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Abstract 

The ASTRAEA project is a £32M UK initiative to develop the safety case for unmanned aerial vehicles 
flying in commercial airspace. It is addressing both the issue of what needs to be covered by such a safety 
case, and how such a safety case can be constructed efficiently. One of the key areas within the remit of 
ASTRAEA is that of generating diagnostics capable of correctly identifying the causes of all possible 
failures of the vehicle.  
 
This paper describes how model-based simulation can be employed to automatically generate the system-
level effects of all possible failures on systems within the aircraft. The results of  the simulation can be 
used in several ways. They can be used to produce a system-level FMEA for aircraft systems. They can 
be used to identify the sensors necessary to discriminate remotely between different failures on the 
aircraft. Once a set of sensors have been chosen for placement on the vehicle, the simulation results can 
also be used to generate diagnostic and prognostic software for deployment on the vehicle. Using the 
automated safety analysis software developed on the ASTRAEA project is more efficient than doing the 
same work without the software, and also provides a guaranteed level of performance.  
 

1. Introduction 

This paper describes the use of qualitative models of aircraft systems to automate the generation of 
diagnostics and prognostics for unmanned aerial vehicles (UAVs). This work is part of a much wider 
initiative known as ASTRAEA, to develop the technologies needed to safely operate UAVs in civilian 
airspace. 
 
ASTRAEA is a £32 million initiative to research and prove the necessary technologies to enable the safe, 
routine use of UAVs. It is funded by the UK Department of Trade and Industry, by several of the UK 
regional development agencies, and by major aerospace companies such as BAE Systems, Thales UK, 
Rolls Royce, EADS, QinetiQ and Flight Refuelling Limited. Successful development of relevant 
technologies, and the ability to make convincing safety cases for the operation of UAVs in civilian 
airspace would be of great benefit, opening up potential uses for UAVs in logistics, environmental 
monitoring, and many other areas. 
 
ASTRAEA covers eight different areas of technology needed for routine deployment of UAVs: 
 

• Ground Operations and Human Interaction.  
• Communications & Air Traffic Control.  
• UAV Handling.  
• Routing. 
• Collision Avoidance. 
• Multiple Air Vehicle Integration.  
• Prognostics & Health Management. 
• Decision Modelling. 

 
The Prognostics and Health Management (PHM) area is responsible for developing the technology and 
systems needed to enable UAVs to monitor their own state. Based on that monitoring, the PHM systems 
need to make assessments of mission readiness that can be utilised by higher level planning in the 
Decision Modelling area. The major goal is that the PHM systems should be capable of replicating the 
fault detection, assessment, and decision making ability of human pilots.  
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The PHM work carried out by Aberystwyth University within ASTRAEA concerns the use of computer 
models of aircraft systems to reason about the potential causes of any possible failure of representative 
aircraft systems, and to decide what aspects of the system need to be monitored in order to be sure that 
any serious operational discrepancies will be detected. 
 
This paper describes the kind of modelling technology being used in this work, and shows how it can be 
used for failure analysis, for diagnosability analysis, and for production of online diagnostics and 
prognostics. 
 

2. Underpinning research in model-based reasoning 

The Advanced Reasoning Group at Aberystwyth University has been developing model-based systems 
capable of performing failure modes and effects analysis (FMEA) for more than a decade [1,2]. Earlier 
versions of this work resulted in AutoSteve [3], a commercial tool for FMEA of automotive electrical 
systems that has been taken up by a major electrical computer aided design tool vendor. 
 
The main ideas of the work are that a description of the overall behaviour of a system can be constructed 
by knowing the structure of a system and the behaviour of each of its components. In order to determine 
the behaviour of the system when a failure occurs, it is only necessary to replace the component which 
has failed with a version of the component that reproduces the faulty behaviour, and the model of the 
system will then reproduce the effects of the failure for the whole system. 
 
Such analysis is often best done at the qualitative level [4] rather than through detailed numerical 
simulation, as the precise data needed for the numerical simulation is not available. Hence, techniques 
such as Monte Carlo methods need to be used to give the coverage of possible outcomes that naturally fall 
from a qualitative simulation. 
 

 
 

Figure 1: Levels of electrical simulation 
 
Figure 1 shows the different levels of reasoning needed to perform model-based simulation of an 
electrical system. The system description is usually provided at the component level - the system is 
described in terms of its components and their states and connections. This can be mapped onto the 
resistive state of all components, and the electrical state of the overall system can be determined 
qualitatively. This may result in changes in component state (e.g. if current is now flowing through a 
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relay, then it may close, changing the state of the relay component, necessitating further qualitative 
simulation. Eventually, the state of the system will either stabilise (once relays have opened or  closed, 
and devices have been powered) or oscillate. The results of this interchange between the component level 
reasoning and the qualitative electrical reasoning can be abstracted to the functional level, and returned in 
terms of which functions of the system have occurred. 
 
Figure 1 illustrates the relationship between the three levels for a very simple system, but these 
techniques work for electrical/electronic systems with several thousand components, and produce useful 
FMEA results that pinpoint significant potential failures early in the design process. 
 

3. Modelling more complex systems 

Within ASTRAEA, the fuel system has been identified as an important aspect of UAV operation, and 
demands more advanced reasoning than the electrical systems that could be dealt with by the previous 
AutoSteve software. It includes all of the electrical aspects that AutoSteve could deal with, but also 
requires the capability to reason about fluid flow.  
 
It is only the lowest level of figure 1 that needs to be extended to deal with the more complex simulation 
demanded by mixed electrical/fluid systems. Previously, the qualitative reasoning was based on just three 
levels of resistance (zero, load, infinite), and this has been extended to enable reasoning about different 
levels of resistance (e.g. low, medium, high) [5].  
 
Despite the analogies between current flow and fluid flow, further extensions to the original qualitative 
reasoning are needed in order to be able to simulate a fuel system effectively. The original qualitative 
reasoning assumed a single power source (the car battery). As multiple pump configurations are common 
in fluid systems, the reasoning was extended to be able to deal with multiple "power" sources within a 
network. Also, in order to be able to reason about the effect of leaks that allow the ingress of air or escape 
of the fluid, it was necessary to have an explicit representation of the substance being propagated through 
the system. The qualitative reasoning has been extended to deal with these needs [6], and is now capable 
of reasoning about mixed electrical/fluid systems. 
 
On the ASTRAEA project, this technology is being used to simulate the electrical and fluid components 
of a complex fuel system, with multiple tanks, and load balancing in supplying a twin engine aircraft. The 
techniques discussed in this paper scale up to such realistic systems, but for commercial and clarity 
reasons,  the system analysis that can be automated using the simulation will be illustrated in this paper 
with a simpler example system as depicted in figure 2. The simpler system essentially connects a fuel 
tank and engine with a pump, two valves, pressure and flow sensors. 
 

 
 

Figure 2: Simple example system 
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4. Generating FMEA results  

An FMEA report can be automatically generated by comparing the results from a simulation of nominal 
system behaviour with the results of a simulation of a version of the system for each possible component 
fault. The differences between the two simulations comprise the effect of the component failure (e.g. a 
function occurs at some point in the simulation of nominal system behaviour, but fails to occur in the 
same state when there is a specific component failure). More details of this technique are given in [2]. 
 
The system needs to be simulated in its different operating modes in order to identify the possible effects 
of a failure. That means that it is necessary to decide how the system should be exercised during 
simulation in order to cover all operating modes. Normally an engineer will provide a set of inputs that 
cause the system to enter all of its operating modes and configurations.  For example, in the full aircraft 
fuel system, we may change valve positions to encounter normal fuel feed, fuel transfer operations, and 
fuel cross feed configurations.  The set of inputs chosen is referred to as the scenario. On occasion an 
engineer may decide to only deal with a subset of system operation, and this will limit the effects that will 
be observed to those observable during the selected operations. 
 
The failure behaviours for each component are contained in a library of component models, and usually 
represent a modification of the nominal component structure or behaviour model.  For example a blocked 
pipe will simply change the resistance of the pipe to ‘infinite’.  Of course these faults are created for each 
type of component and are then automatically inserted for each instance of the component present in a 
system.  Once a component library exists, most of the components and failure modes are immediately 
available because minor parametric changes to components are insignificant to a qualitative analysis. 
 
The FMEA generation system operates in the following way. The system is simulated for the chosen 
scenario with no failures present, and all observable values are recorded for each step of the simulation.  
The system model is reconfigured for each component failure. Each step of a failure simulation is 
compared with the non failure simulation and the differences are recorded.  
 

 
Figure 3: Fragment from a generated FMEA 
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The automatically generated FMEA provides a description of the observable effects of each fault. These 
effects are consistent, providing all potential effects in qualitative terms. Figure 3 shows a fragment of an 
FMEA generated from the simple example system shown in figure 2, comprising a fuel tank, pump, 
pressure and flow transducer feeding an engine. Due to the qualitative nature of the analysis, the results 
are naturally presented as qualitative differences (such as value higher than expected).  
 
The FMEA results can ordered by significance, and would be inspected by the engineers to identify how 
significant failures can be mitigated, either by decreasing the effect of the failure (e.g. by providing 
backup systems) or improving the detection of the failure (e.g. by adding sensors) or reducing the 
occurrence of the failure (e.g. by using more robust components) [7]. 
 
The FMEA report provides a consistent report that covers all component failures of specific types, and 
this consistency and coverage provides a basis for generating diagnostics that will be explored in the next 
section. 
 

5. Generating on-board diagnostics for the UAV 

Diagnostics on the UAV are controlled by an online diagnostic system being developed by BAE Systems. 
The basis of the system is a set of fault-symptom pairs with weighted links between each symptom and 
each fault. 
 
For convenience the symptoms are categorised into three types: 

• Single value for example, pressure transducer value = out of range low.  In this situation a 
symptom is a simple value that does not occur during normal operation and directly indicates one 
or more faults. 

• Multiple value for example, level = empty AND low level switch = on. Two values may be linked 
to indicate an inconsistency in system operation caused by a fault.  Typically, this is because two 
values measure physically related properties and should be consistent in the absence of a fault.  

• Conditional IF (pump = on),  pressure monitor = high or IF (Valve SOV4 commanded OPEN), 
Open Sensor is not responding OPEN.  Conditional symptoms may be used when a value is only 
indicative of a fault in specific operating modes or configuration. For example a low pressure 
reading might only be significant when a pumping operation in progress.  If no pumping is carried 
out then the symptom does not apply (pressure will be expected to be low). The condition specifies 
if the observation is valid.  For the diagnostic net (discussed in following paragraph) the 
distinction between multiple value and conditional symptoms is important because the symptom 
observations are not entered to the net for an invalid symptom.  

 
The FMEA report provides differences of observable values, e.g. when PIPE5 is blocked, PT_FL_LH 
pressure is below normal when normal was expected. This type of information can be used to produce the 
kind of fault-symptom information needed by the online diagnostic system.  The symptoms should be as 
simple as possible while still providing a definite indication of the associated fault.  
 
The FMEA produces output in the form of the difference between nominal and failure operation at each 
step of a scenario, exercising the system.  An example may be `After switch X closed and then switch Y 
closed, Obs 1=L when Obs 1=H expected'. The FMEA information does not directly provide a symptom 
because it is usually not known explicitly what is expected. The symptoms must therefore be based only 
on identification of abnormal observations.  The FMEA item above is used to produce a symptom of the 
form {(X, closed), (Y, closed), (Obs 1, L)}. 
 
The symptoms are produced from the FMEA information using the following steps: 

• Collect symptoms. All observable sets of values are collected for each observable state (scenario 
step) in the simulation. Potential symptoms are generated as observation sets that that do not 
appear in the nominal operation. Initially single value, multiple value, and conditional symptoms 
were generated separately.  This is unnecessary however since the simpler symptoms are located 
as part of the simplification steps below.  The observables that are used are; outputs, inputs 
(exogenous variables that are only read), and scenario steps (operating configurations). 
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• Shorten symptoms. To determine which observations are actually relevant to a symptom, each 
observation is removed in turn from the symptom and it is retained if it still represents an 
abnormal set of observations. Shorter symptoms are added to the symptom list. The process is 
applied repeated for all successfully generated shorted symptoms, until single observation 
symptoms are found, or observations no longer form a valid symptom.  

• Simplify Symptoms. Symptoms with more terms than a shorter one and cannot distinguish more 
faults are removed. A shorter symptom must include a superset (or the same set) of the faults 
indicated by the longer symptom to allow the longer symptom to be removed from consideration. 

 

Single and multiple value symptoms are produced when sets of outputs are found to produce a fault 
indication.  Conditional symptoms are generated when inputs and/or operating configurations are required 
to form a symptom.  Figure 4 shows an example set of symptoms generated from the simple example 
system shown in figure 2.  Most of these symptoms are single abnormal values, however notice that 
several conditional symptoms have been generated (S11-S14) to allow values that occur when the system 
is inactive to become symptoms when the operating conditions change.  For more complex systems, the 
combinations of values and conditions required becomes greater and provides symptoms that detect 
unusual effects, and is particularly useful when a system has many operating modes with symptoms 
specific to each. 
 

 
Figure 4: Generated symptoms example 

 
Once the set of symptoms has been generated, the FMEA is used to produce a matrix of fault symptom 
pairs.  An example fragment is shown in figure 5, showing Fault number, fault name, symptom number, 
symptom name, confidence value. 
 

 
 

Figure 5: Fault symptom matrix 
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The fault-symptom pairs are qualitative, but it is necessary for the online monitoring system to decide the 
value at which a specific observation triggers a symptom.  For example, at what level is a pressure value 
to be considered ‘low’?  Some of the symptoms generated by the FMEA may need additional 
computation as part of the signal conditioning process.  For example the observation ‘tank fuel level 
lower than expected’ may require prediction of the expected level based on engine throttle demand over a 
period of time these measures may be considered as virtual sensors that provide computed values.  Both 
of these issues require very detailed knowledge of the system, the sensor characteristics, and may even 
need to be determined empirically or calibrated for each specific instance of a system. 
 
Other than thresholds and virtual sensors, three basic numerical measures are used by the network: 

• Symptom leak - probability that the symptom will be observed even though there are no faults. 
By default this is set to 0 for the auto FMEA symptoms to indicate the symptom will not be 
observed unless a relevant fault exists.  It may be decided that certain observations are more likely 
to be spurious than others due too sensor or system characteristics. 

• Prior - probability that the fault has occurred prior to any symptoms. This is the fault occurrence 
number in FMEA (or 0.01default)  

• Fault - Probability of the fault, given the symptom. By default this is set to 0.99 for the auto 
FMEA symptoms to indicate the symptom will be observed if the fault exists. Other values may be 
used for some symptom or fault categories because the effects predicted by the FMEA are less or 
more significant than can be determined qualitatively.  For example leaks may not always produce 
a measurable pressure drop, even though theoretically any leak would produce some drop in 
pressure. 

 
When one or more symptoms are observed, these values are propagated through the weighted network to 
produce an ordered list of possible faults.  A confidence value is associated with each predicted fault 
allowing decisions to be made within the higher level control elements of the system. 
 

6. Diagnosability analysis 

Ideally, any system fault could be diagnosed to the individual component that has failed, however, during 
design, there is a trade-off between the amount of sensing possible for a system, and the diagnostic 
capability.  It is useful to be able to investigate the relationship between the number and placement of 
sensors and the resultant ability to detect faults and subsequently isolate faults to a specific component or 
line replaceable unit (LRU). One of the benefits of model-based simulation is that we can easily gain 
access to many system parameters and analyse which might provide the required diagnosability at a given 
cost.  Alternatively we might wish to analyse how many sensors would be required to be able to provide a 
given level of diagnosis.  On the ASTRAEA project, we have performed two types of analysis, the first 
provides an ordered list of sensors that can provide the maximum number of diagnosed faults.  The 
second provides an ordered list that prioritised by the ability to isolate a fault. 
 
Symptom ranking is carried out using a recursive procedure starting with no included symptoms or 
detected faults, and consisting of the following steps: 

• From the remaining symptoms that have not been considered, find the symptom(s) that provide the 
maximum number of additional faults.  i.e. the number of faults detected by the symptom that are 
not already located by previously considered symptoms.  These are termed the 'next best 
symptoms' 

• For each of the 'next best symptoms' add it to the considered symptom list, add any failures it 
detects to the faults detected list. 

• If the symptom has not already been found and included in the overall results, then include it in the 
results in the correct place (according to the number of symptoms), and carry out the procedure 
again excluding the current symptom from the available symptoms. 

 
This will generate sets of symptoms for each number of observations that can diagnose the most faults.  
Where several symptoms each diagnose the same number of faults, they are all outputted.  For the 
example circuit in figure 1, we get the result: 
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ORDERED SYMPTOM INFORMATION 
 
1 combinations of 1 SYMPTOMS  indicate 11 FAILURES (1 partitions) 
1 combinations of 2 SYMPTOMS  indicate 18 FAILURES (2 partitions) 
1 combinations of 3 SYMPTOMS  indicate 24 FAILURES (3 partitions) 
1 combinations of 4 SYMPTOMS  indicate 28 FAILURES (5 partitions) 
8 combinations of 5 SYMPTOMS  indicate 28 FAILURES (6-7 partitions) 
28 combinations of 6 SYMPTOMS  indicate 28 FAILURES (7-9 partitions) 
56 combinations of 7 SYMPTOMS  indicate 28 FAILURES (8-10 partitions) 
70 combinations of 8 SYMPTOMS  indicate 28 FAILURES  (8-11 partitions) 
56 combinations of 9 SYMPTOMS  indicate 28 FAILURES  (9-11 partitions) 
28 combinations of 10 SYMPTOMS  indicate 28 FAILURES (10-12 partitions) 
8 combinations of 11 SYMPTOMS  indicate 28 FAILURES (11-12 partitions) 

 
The first of these provides: 
 

ENGINE.engine_fuel_feed = none AND CP_FL_LH.Control = on 
INDICATES FAULTS:  
Pipe5.blocked; Pipe5.fracture; Pipe2.blocked; Pipe3.blocked; Pipe1.blocked; Pipe6.blocked; 
Pipe6.fracture; Pipe7.blocked; Pipe7.fracture; Pipe4.blocked; Pipe4.fracture 

 
The second entry considers the best pair of sensors: 
 

ENGINE.engine_fuel_feed = none AND CP_FL_LH.Control = on 
INDICATES FAULTS:  
Pipe5.blocked; Pipe5.fracture; Pipe2.blocked; Pipe3.blocked; Pipe1.blocked; Pipe6.blocked; 
Pipe6.fracture; Pipe7.blocked; Pipe7.fracture; Pipe4.blocked; Pipe4.fracture 

 
ENGINE.engine_fuel_feed = low fuel 
OC_WT_LH.tank_level = higher than expected 
FT_FL_LH.flow = low 
INDICATES FAULTS:  
Pipe5.partialblocked; Pipe2.partialblocked; Pipe3.partialblocked; Pipe1.partialblocked; 
Pipe6.partialblocked; Pipe7.partialblocked; Pipe4.partialblocked 

 
In this case, there are three symptoms that all indicate the same set of failures and we could choose any 
one of these.  Sometimes there may be several sets of (non equivalent) symptoms able to discriminate the 
same number of faults. In the example above, this occurs for 5 symptoms, where 8 different combinations 
of symptoms indicate 28 faults (though not necessarily the same 28 faults). They may have different fault 
isolating capability dividing the faults into 6 or 7 partitions provided by different combinations of the 
chosen symptom set.  These partitions each contain a set of one or more faults that are indistinguishable 
using the selected set of observations used by the selected symptoms.  From the above table, we see that 4 
symptoms are adequate to identify all 28 faults present in the FMEA of the system. 
 

ENGINE.engine_fuel_feed = none AND CP_FL_LH.Control = on 
INDICATES FAULTS: Pipe5.blocked; Pipe2.blocked; Pipe3.blocked; Pipe1.blocked; 
Pipe6.blocked; Pipe7.blocked; Pipe4.blocked 
 
ENGINE.engine_fuel_feed = low fuel 
OC_WT_LH.tank_level = higher than expected 
FT_FL_LH.flow = low 
INDICATES FAULTS: Pipe5.partialblocked; Pipe2.partialblocked; Pipe3.partialblocked; 
Pipe1.partialblocked; Pipe6.partialblocked; Pipe7.partialblocked; Pipe4.partialblocked 
 
ENGINE.engine_fuel_feed = air 
INDICATES FAULTS:  
Pipe2.fracture; Pipe2.leak; Pipe3.fracture; Pipe3.leak; Pipe1.fracture; Pipe1.leak 
 
ENGINE.engine_fuel_feed = none AND CP_FL_LH.Control = on 
OC_WT_LH.tank_level = lower than expected 
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INDICATES FAULTS: Pipe5.fracture; Pipe6.fracture; Pipe7.fracture; Pipe4.fracture 
 
OC_WT_LH.tank_level = lower than expected 
INDICATES FAULTS: Pipe5.leak; Pipe6.leak; Pipe7.leak; Pipe4.leak 

 
This analysis demonstrates that the fuel feed detected by the engine is the most important available 
diagnostic indicator, followed by an incorrect fuel level in the tank.  The flow and pressure sensors are 
not even necessary to detect a full set of faults.  However we could decide that the engine fuel feed is not 
a feasible observation, and by removing it and running the analysis again we find that the flow meter 
becomes an important sensor. 
 
It is also possible to maximise the fault isolation capability using a modified version of the symptom 
ranking algorithm that maximises the number of fault partitions instead of simply the number of faults. 
We find that 7 symptoms is the fewest that can identify all 28 faults and divide them into 10 separate sets 
of  (indistinguishable) faults.  We also find that the best fault isolation that is possible is 12 partitions of 
faults using various combinations of the following 12 symptoms:  
 

(Pipe2.partialblocked Pipe3.partialblocked Pipe1.partialblocked Pipe6.partialblocked 
Pipe7.partialblocked) (Pipe5.partialblocked Pipe4.partialblocked) (Pipe4.leak) (Pipe5.leak 
Pipe6.leak Pipe7.leak) (Pipe2.leak Pipe3.leak Pipe1.leak) (Pipe2.fracture Pipe3.fracture 
Pipe1.fracture) (Pipe5.blocked Pipe4.blocked) (Pipe6.blocked Pipe7.blocked) (Pipe6.fracture 
Pipe7.fracture) (Pipe5.fracture) (Pipe2.blocked Pipe3.blocked Pipe1.blocked) (Pipe4.fracture) 

 
This in fact includes all the symptoms in figure 4 because S2, S3, and S5 turn out to be identical as 
mentioned above. 
 
The above paragraphs assume that all faults are equally important in terms of diagnosis.  In practice, there 
are several additional considerations. Often there is a limit to the granularity required by fault isolation 
due to the presence of LRU's.  There is no requirement to be able to isolate a fault beyond a single LRU. 
 
Observations may also fall into categories including: Basic system sensing that must be available for 
nominal operation; Groups of additional observations that only make sense to provide as single units 
(sensors).  In the future we will be possible to include these additional factors in the diagnostic generation 
be further structuring of the symptoms, observations and measures used to select symptom permutations. 
 
This diagnosability goes beyond the diagnostic work described in section 5. That work is able to generate 
diagnostics for existing sensor placements. The diagnosability work provides the opportunity to decide 
where sensors should be placed for the most efficient and effective diagnostics. 

7.  Conclusions 

The ASTRAEA project is concerned with researching the methods and technologies needed to be able to 
routinely fly UAVs safely in commercial airspace. The work described in this paper contributes to this 
goal in the following ways: 

• It automates the generation of failure effects for an FMEA report, providing consistent results 
for a complete set of component failure modes. It can be guaranteed that results are produced for 
all component failure modes that are modelled. 

• The generated FMEA results can be arranged as failure-symptom pairs with the same 
consistency, and can be linked to specific symptoms that are observable by an on-line system.  

• The failure-symptom pairs have been integrated into a larger diagnostic system, where other 
failure-symptom pairs will have been produced by other methods.  

• Further analysis can indicate the most effective points within the system being diagnosed to 
place sensors, assisting in the decision of where sensors should be placed when designing the 
system. 
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