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Abstract
This paper proposes a fuzzy logic approach to al-
low qualitative symptoms that have been gener-
ated from order of magnitude qualitative simula-
tion to be utilised as a fault detecting diagnostic
system. The symptoms are interpreted as fuzzy
rules and this allows numerical observations to
be used as input to the symptoms and a ranking
of faults as the output. The rule based approach
results in a compact and fast (and fully testable)
diagnostic system, by precompiling the results of
off-line qualitative simulation and FMEA analy-
sis. This paper outlines the technique which is be-
ing applied to automotive and aerospace electrical
and fluid flow systems.

1 Introduction
This work brings together several techniques. Order of mag-
nitude qualitative simulation provides nominal and fault be-
haviour which can be combined with functional interpreta-
tion [1; 2] to produce qualitative diagnostic symptoms (or
rules). Fuzzy logic provides a formalism for using such
Boolean rules within a real valued system, together with the
ability to capture uncertainty (not probability). In this work
we interpret qualitative rules using fuzzy assignment and do
not incorporate fuzzy sets into the qualitative simulation it-
self [3] and numerous subsequent work. Qualitative order
of magnitude (OM) reasoning separates qualitatively dis-
tinct behaviour and also allows qualitatively significant (ex-
treme) effects for faults. Exaggeration reasoning provides a
concept for the necessary scaling down of those effects to
match real observations.

The remainder of this paper will provide background on
exaggeration reasoning and OM representation, followed by
a definition of the symptoms available in Section 4. Section
5 considers the fuzzy mapping of OM qualitative values and
faults. Finally Section 6 provides a small example followed
by conclusions.

2 Background
Exaggeration reasoning (ER) is a comparative analysis tech-
nique often employed by technicians and engineers to anal-
yse system behaviour and malfunction and provides an alter-
native differential qualitative analysis [4; 5] to perform com-
parative analysis. Avoiding qualitative differential equations
(QDE) is also a feature in the two level simulation strategy

underlying our symptom generation where global steady
state power flow analysis is combined with a higher level
local component state based model. The global analysis we
use exploits the same energy flow principles as Bond graphs
[6] but unlike [7], does not generate QDEs.

The concept of ER was investigated by Weld [8]. The
strategy is to qualitatively exaggerate an input perturbation,
and subsequently scale the effects of a resulting simulation.
To achieve this Weld utilised a qualitative magnitude space
based on hyperreals. In essence this incorporates infinites-
imal (but non zero) values (negl ), and infinite (∞) into the
qualitative sign {−, 0,+}based quantity space and provides
exaggeration by mapping an increasing perturbation into an
infinite value and a decreasing perturbation into an infinites-
imal value. Thus as an example the simplest quantity space
for resistance magnitude is {0,negl , r,∞}, where r repre-
sents a resistance value (much) greater than negl.

It is necessary to understand that exaggeration reasoning
is not guaranteed to produce a correct result if the system
does not respond monotonically to a fault within the range
of an exaggeration. Put another way, it must be possible for
the qualitatively exaggerated effect to be ‘scaled back’ to
represent a less severe version of the fault. For example in
some (poorly designed) electrical system, a lower than nor-
mal power resistor may cause a functional failure, such as
a fast running motor. We can reason that excessive speed
in the motor could be caused by a low resistance fault, and
faster motor the lower the errant resistance. However a qual-
itatively extreme case of a zero resistance causes thermal run
away or a fuse blow and zero motor speed. In this case an
order of magnitude representation (section 3) for the fault
allows the effects to be distinguished.

For the two level simulation strategy we avoid this prob-
lem in two ways. The level one steady state resistive net-
work analysis is a linear system. The level two analysis is
based on explicit state based models, and these models will
either provide a monotonic behaviour as a formula that de-
fines a set of state changes (for example the OM time re-
quired to fill a tank based on an OM flow rate), or must
provide a behaviour for any relevant (exaggerated) value.
The OM simulation supports multiple levels of exaggera-
tion, each with its own scaling function, resulting only in
the requirement that the system is monotonic within each
state.

The motivation for our use of ER is twofold:

• ER is suited to Failure Modes and Effect Analysis
(FMEA) where the required result is a comparison be-
tween nominal and failure mode behaviour.



• The exaggeration proposed by [9] is based on infinites-
imals, and we propose that it can be extended to in-
clude OM representation because the OM assumption
(see section 3) states that each magnitude is insignifi-
cant (infinitesimal) w.r.t. a higher one.

The OM reasoning allows a finer grained behaviour to
be produced than qualitative sign algebra, in particular phe-
nomena of very different significance can be differentiated.
For example in an electrical system we can separate signal
voltage and/or power levels from actuator power levels by
exaggerating by an order of magnitude, thus allowing qual-
itative behaviour prediction where faults mix these values.

The final part of exaggeration reasoning is scaling of the
behavioural result. This is done by allowing symptoms to be
generated based on the exaggerated values, to produce ex-
aggerated symptoms and scale the results mapping between
exaggerated qualitative symptoms and actual system obser-
vations.

Fuzzy logic (FL) provides one way to map the Boolean
logical symptoms containing atoms referring to qualitative
magnitudes to the precise world of system measurements.
Defining a fuzzy membership function for the qualitative
values allows a mapping to be produced between the accu-
rate (correct), but imprecise qualitative values and the pre-
cise but potentially inaccurate system measurements.

The selection of the fuzzy membership for the qualita-
tive exaggerated values allows the scaling to take place, but
also allows operating regions to be identified. Considering
an automotive system example, a nominal qualitative OM
value for current flow of mA magnitude, may map to fuzzy
set µmA A for some LED and fuzzy set µmA B for some relay
coil (Figure 1). The mappings can be defined at the vari-
able type, component class, or component instance in de-
sign or component instance level, perhaps becoming more
specific at the lower levels (and thus improving diagnostic
ability). The ranges may be based on component specifica-
tion, or expected system operating ranges. In the example
the LED data sheet specifies IF = 30mA (Continuous For-
ward Current), IFP = 100mA (Peak Forward Current), and
by experiment a visible level of illumination requires 5mA.
The component is usually operated at around 25mA to al-
low for underrating and tolerance of other components. The
relay has a nominal current specification of 160mA, and is
considered to be one of the low power (signalling level) de-
vices in the system to differentiate it from the ‘high power’
components such as actuators and halogen lamps for exam-
ple.
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Figure 1: Two interpretations for the qualitative value mA

3 Orders of magnitude representation
The intention behind the OM representation is to sepa-
rate significantly different behaviours and has been inves-

tigated for generalised reasoning by several authors [10;
11], however in this work we focus on its application to the
two level modelling strategy documented in [12]. The OM
circuit analysis assumption specifies that

nr 3a � r 3(a+1) (1)

where r 3a is a qualitative value a orders of magniturde
smaller than r. In practice the structure and behaviour mod-
elling should ensure n is small enough to satisfy this. For
example multiple resistors in series should not have a total
numerical resistance at a higher order of magnitude than an
individual resistance; and many ‘short’ duration events do
not sum to the duration of a ‘long’ event. This allows signif-
icant behavioural distinctions to be included in the reason-
ing, for example a short circuit fault between the coil and
switch of a relay does not provide enough current to operate
the motor controlled by the relay.

Three order of magnitude representations (3OM) are a
natural way to identify significant differences that exceed
the parametric tuning of a system. Consider the significance
of ‘millionaire’ and ‘billionaire’ for example. In science and
engineering there are standard 3OM prefixes for most quan-
tities, for example {mΩ,Ω,KΩ,MΩ, ...}, or approximately
{mS,S,H,Day,Year}.

3.1 OM modelling
Using the OM representation and generalised Ohms law
(E = F · R) we can allocate flow in a resistive network sup-
plied with a voltage E using Table 1. The symbol t is used
to specify the special case of a short circuit, since infinite
flow makes little physical sense. An open circuit (lines 3,6)
allows no flow. Complex circuits are reduced to a single re-
sistance using series/parallel/star reduction. Division of OM
values results as usual in index subtraction.

Effort, E Resistance, R Flow, F
0 0 ?
0 r 2n 0
0 ∞ 0
u 2m 0 t
u 2m r 2n f 2(m−n)

u 2m ∞ 0

Table 1: OM Qualitative effort flow assignment

The flow through any element of a the network can then
be deduced by expanding the network using SPS technique
[13; 1].

In the level two model [12] OM quantity (Q = F × t) is
represented as states with OM time conditional events con-
trolling state changes. For example a set of events (tank fill)
that cause a change from the empty to full state of a storage
tank of capacity size could be defined by a conditional event
transition: ‘if flow == f 3n tank fill after t 2(n+size)’.

3.2 Fault exaggeration and magnitude labeling
Sign based QR allows representation of extreme effects, for
example that a pipe fracture leads to zero downstream flow
and total loss of substance to the atmosphere. There is no
possibility to represent a partial leak, since adding a resis-
tive connection between the pipe and external atmosphere
will not change the qualitative flow in the pipe. The OM
representation allows a less extreme exaggeration that can



provide more details. For fluid flow we define flows of the
order litres per second as f 33 since according to the SI units
f 0, represents m3/s. For example given a fluid flow system
with a leak fault, and down stream resistance of Ω = r 33,
E = u and idealised pipes Ω = 0 the simulation will calcu-
late flows in table 2.

Fault flow to Atm downstream flow
Nominal (Ω = ∞) 0 f 33

Minor Leak (Ω = r 33) f 33 f 33

Leak (Ω = r) f f 36

Major Leak (Ω = r 23) f 23 i 39

Fracture (Ω = 0) ∞ 0

Table 2: Leaky pipe fault flow assignment

A Minor Leak at Ω = r 33 predicts a flow into the atmo-
sphere, but does not demonstrate any qualitatively signifi-
cant reduction in flow at the output. The exaggerated minor
leak demonstrates the situations where a seepage causes a
visible indication in the atmosphere, but no significant effect
at the output (though there might be air present if this circuit
was on the negative suction side of a pump since the simu-
lation can model substance flows). Secondly, a significant
leak causes the additional effect of a loss of downstream
flow. The extreme Fracture case is qualitatively different
again and since there is no resulting output flow, which may
be a similar effect to a valve being closed.

4 Symptom Generation
Symptoms are a relation between observations and sets of
component faults and can be produced automatically by
comparison of nominal and failure mode simulations of the
system [1]. That algorithm uses the available state space of
the system encountered during production of an FMEA to
extrapolate all available consistent minimal (w.r.t. observa-
tions) symptoms, using functional interpretation to extrapo-
late the state space based on observed correlations between
structural elements and system function. The starting point
for the work of this paper is a consistent set of symptoms,
that have been derived by simulation. It is worth noting that
the FMEA production requires a system schematic, qualita-
tive component models (with fault descriptions), and a func-
tional model that abstracts qualitative system behaviours
into system functions. Production of the symptoms in [1]
requires no further information.

A symptom is defined as a tuple S = (E,F ) such
that E is a first order sentence referred to as a symptom
expression (rule antecedent) that when satisfied indicates
F = {M1,M2, ...} as component failure modes (rule con-
sequent). E(s) evaluates E on a specific system state s ∈
OBS . In [1] E is always a simple conjunction of equiva-
lence propositions that represent measurements. Faults may
provide a fault domain D(M), such as a measurement over
which the fault can be characterised, for example resistance
for an electrical corrosion fault.

A trivial example symptom expression produced auto-
matically from an FMEA of a simple torch might be

if STATE(sw)↔ on ∧ F(lamp)↔ mA∆A
implicates {switch.corroded contact,

battery.terminal loose}
(2)

In this example ‘mA∆A’ is a comparative OM observation
of electrical current flow magnitude ‘mA’ for an expected
flow ‘A’. ‘on’ is a switch state from the level two model,
mapping to a qualitative switch resistance value of 0.

To enable the symptom generator to produce symp-
toms that can exonerate faults a symptom expression
is split into two parts; Ec a Boolean conditional, and
Eo a Boolean implicator expression. This also al-
lows fault detection to allow evidence from nominally
operating parts of a system to exonerate faults. The
symptom generator may assign Ec ≡ STATE(sw) ↔ on
and Eo ≡ F (lamp) ↔ mA, within a symptom S =
((Ec, Eo), {switch.corroded contact, battery.term...} to
ensure:

(Ec ∧ Eo, {switch.corroded contact, battery.term...})
(Ec ∧ ¬Eo, {¬switch.corroded contact,¬battery.term...})

(3)
(Ec ∧ Eo) implies {M1, ...}
(Ec ∧ ¬Eo) implies {¬M1,¬...}
¬Ec rule invalid

Ec must be satisfied for the symptom to be valid. Any
symptom where ¬Ec = > is invalid and cannot contribute
any fault information. Any valid symptom that is not satis-
fied (i.e. Ec ∧¬Eo) can be used to exonerate the associated
faults. For the example if the switch is on and the lamp is
active then we can predict that the lamp is not blown, the
switch contact is not dirty, and the wire to the lamp is not
fractured. A valid symptom that is satisfied implicates the
associated faults. A symptom that is not valid provides no
information.

The observations present in symptoms are derived by
comparison of nominal behaviour and the observed failure
behaviour. This information is maintained for all symptom
predicates and the notation A∆B is used in following sec-
tions to indicate an observation A when B was expected.
We will use this to allow the exaggerated values to be inter-
preted and scaled on a type, system, or component or failure
mode basis in section 5.

5 Fuzzy Scaling
A fuzzy set is used to provide a concrete numerical domain
for OM qualitative values. We use trapezoidal fuzzy sets
with the usual parametric representation [a, b, α, β], for ex-
ample V in Figure 2 is defined as [10.8, 13.8, 0.8, 1.2].

Individual component faults are marked as exaggerated
or not exaggerated. Some (idealised) fault models are ac-
curately represented by the available qualitative values, for
example a short circuit (Ω = 0) and open circuit (Ω = ∞).
Exaggerated faults are used where a simple mapping of an
example fault perturbation will not produce a qualitatively
significant behaviour.

This work proposes fuzzy membership functions as a rel-
atively intuitive mechanism to map numerical observations
into a membership level for qualitative values used in diag-
nostic rules, while at the same time allowing the numerical
operating ranges of the system to be specified.

Fuzzy membership functions may therefore be defined for
each qualitative value associated with any specific observa-
tion, both for nominal and exaggerated values. For example
if the nominal operating voltage for an automotive circuit is
between 12.4V and 13.8V falling into the 3OM qualitative
value µu 30 = V, and an exaggerated fault corroded terminal



causes a lamp output voltage to be µu 33 = mV, we might
map mV∆V for lamp.V to a voltage range of 0-10.8V as
in Figure 2. The exaggerated symptom is mapped back to

V

15
lamp.V 

0

1

membership
level

10 12.4 13.810.80.1-1
0

exaggerated
mV     V

Figure 2: Automotive scaling example

the operating range of the system. The exaggerated scaling
is that when the fault is mapped from an OM higher than
normal resistance to merely out of the range of nominal op-
eration, the effect is mapped from an OM lower voltage to
merely out of the range of nominal voltage. This mimics the
reasoning “if the contact is very badly corroded the circuit
will contain a very high resistance in series with the lamp
and therefore there will be almost no current flow to the
lamp with almost no voltage drop across the lamp ...there-
fore, a lower than normal voltage across at the lamp may in-
dicate corrosion at the switch”. The chain of reasoning may
be of any length, traversing more than one domain, depen-
dent on the modelling. If required a nominal mV set could
also be defined if there is nominal operation at that level to
interpret.

An engineer (or some other method such as numerical
simulation) can be used to identify the nominal operating
ranges, and any exaggerated effects can have suitable ranges
and membership functions identified for their scaled numer-
ical effect.

We define unique membership functions µx and µA∆x

within the same real order of magnitude since the former is
a nominal operating range and the latter is a scaled OM ex-
aggeration from that range. Multiple nominal ranges may
exist, for systems with behaviour ranging over more than
one qualitative OM for different operating modes (imagine
a somewhat unlikely example of an oil storage tank that
‘fast fills’ fills and ‘slow empties’ through the same pipe,
and where we can only measure flow rate and not direc-
tion). The exaggerated versions of each OM will fill the
real valued domain space between them as in Figure 3. µx

are shown in black (dark) and µA∆x are shown in orange
(lighter) colours. The exaggerated flow set in Figure 3 rep-
resents both Liter/hour (L/hour) as an exaggeration of the
nominal value L/s as well as the exaggeration of L/s from
a nominal value of L/hour. In this example the exaggera-
tion scaling uses a progressive mapping, contrasting with
the hard mapping in Figure 2, these two approaches are dis-
cussed in section 5.3. The filled regions indicate the ex-
pected ideal range for nominal operation with a reducing
membership for values considered to be outside of ideal op-
eration, but within design tolerance. Membership of 0.5 pro-
vides neither indication or exoneration for a rule using the
set and thus provide a common point for exaggerated and
non exaggerated sets.

5.1 Fuzzy interpretation of faults
To allow symptoms to implicate and exonerate faults we de-
fine a domain for faults as in Figure 4. Faults have a do-
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exaggerated
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exaggerated
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L/hour 
0

L/day 0

exaggerated
L/hour cf. L/s 

output observation keypoint scale

exaggerated
L/day cf. L/s 

Figure 3: Default progressive exaggeration membership
functions

main representing ‘strength of the fault indication’ or alter-
natively fault rank, where -1 is absent, and 1 is present, for
fault exoneration and implication respectively. The exoner-
ation set µM is used to deal with valid but unsatisfied symp-
tom effects.

Fault response
(strength of fault indication) 

0

1

membership
level

(confidence)
exoneration

1
0

implication
-1

Figure 4: Binary fault fuzzy representation

The reason for this definition of the fault domain is due to
the centroid defuzzification required to produce a crisp fault
response (ranking) value in the fully implicated to fully ex-
onerated range. A membership of µF is required to fully
implicate a fault at the centroid of the set (i.e. fault response
1 on figure 4). The membership of µF is required to fully
exonerate a fault at the centroid of the set. The non truth
functional nature of fuzzy implication [14] using the stan-
dard definition of µF as 1−µF is asymmetric on the domain
{−2, 2} required to produce a µF centroid at -1 and is thus
problematic if we truncate the set (to provide the conditional
element of the symptom). The sets used in figure 4 allow a
fault response membership function to be generated for any
antecedent truth value.

Following standard practice for fuzzy rule interpretation,
the evaluation ofEc on some set of real valued inputs values
results in an antecedent truth value, T (Ec), and similarly for
Eo. Assuming T (Ec) = 1, then µEo

is a set in the fault re-
sponse domain representing T (Eo) = 1 and µEo

is a set rep-
resenting T (Eo) = 0. More generally, the center of the out-
put set is 2(T (Eo) − 1), and its extent is 2. The parametric
definition of the output set provided by a symptom observa-
tion is therefore µEo = [2(T (Eo)− 1), 2(T (Eo)− 1), 2, 2].
Clearly, a valid symptom withEo = 1 will provide no exon-
eration, and Eo = 0 will fully exonerate the fault. Eo = 0.5
is a fault with a truth value of 50% so it will provide a fault
rank of 0 (no diagnostic information), due to equal levels



of evidence both for and against the fault. Figure 4 if inter-
preted as the result of two symptoms (T (Ec) = 1) both as-
sociated with a fault, shows just such a case where we have
two contradictory indications. A defuzzification (centroid
method) will result in a fault response of 0 (no implication
either way).

Although the support for µM and µM covers the inter-
val [−3, 3], centoid (and other common) defuzzification of
symptoms as described can only result in output values in
the interval [−1, 1], due to the symmetry of the sets and the
restriction of the centers to [−1,+1]. In addition it is clear
that exoneration is of equal ‘value’ to implication, although
this could be changed if desired by reshaping the sets.

5.2 Conditional symptoms
The symptoms are conditional which for the Boolean case
allows symptoms to be restricted in their scope. The rele-
vance of specific observations can be narrowed, for example
no output does not usually indicate a fault if the system in
the off state. The Boolean semantics of Ec = ⊥ are that the
symptom cannot be used to either implicate or exonerate the
fault (n/a), and conversely Ec = > says that the symptom
should provide a definite fault prediction. Translating this
to truth values implies intuitively that the membership level
of the fault response output set should be related to validity
of the rule T (Ec). The min function is the most commonly
used fuzzy implication method used to reshape the conse-
quent set µEo

to produce µM in the fault response domain
resulting in a truncation of the output set membership:

µM = min(T (Ec), µEo) (4)

Evaluation of T (Eo) and T (Ec) is a straightforward case
of evaluating each predicate by mapping sensor values to
a membership level for each fuzzy set in the relevant do-
main, and using fuzzy operators to combine these val-
ues. We utilised the common Zadeh operators µA AND B =
min(µA, µB) µA OR B = max(µA, µB) to produce the an-
tecedent truth value.

Unlike Fuzzy Associative Matrices [15] which provide
only one rule for each fuzzy output set, our rule generator
will typically generate multiple rules for a given fault. Intu-
itively the symptom with the strongest evidence prevails, so
the set with the highest membership is selected for inclusion
in the consequent and this is consistent with the usual Fuzzy
rule output aggregation. i.e. if symptoms S1, S2 . . . Sn exist
where (∀S1...n)(M ∈ F (S1...n)) then

µM ′ = max(µM (S1), µM (S2) . . . µM (Sn)) (5)

The final numerical fault response M ′ is produced by cen-
troid calculation on µM ′ .

5.3 Progressive fault sets
Faults may also be represented over an OM domain, result-
ing in a number of symptoms that indicate sets from the
same fault domain (Figure 5). Multiple symptoms allow the
response to act in a progressive way based on multiple OM
observations.

If a single fault domain D has faults
MD,MA,MB , . . .Mm with predefined sets
µMD

, µMA
, µMB

, . . . µMm
we can use the aggregation

rule µD = µMA
∨ µMB

∨ . . . µMm
∨ µMD

(equation
5) given output sets are reshaped in accordance with the
individual fault responses for 0 ≤M ′

A ≤ 1:

µM ′
A

= min(M ′
A, µMA

), similarly for B,C...etc (6)
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Figure 5: Faults sharing a fault domain

The exoneration set is logically defined as the negated con-
junction for

µMD
= ¬(µMA

∨ µMB
∨ . . . µMm

) (7)

however to avoid the problematic negation in the computa-
tion of the exoneration set, negation of the truth values is
used to compute µMD

as follows for −1 ≤M ′
A ≤ 0,

µMD
= µMA

∧ µMB
∧ . . . µMm

µM
′
D

= min(M
′
D, µMD

)
where,

M
′
D = min(−M ′

A,−M ′
B , . . .)

(8)

Any fault setMx that does not produce a result set µM ′
x

does
not define a truth value M ′

x and is excluded from µMD
.

6 Example and Diagnosis
We are not concerned with the complexity of the simulation
or size of the system in this work because the simulation and
symptom generation has been proven on large multi-domain
systems [16], and so for reasons of space, we use Figure 6
to illustrate the interpretation and diagnosis of a very simple
fluid flow system.
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+-
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pump

flow R(pipeT = 0)

pipe enginestorage tank

vent

outlet

R(outlet =       ) source

motor
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R(engL =        )

R(motor =       )

V(impeller) = F(motor)

impeller

leak

R(leak =       )

switch
ON: R(switch = 0 )
OFF:R(switch =      )

Figure 6: Fuel System

The pump links motor electrical current flow to the pump
effort in a fluid flow circuit. We will assume for this example
that the pump input voltage is E(pump) = u. Normally
E(impeller) = u, but it has a fault mode ‘binding’ which
lowers its output so for binding E(impeller) = u 23. The
pipe can have a variety of leaks of different severity: minor
leak R(leak) = r 26 ; leak R(leak) = r 23 ; major leak
R(leak) = r 30 ; fracture R(leak) =∞.



Table 3 shows a few example results from a simulation
for the state when the pump is on; in all cases the nominal
flow is F (engL) = f 33.

Fault observation exaggerated
pipe.minor leak F (engL) = f 33 nominal
pipe.leak F (engL) = f 33 No
pipe.major leak F (engL) = f 36 Yes
pipe.fracture F (engL) = 0 No
pipe.blockage F (engL) = 0 No
impeller.binding F (engL) = f 36 Yes

∧ pipe.minor leak F (engL) = f 36 Yes
∧ pipe.leak F (engL) = f 36 Yes
∧ pipe.major leak F (engL) = f 39 Yes
∧ pipe.fracture F (engL) = 0 Yes

Table 3: Example failure results

The symptom generator will produce symptoms such as:

S1 : when V (pump)↔ u
if F (engL)↔ f 36∆f 33

implicates {pipe.majorleak, impeller.binding ∧ pipeleak}
(9)

Using the earlier symptom notation Ec = V (pump) ↔ u
and Eo = F (engL) ↔ f 36∆f 33 indicating a flow of f 36

when f 33 expected. Notice that Ec 6= ∅ because absence of
F (engL) 6= f 36 does not exonerate any fault if the system is
off. The switch would also provide the necessary condition
in this case because only one active input voltage is ever
present (for all nominal and failure modes), however it is
less discriminating and therefore is not selected provided
input voltage is available.

The minor leak cannot be detected and no symptom for
it is available since it cannot be distinguished from nomi-
nal operation. Allowing more observations such as the tank
outflow when the system is off or direct observation of the
atmosphere would allow the minor leak to be detected.

500

F(engL) - litres/h
0

1

200 320

exaggerated
    

V(pump)

V(pump) = u
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28.421.1 22 26

nominal

0
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10 140

0.7 T(Ec)
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Figure 7: Scaled fuel system interpretation

The symptoms generated require the use of observations
of V (pump) and F (engL). Figure 7 provides one interpre-
tation of the required OM values for our system. This in-
formation must be provided by an engineer, by reference to
the nominal operating values of the system and also by con-
sideration of the exaggerated faults used. 320 is considered

nominal within the litres per hour magnitude, 200 is the ex-
treme of nominal operation and provides the center of the
next exaggerated fault representing ‘low flow’. f 33∆f 39 is
double exaggerated result ‘very low flow’ and may be the
result of a more extreme fault or multiple faults (e.g. Table
3). The 0 set extends to 0.05 to account for measurement ac-
curacy and other factors mean that small but non zero mea-
surements may be present when no flow is actually present.

If we observe values V (pump) = 21.8V and
F (engL) = 140l/h then we see that for S1 : in
definition 9, T (Ec) = µu(V (pump)) = 0.7 and
T (Eo) = µf 36(F (engL)) = 0.8 resulting in an output set
µpipe.majorleak = 0.7[0.2, 1.4, 1.4, 1.4].

There are no other symptoms indicating or exonerating
this fault in such a simple example so µM ′ = µM (S1) and
the fault rank is therefore directly provided by the centroid
of 0.8 for the set in figure 8.

In a real system there will be many valid rules provid-
ing indications and contra indications. In our previous work
aimed at assessing ‘diagnosability’ symptoms were vali-
dated by evaluation against qualitative results of a simulated
fault. A fault ranking was then produced simply as the dif-
ference between the number of rules implicating and exon-
erating a fault. This simple method provided a useful indi-
cation of the validity of the symptoms at a qualitative level,
however it could not work on real valued observations, and
also there is no explicit significance to the number of rules
generated for any specific fault. The fuzzy mapping does
not simply ‘count satisfied rules’ but assesses their signifi-
cance and combines them with respect to expected operation
of the system.

fault rank
0

1

(confidence)

exoneration

1
0

implication

-1

0.7

0.8

pipe.majorleak

Figure 8: µpipe.majorleak from S1

7 Conclusions
The identification of fuzzy sets provides a relatively simple
method to identify the nominal operating regions of a sys-
tem and by extension of these, a definition for abnormal op-
eration. The fuzzy implication effectively interpolates the
numerical operating space of the system using the control
points specified by the rules and fuzzy sets, providing a very
simplified numerical function for the system behaviour. We
propose that since the aim is to rank faults, this simplifi-
cation appears to be generally adequate, although more in-
vestigation is needed to determine the range of applicabil-
ity. The comparative nature of FMEA makes it possible to
provide specific interpretations for nominal and abnormal
ranges of values for many systems, and is only required for
the components and observations that turn out to be diag-
nostically interesting.

The OM reasoning allows separation of concerns and ex-
aggeration of faults to produce qualitative significance. For



example if the system in figure 6 had included a ‘fast drain
down valve’ taking a normal flow of f in parallel with the
engine, then the pipe.majorleak would not provide a sig-
nificant effect on drain flow, but a fracture would show an
exaggerated 0 flow. Using qualitative signs, the only avail-
able exaggerated fault would be fracture, and we could not
differentiate the more subtle effects on systems that contain
multiple OM levels. Some examples of these levels are sig-
nal level, electro-mechanical level and power train level in
electrical systems; pump level and gravity level pressures
in fluid flow systems; and heat exchanger versus stationary
fluid conduction in thermal circuits.

The fuzzy interpretation does not deal with the probabil-
ity of faults, or the accuracy of symptoms. Bayesian ap-
proaches [17] can rank rule based faults, however the dif-
ficulty is in determining the probabilities. Even when this
can be done, the fuzzy value membership of observations
appears to provide a more direct interpretation of the un-
certainty based on actual system state, although statistical
information could be used to differentiate similar ranked
faults.

Although this paper includes a very simple example, we
have applied the method to symptoms generated for a com-
plex aircraft fuel system[18] and with a suitable fuzzy set
mapping the results provide a progressive ranking of faults
as the behaviour of the system moves away from expected
operating parameters. That system was a topologically com-
plex set of valves and pumps, with many stable steady states
and clearly identifiable operating regions. Further work will
be aimed at characterising the effects of set selection on the
ranking characteristics of the approach and on the limita-
tions of the OM exaggerations.
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