemen-
tation formalisms that facilitate automated analysis
and verification. This does not mean formal meth-
ods in the traditional sense but rather flexible and ex-
pressive modelling, metamodelling, and specification
techniques that are accessible to application engineers
but also have with semantics and syntax that can be
processed by sophisticated tools. The tools that per-
form the analysis must present the engineer with con-
cise and easily understood explanations of issues and
for this to happen software engineering must consider
a wider range of analysis options than syntax check-
ing and testing.

REFERENCES

Bell, J., Snooke, N. A., and Price, C. J. (2007). A language
for functional interpretation of model based simula-
tion. Advanced Engineering Informatics, 21(4):398–
409.

Bowles, J. B. (2001). Failure modes and effects analysis
for a small embedded control system. In Annual Re-
liability and Maintainability Symposium, pages 1–6.
IEEE.

Chen, R., Kob, D., and Wotawa, F. (2004). Exploiting
static abstraction of data structures for debugging. In
MONET Workshop on Model-Based Systems at ECAI
2004, Valencia, Spain.

Chen, R. and Wotawa, F. (2003). Debugging with an
enriched dependency-based model or how to distin-
guish between aliasing and value assignment. In Pro-
ceedings of the International Workshop on Qualitative
Reasoning (QR-2003), Brasilia, Brazil.

Corbett, J. C. (2000). Using shape analysis to reduce
finite-state models of concurrent Java programs. ACM
Transactions on Software Engineering and Methodol-
ogy, 9(1):51–93.

Czerney, B., D’Ambrosio, J., Murray, B. T., and
P.Sundaram (2005). Effective application of software
safety techniques for automotive embedded control

systems. In SAE 2005 World Congress and Exhibi-
tion.

Goddard, P. L. (2000). Software FMEA techniques. In Re-
liability and Maintainability Symposium, pages 118–
123. IEEE, IEEE.

IEC61508 (1998). Functional Safety of Electrical /
Electronic / Programmable Electronic Safety-related
Systems (IEC 61508). International Electrotechni-
cal Commission, International Electrotechnical Com-
mission, 3 rue de Varembé, Geneva, Switzerland,
http://www.iec.org.ch edition.

Iwu, F., Galloway, A., McDermid, J., and Toyn, I. (2007).
Integrating safety and formal analyses using UML
and PFS. Reliability Engineering and System Safety,
92(2):156–170.

Lee, M. and Ormsby, A. (1993). Qualitative modelling of
the effects of electrical circuit faults. Artificial Intelli-
gence in Engineering, 8:293–300.

Leveson, N. G. (2004). A systems-theoretic approach to
safety in software-intensive systems. IEEE Trans. on
Dependable and Secure Computing, 1(1):66–86.

Mateis, C., Stumptner, M., and Wotawa, F. (1999). Debug-
ging of java programs using a model-based approach.
In 10th International Workshop on the Principles of
Diagnosis (DX’99), pages 166–173.

McDermid, J. (2001). Software safety: Where’s the ev-
idence? In 6th Australian Workshop on Industrial
Experience with Safety Critical Systems (SCS ’01).
Australian Computer Society. Available: http://www-
users.cs.york.ac.uk/ jam/.

Nguyen, D. (2001). Failure modes and effects analysis for
software reliability. In Annual Reliability and Main-
tainability Symposium, pages 219–222. IEEE.

Ozarin, N. and Siracusa, M. (2002). A process for fail-
ure modes and effects analysis of computer software.
In Annual Reliability and Maintainability Symposium.
IEEE.

Price, C. J., Pugh, D. R., Snooke, N. A., Hunt, J. E., and
Wilson, M. S. (1997). Combining functional and
structural reasoning for safety analysis of electrical
designs. Knowledge Engineering Review, 12(3):271–
287.

Raheja, D. (2005). Software FMEA: A missing link in de-
sign for robustness. In SAE 2005 World Congress and
Exhibition. SAE International.

SAE-JA1003 (2004). Software Reliability Program Imple-
mentation Guide. Society of Automotive Engineers,
http://www.sae.org/technical/standards/ja1003 200401
edition.

Sagiv, M., Reps, T., and Wilhelm, R. (1998). Solving
shape-analysis problems in languages with destructive
updating. ACM Transactions on Programming Lan-
guages and Systems, 20(1):1–50.

Snooke, N. and Price, C. J. (April, 2008). An automated
software FMEA. In Proc. International System Safety
Regional Conference (ISSRC 2008), Singapore.

Voas, J. M. (1992). Pie: A dynamic failure-based technique.
IEEE Transactions on Software Engineering, 18:717–
727.


