
Debugging: The Good, the Bad, and the Quirky –
a Qualitative Analysis of Novices’ Strategies

Laurie Murphy

Department of Computer Science
and Computer Engineering
Pacific Lutheran University

Tacoma, WA, USA

lmurphy@plu.edu

Beth Simon
Dept. of Computer Science and Engr.

 University of California, San Diego
La Jolla, CA, USA

esimon@cs.ucsd.edu

Gary Lewandowski
Department of Mathematics

and Computer Science
Xavier University

Cincinnati, OH, USA

lewandow@cs.xu.edu

Lynda Thomas
Dept. of Computer Science
University of Aberystwyth
Aberystwyth, Wales, UK

ltt@aber.ac.uk

Renée McCauley
Department of

Computer Science
College of Charleston
Charleston, SC, USA

mccauleyr@cofc.edu

Carol Zander
Computing & Software Systems
University of Washington, Bothell

Bothell, WA, USA

zander@u.washington.edu

ABSTRACT
A qualitative analysis of debugging strategies of novice Java pro-
grammers is presented. The study involved 21 CS2 students from
seven universities in the U.S. and U.K. Subjects “warmed up” by
coding a solution to a typical introductory problem. This was
followed by an exercise debugging a syntactically correct version
with logic errors. Many novices found and fixed bugs using
strategies such as tracing, commenting out code, diagnostic print
statements and methodical testing. Some competently used online
resources and debuggers. Students also used pattern matching to
detect errors in code that “just didn’t look right”. However, some
used few strategies, applied them ineffectively, or engaged in
other unproductive behaviors. This led to poor performance, frus-
tration for some, and occasionally the introduction of new bugs.
Pedagogical implications and suggestions for future research are
discussed.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information Sci-
ence Education – Computer Science Education.

General Terms
Human Factors

Keywords
debugging, novice programming, pedagogy, strategies

1. INTRODUCTION
Debugging is difficult for novice programmers. Similar to new
drivers who must learn to steer, accelerate, brake, etc. all at once,
novice debuggers must apply many new skills simultaneously.
They must understand the operation of the intended program and
the execution of the actual (buggy) program; have general pro-
gramming expertise and an understanding of the programming
language; comprehend the application domain; and have knowl-
edge of bugs and debugging methods [2]. Unfortunately, most
novices’ knowledge of these skills is fragile at best [12], causing
many to find debugging difficult and frustrating.
What is the best way to help novices overcome these difficulties?
Despite numerous investigations of novice debugging, many dat-
ing back to the 1980s, there are no established best practices to
guide instructors. Furthermore, the attention introductory pro-
gramming texts give to debugging varies greatly. Often when
instructors teach debugging skills (e.g., hand tracing, diagnostic
print statements, how to use a debugger), students seem to prac-
tice them haphazardly, debugging whatever bugs they happen to
encounter as they code using whatever method occurs to them at
the time.
Both an earlier investigation of novices [1] and the current study
(see [4] for a discussion) suggest skill at debugging may be some-
what distinct from general programming ability, and as such de-
serves individual attention pedagogically. This view was echoed
in a 1986 paper by Kessler and Anderson [8] who observed that
“… debugging is a skill that does not immediately follow from
the ability to write code. Rather, it consists of several sub-skills
...” [8, page 208].
While interactions with students (e.g., during lab sessions or via
questions) often give instructors useful anecdotal evidence of the
sorts of bugs novices encounter, they rarely include opportunities
to observe students’ independent debugging processes. An under-
standing of the skills novices employ, as well as the misconcep-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE ‘08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003…$5.00.

163

tions and difficulties they confront, can offer useful insights for
debugging instruction.
This paper reports on a multi-institutional study of novice Java
programmers at seven universities in the U.S. and U.K. Its pur-
pose is to illuminate novice strategies with the goal of improving
debugging instruction. Effective strategies suggest topics for
instruction; while poor application of those strategies, or unpro-
ductive behavior, highlight pitfalls to be avoided. An overview of
these findings and their pedagogical implications follow.

2. BACKGROUND
In a 1975 study, Gould [5] was one of the first to study strategies
subjects used in debugging FORTRAN programs. Gould found
that subjects used a variety of tactics and their debugging could
be described as a process of repeatedly choosing a strategy to find
the suspicious area of the code, then generating a hypothesis and
choosing a tactic, until the subject had found the bug. The most
popular strategies were: examining the output early; looking for
grammatical errors in the language that cannot be caught by the
compiler; and reading the code to understand the program.
Vessey [13] found that both novices and experts employed
breadth-first approaches to debugging, but that experts developed
a whole-system point of view that novices did not. The novices
also used a depth-first debugging strategy. She found experts
were more proficient due to a greater ability to chunk information.
Katz and Anderson [7] found that three, general, bug-location
strategies were used by students: mapping program behavior to a
bug, hand tracing of the code, and causal reasoning. They found
that few subjects traced code. Subjects took longer to debug the
code of others’ than their own. Moreover, when debugging oth-
ers’ code, subjects used forward reasoning (reading code sequen-
tially or in execution order) to determine the bug; however when
debugging their own code subjects were more likely to use causal
reasoning (work backward from the output) to determine the bug.
Gugerty and Olson [6] found that while experts and novices used
the same strategies in debugging; experts were faster and more
accurate in their comprehension of the code, leading to better
hypotheses about the bugs. Experts were also less likely to intro-
duce new errors as they debugged.
Nanja and Cook [11] also compared expert and novice debuggers.
Like this study, their experiment used a realistic programming
environment and programs with multiple bugs. While all subjects
began by examining the code, experts spent more time than nov-
ices examining the code. They also discovered that experts read
for program comprehension; that is, they read the program in the
order it would be executed. In contrast, novices tended to read
programs sequentially, from top to bottom. Additionally, novices
appeared to seek understanding of isolated sections of the code
that they believed, through examination of the output, contained
the error. Both experts and novices used output statements in
debugging, but novices used many more. Experts more often
used a debugging tool and corrected multiple errors at a time.
The strategy of running the program was much more frequent for
novices by a 3:1 margin.
We recognize that these studies are all at least 20 years old and
only Nanja and Cook provided a relatively unconstrained pro-
gramming environment (while there have been other debugging

studies since the 1980’s1, none focused primarily on strategies of
debugging). Our study examines students’ strategies using con-
temporary environments and the Java language.

3. THE EXPERIMENT
One-on-one interviews of approximately 1.5 hours were con-
ducted with each subject. Interviews involved: (1) a background
questionnaire, (2) a programming exercise, (3) a debugging exer-
cise, (4) a semi-structured interview and (5) a debugging survey.

3.1 Subjects
Subjects were 21 undergraduate volunteers from seven universi-
ties, six in the United States and one in the United Kingdom. Six
were women (29%) and 15 were men (71%) and their ages ranged
from 18 to 51, with a median age of 19. All had completed 15-20
weeks of Java instruction at the college level and were typically
enrolled in the early to mid phase of their second Java course at
the time of the interview. Our rationale for studying students at
this level was that, although they were still novice programmers,
they had completed at least one programming course and there-
fore were likely to have debugged a variety of errors. It also
seemed likely that they had been programming long enough to
have established at least a modest repertoire of debugging strate-
gies.

3.2 Study Protocol
All subjects completed the following components during a single
interview session.

Background form: gender, age, and programming experience.

Programming exercise: The purpose of the programming exercise
was to acclimate students to the problem they would later debug.
Subjects had 30 minutes to code their choice of six typical CS1
exercises. The problem descriptions were arranged from least to
most difficult:

Rectangles - given two integers, n and m, output three n x m
rectangles of asterisks (solid, hollow, and checkered).

Game of Craps – given basic craps rules and a Die class,
simulate and calculate statistics for 10,000 rounds .

Bike Raffle – input bike, ticket and overhead costs, ticket
sellers’ names, and numbers of tickets sold; display basic
statistics for and profit from bike raffle.

Triangle Type – input lengths of three sides and determine
if they form a triangle, and if so, the type of triangle.

Binary Search - input an integer key, implement a method
to perform a binary search for the key in a sorted array.

Simple Calculator – implement a simple infix calculator
that adds, subtracts, and multiplies.

Students were allowed to work in the environment of their choice
and to use typical resources such as textbooks or the online Java-
Docs. Investigators maintained a minute-by-minute log of activi-
ties (time/number of compiles/runs, what subject is looking at,
errors introduced/found, etc.) during the exercise. Final programs
were collected and analyzed for correctness and completeness
(details of the programming exercise are forthcoming).

Debugging exercise: Subjects had 20 minutes to debug a syntacti-
cally correct solution to the problem they had just programmed

1 See [10] for a more thorough review of the debugging literature.

164

Figure 1: Debugging Log sheet

that contained 3 to 5 logic errors. Bugs included typical novice
errors such as malformed loop conditions, incorrect initializations,
arithmetic errors, using == instead of .equals() to compare
Strings, etc. Observers maintained a minute-by-minute log of
subjects’ activities, entering information under the headings in
Figure 1.

Final programs were collected and analyzed for correctness and
completeness (a quantitative analysis is forthcoming in [4]).

Semi-structured interview: Subjects responded verbally to a set of
questions designed to elicit their impressions of the debugging
exercise, strategies used, and motivation for their problem choice.

Debugging survey: A one-page, paper survey was used to illicit
subjects’ self-assessments of programming and debugging ability,
perspectives on debugging approaches and evaluation of how they
use their time as they debug.

3.3 Data Analysis
Qualitative, and where appropriate quantitative, analyses were
conducted on the rich data from this experiment. The strategies
reported herein emerged from a qualitative analysis of the debug
logs and final debug solutions. Two researchers evaluated the logs
and noted any strategies or interesting behaviors exhibited. In
consultation with a third researcher (and in some cases the inter-
viewer), a complete list of strategies and behaviors was derived.

Debug solutions were similarly evaluated by two researchers for
correctness and modifications or additions which suggested suc-
cessful or unsuccessful strategy use or other interesting behaviors.

The resulting complete list of strategies was then sorted by con-
sensus such that very similar strategies were placed in the same
category. This resulted in 12 final categories (see Table 1) which
are described in section 4.

Table 1: Summary List of Strategies
Gain domain knowledge Isolating the problem

 Pattern matching Tracing, including: Men-
tal, Print & Debugger Consider alternatives

Testing Environmental

Understanding code Work around problem

Using resources Just in Case

Using Tools Tinkering

4. STRATEGIES
A recent study [9] considered strategies that successful students
used to get “unstuck” while learning computing concepts. While

this study did not focus only on debugging, they did identify 35
distinct strategies, organized into 12 categories, which are similar
to the strategies discovered here. For example, tracing, using re-
sources/tools, pattern-matching, and others were found in both
studies. In common with a study of effective tracing strategies [3],
we noted that while some strategies, such as Tinkering, are almost
always ineffective, others, such as Tracing, while usually effec-
tive, may be undermined by inappropriate or inconsistent use.

The good news, however, is that novices do apply reasonable
strategies to locate and fix bugs. In the subsections that follow, we
present the effective and ineffective strategies subjects used, give
examples, and discuss the unproductive behaviors students dem-
onstrated as they debugged.

4.1 The Good
Many strategies listed in Table 1 were employed effectively al-
lowing students to successfully debug their programs.
Gain domain knowledge: Many students reread the specification
or reexamined the sample output to gain insight into the problem.
While students rarely used the scratch paper provided to work
through solutions, one student found an obscure mathematical
error in Raffle by checking input and output on paper.
Tracing: A majority of the students used tracing extensively.
Students traced mentally, comparing the output with the code,
both silently and out loud. Three students traced on paper. More
than half put println’s in their programs, mainly to follow the flow
of control, but one student, for example, printed the value of vari-
ables as execution progressed. Two students used a debugger to
step through the code and check the value of variables.
Testing: Almost all students tested their programs. One used a
calculator to verify arithmetic and another tested boundary condi-
tions extensively and then predicted an incorrect output and con-
firmed it with a test. Two students fixed all the bugs and then said
“I am just going to test it a few more times to be sure.” Most
tested the sample data in the specification and left it at that.
Understanding the code: Students certainly read the code. Only
one explicitly said they were trying to understand what the vari-
ables were used for. One actually learned Binary Search from the
code (picking this problem although clearly the student had never
seen Binary Search).
Using resources: Three students were observed using resources.
One used JavaDocs, another used the Java Tutorial, and a third
used old programs. No student used the textbook.
Using tools: Two students used a debugger (see tracing).
Isolating the problem: Nine students commented out or altered
code to isolate a problem. Two put in constant values to replace a
variable. Another forced a specific flow of control with a con-
stant.

look at:

located

bug
diagnose

cause alter delete add test Time
(min)

 de

sc
rip

tio
n

co
de

Jd
oc

s/
te

xt

ou
tp

ut

co
m

pi
le

/ru
n written

Artifacts
 (Trace/

Calculate/
 Draw)

give #
(0 if not
a bug)

Correctly/
Incorrectly

lines of code
Correctly/ Incorrectly

cases
Randomly/

Methodically

notes

165

Pattern Matching: Students recognized that things did not ‘look
right’. For example, one student recognized an error with missing
braces by inspection and explained it as ‘TA experience.’
Considering alternatives: Three students noticed that essentially
the same error may have multiple causes. For instance, one re-
marked that an infinite loop might be caused by the loop control-
ling expression, or from a problem at the bottom of the loop.

Environmental: Some students took advantage of functionality
made available by their environment, although it was not specifi-
cally debugging related. For instance one student made frequent
use of the undo command. Another used comments to delineate
what they had done and what should happen.

4.2 The Bad
Many of the strategies listed in Table 1 were, unfortunately, em-
ployed less effectively. Observing students provided some inter-
esting insights into how misconceptions, faulty mental models,
and unproductive behavior can impede their debugging ability.
Tracing: While used extensively, tracing was frequently used
ineffectively. Students often inserted lines like println (“hello”),
which although useful for following flow of control did not yield
other information. One student put the same println in both parts
of an if-else statement. Only a small number of students used the
debugger, although that could be because these programs were
fairly short.
Testing: Although students tested, it was often only with the data
from the specification, or sometimes even less rigorous data. One
student tested but did not note that the answers were still wrong.
Another made a change but did not then compile or run. In an
interesting take on robustness, a student noted that “stop” had to
be input in lowercase for Raffle to terminate correctly but did not
bother to alter the code despite finishing early.
Understanding the code: Although students read the code, it was
unclear how hard they tried to understand it. One student read the
code but then did not compile it or run it before trying to debug.
Using resources: The student who looked at old programs was
essentially flailing – although this could be a useful technique.
Using tools: One student used an unfamiliar IDE because it just
happened to open rather than seeking out a familiar one. This lack
of familiarity resulted in changes not being saved correctly.
Isolating the problem: Several students commented out lines that
looked ‘suspicious’ even though they were correct. Their Pattern
Matching was working against them. Another removed blanks
between String and [] in the main method header, thinking it was
a bug. Another believed the scan.nextln() after reading an integer
was unnecessary.
Work around problem: Sometimes students worked around a
problem rather than facing it. They replaced code they did not
understand with completely new code, or they changed the type
of loop rather than understand why the current loop did not work.
One student fixed a bug in Raffle (incorrect initialization of a
count to 1 rather than 0) by subtracting 1 from the count after the
loop. Another added a special case to handle 0 0 0 as triangle
sides using an if statement in the loop rather than correcting the
loop condition. This inelegant fix would have worked, but it only
printed “exit” rather than actually exiting.

Just in Case: Some students did unnecessary things. This was not
always a problem, for example, two found and deleted an unused
variable. Others added unnecessary parentheses or extra braces.
One fixed a spelling error in a comment (and nothing else).

Tinkering: This refers to fairly random and usually unproductive
changes. For example, the spelling mistake in the comment is an
example of tinkering. Students copied in large chunks of irrele-
vant code from other programs, or replaced an assignment with a
‘==’, or compiled again even though they had made no changes.
In another case, a visibly agitated student nearing the end of the
exercise changed the only error they had correctly fixed back to
the original code.

Some students demonstrated a general lack of understanding. One
weak debugger, who was unable to find any bugs in Rectangle,
seemed confused that the program compiled but did not run cor-
rectly. Another mistook a logic error for a ‘syntax’ error. A third
did not compile for 10 minutes and a fourth appeared to randomly
copy in code they thought might work.

4.3 The Quirky
Some student behaviors were rather surprising, affording us a
source of amusement. Some of these have already been mentioned
as examples of good or bad behavior.
 equals() equals ==? – Three students, from the same institution,
were unfamiliar with the equals() method. They were able to
diagnose that the “==” was the source of an incorrect loop but
could not fix it despite being told about .equals().
"Ah ha" understanding – One student exclaimed, “Oh, that’s how
DecimalFormat works”.

The textbook, what is that again? – Students did not use printed
resources. Few used paper and pencil at all. No student used the
textbook. The electronic age is definitely here.
It’s never too late to learn – Sometimes students used techniques
that we had not thought of. One student tried entering blank
names/values to diagnose a reading problem.
Sarcasm early – A student remarked sarcastically after compiling
the program for the first time, “No syntax errors—fun!”
Two wrongs make a right – Instead of fixing an incorrect initiali-
zation, a student adjusts the final counter.
Robustness/schmobustness – Noting that the program only took a
lowercase sentinel, a student moves on without any changes.
Hey, it compiles! – A student wonders why the program doesn't
work correctly since it does compile.
It just doesn't look right – Several students changed correct code,
added unneeded parentheses, or changed identifiers ... just be-
cause.

5. IMPLICATIONS FOR TEACHING
Students’ productive strategies suggest topics for instruction.
Along with learning debugging techniques, such as tracing and
testing, students should be taught heuristics, or patterns, for ap-
plying techniques effectively. Examples for tracing might in-
clude:

• If you have to track more than one or two variables or there's
a loop involved then you should trace on paper.

166

• If the bug can't be determined from the input and output then
you need to add print statements.

• Make sure that your print statements are well-placed and
print meaningful information.

• If you'd have to use many print statements, your program
'hangs' or has an infinite loop, use a debugger.

Many unproductive activities appeared to stem from insufficient
meta-cognition. Some students did not recognize when they were
stuck, thus they did not know to try a different approach. Those
who stubbornly traced in their heads often did not realize they
were suffering from cognitive overload and might be more pro-
ductive if they tracked on paper or via print statements. Others
were blind to alternative bug sources. Debugging instruction
should incorporate these meta-cognitive factors, perhaps taking
the form of self-questions: “What else could I try?’, “Is this too
much to keep track of in my head?”, and “What are other possible
sources of the bug?”
Our observations and student comments (e.g., “All students
should do this – it is really good for you.”) suggest benefits of
offering similar opportunities in introductory courses. Students
could debug a buggy implementation of a problem they had pre-
viously coded. Having everyone in the class debug the same
errors offers a common context for class discussions. Students’
difficulty with and observations about unfamiliar styles or imple-
mentations (e.g., “definitely way easier than the version I
wrote.”), also support this. Exercises could include new methods
or different styles to help students learn to cope with unfamiliar
code.
Since students clearly favor the electronic world, making re-
sources available online and teaching the debugger at an appro-
priate time, likely in CS2, would also support their debugging
efforts.

6. CONCLUSIONS AND FUTURE WORK
The opportunity to closely observe student debugging has not left
us with a sense of doom and gloom. Despite patchy coverage in
textbooks and (we confess) in teaching, students seemed to be
familiar with and used many common debugging techniques.
Unfortunately, many students apply the techniques ineffectively
or inconsistently. Testing is patchy and incomplete. Many seem
unaware they should test more input than the specification out-
lines. Only one appeared to methodically test boundary condi-
tions. Likewise, the use of print statements was not systematic.
Some ‘strategies’ were clearly ineffective. Several students ‘tink-
ered’ more or less aimlessly. Some worked around problems
rather than really debugging or fixed things that were not broken.
While better than nothing these are not good long term strategies.
Future work will compare observed strategies with those reported
during student interviews. This study’s findings could also be
applied to pedagogical interventions designed to improve debug-
ging instruction and the impact of those interventions studied.

7. ACKNOWLEDGMENTS
Thank you to Sue Fitzgerald for her superb leadership; to Jan Erik
Moström and Umeå University for the VoIP system we used for
our collaborative meetings; and to Sally Fincher, Josh Tenenberg
and Marian Petre for starting us down this path. This work was
supported in part by NSF DUE grant #0647688. Any opinions,

findings, and conclusions or recommendations are those of the
authors and do not necessarily reflect the views of NSF.

8. REFERENCES
 [1] M. Ahmadzadeh, D. Elliman and C. Higgins. Novice pro-

grammers: An analysis of patterns of debugging among nov-
ice computer science students. Proceedings of the 10th an-
nual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE), pp. 84-88, 2005.

[2] M. Ducasse and A.-M. Emde. A review of automated debug-
ging systems: knowledge, strategies and techniques. In Pro-
ceedings of the 10th international conference on Software
engineering, 162-171, 1988.

[3] S. Fitzgerald, B. Simon and L. Thomas. Strategies that stu-
dents use to trace code: an analysis based in grounded the-
ory. In Proceedings of the 2005 international workshop on
Computing education research (ICER), pp. 69 – 80, 2005.

[4] S. Fitzgerald, G. Lewandowski, R. McCauley, L. Murphy, B.
Simon, L. Thomas and C. Zander. Debugging: Finding, Fix-
ing and Flailing –A multi-institutional study of novice de-
buggers. Forthcoming in Computer Science Education --
Special Issue on Debugging, 18(2), June 2008.

[5] J. Gould. Some psychological evidence on how
people debug computer programs. International J.
of Man-Machine Studies, 7(1), pp. 151-182, 1975.

[6] L. Gugerty and G. Olson. Debugging by skilled and novice
programmers. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Boston, MA, April
13-17, pp. 171-174, 1986.

[7] I. Katz and J. Anderson. Debugging: An analysis of bug
location strategies. Human-Computer Interaction, 3(4):351-
399, 1987.

[8] C. Kessler and R. Anderson. A model of novice debugging
in LISP, in Soloway, E. & Iyengar, S. (Eds.) Empirical Stud-
ies of Programmers: First Workshop, (pp. 198- 212). Nor-
wood, NJ: Ablex Publishing Corporation, 1986.

[9] R. McCartney, A. Eckerdal, J.E. Moström, K. Sanders, and
C. Zander. Successful students' strategies for getting unstuck.
ACM SIGCSE Bulletin, Proceedings of the 12th annual SIG-
CSE conference on Innovation and technology in computer
sci. education (ITiCSE). Vol 39, Issue 3, pp. 156-160, 2007.

[10] R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B.
Simon, L. Thomas and C. Zander. Debugging: A review of
the literature from an educational perspective. Forthcoming
in Computer Science Education -- Special Issue on Debug-
ging, 18(2), June 2008.

[11] M. Nanja and C.R. Cook. An analysis of the on-line debug-
ging process. In G. Olson, S. Sheppard and E. Soloway,
(Eds.) Empirical Studies of Programmers: Second Work-
shop, pp. 172-184, 1987.

[12] D. Perkins and F. Martin. Fragile Knowledge and Neglected
Strategies in Novice Programmers. In E. Soloway and S.
Iyengar (Eds), Empirical Studies of Programmers: First
workshop. Ablex, NJ, USA. pp. 213-229, 1986.

 [13] I. Vessey. Expertise in debugging computer pro-
grams: A process analysis. International J. of Man-
Machine Studies, 23, pp. 459-494, 1985.

167

