
From Limen to Lumen :
Computing students in liminal spaces

Anna Eckerdal
Department of Information

Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Robert McCartney
Department of Computer
Science and Engineering
University of Connecticut

Storrs, CT USA

robert@cse.uconn.edu

Jan Erik Moström
Department of Computing

Science
Umeå University

901 87 Umeå, Sweden

jem@cs.umu.se

Kate Sanders
Mathematics and Computer

Science Department
Rhode Island College
Providence, RI USA

ksanders@ric.edu

Lynda Thomas
Department of Computer

Science
University of Wales
Aberystwyth, Wales

ltt@aber.ac.uk

Carol Zander
Computing & Software

Systems
University of Washington, Bothell

Bothell, WA USA

zander@u.washington.edu

ABSTRACT
This paper is part of an ongoing series of projects in which
we are investigating “threshold concepts”: concepts that,
among other things, transforms the way a student looks as
the discipline and are often troublesome to learn. The word
“threshold” might imply that students cross the threshold in
a single “aha”moment, but often they seem to take longer.
Meyer and Land introduce the term “liminal space” for the
transitional period between beginning to learn a concept and
fully mastering it.

Based on in-depth interviews with graduating seniors, we
found that the liminal space can provide a useful metaphor
for the concept learning process. In addition to observing
the standard features of liminal spaces, we have identified
some that may be specific to computing, specifically those
relating to levels of abstraction.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education—Computer Science Education

General Terms
Measurement, Experimentation

Keywords
threshold concepts, liminal space, learning theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICER ’07,September 15–16, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM xxxx ...$5.00.

1. INTRODUCTION
This paper is part of an ongoing series of projects in which

we are investigating “threshold concepts”: concepts that,
among other things, transform the way a student looks at
the discipline and are often troublesome to learn. [12] We
are interested in identifying these concepts in computer sci-
ence, understanding how students experience the process of
learning those concepts, and designing better ways to help
students with this process.

Last year, we conducted in-depth interviews of computer-
science majors nearing graduation. In our initial analysis
of this data, we identified some threshold concepts in com-
puter science. [1] We also found that students report using a
wide variety of strategies to make progress in learning these
difficult concepts. [10]

The word “threshold” might imply that students cross the
threshold in a single “aha” moment, but often they seem
to take longer. Meyer and Land [13] introduce the term
“liminal space,” borrowed from anthropology. Limen is the
Latin word for threshold, so this literally means “threshold
space.” Roughly speaking, in our context, the term refers to
the transitional period between beginning to learn a concept
and fully mastering it.1 Meyer and Land’s formal defini-
tion, discussed below, helped us to formulate the questions
that guided our analysis of the data. Our analysis revealed
several interesting aspects of how students experience this
liminal space.

In Section 2, we give the theoretical background for this
work. We present our research questions in Section 3, review
some additional related work in Section 4, and describe our
methodology in Section 5. In Section 6, we present our
results: the different ways in which students experience the
liminal space, as shown in our data. We discuss these results
in Section 7, and close with our conclusions and future work.

1Lumen is the Latin word for the light that we hope students
find when they have fully crossed the threshold.

2. THEORETICAL BACKGROUND
Meyer and Land [13] have proposed using threshold con-

cepts as a way of characterizing particular concepts that
might be used to organize the learning process. They further
develop a theoretical framework, the liminal space, which
specifically focuses on the process of learning such concepts.

2.1 Threshold Concepts
Threshold concepts are a subset of the core concepts within

a discipline, and are characterized as being [13]:

• transformative: they change the way a student looks
at things in the discipline.

• integrative: they tie together concepts in ways that
were previously unknown to the student.

• irreversible: they are difficult for the student to un-
learn.

• potentially troublesome (as in [15]) for students: they
are conceptually difficult, alien, and/or counter-intuitive.

• often boundary markers: they indicate the limits of a
conceptual area or the discipline itself.

The idea has the potential to help us focus on those concepts
that are most likely to block students’ learning. [3]

In our interviews, we have so far found evidence that
pointers and object-oriented programming fulfill the criteria
for threshold concepts. [1]

2.2 Liminal space
The term “liminal space” was originally used in anthro-

pology to describe the time during which someone is passing
through a rite of passage. [19] When borrowing the term,
Meyer and Land list the following defining characteristics.
[13] The liminal space is a space in which someone

• is being transformed

• acquires new knowledge

• acquires a new status and identity within the commu-
nity

The process of being in this liminal space and crossing the
threshold may

• take time, and may involve oscillation between old and
new states

• involve emotions, of anticipation, but also of difficulty
and anxiety

• involve mimicry of the new state

The period of adolescence, for example, has all of the char-
acteristics of a liminal space. In adolescence, an individual
is being transformed and acquiring the identity of an adult.
This process takes time, involves acquiring new knowledge
– how to earn a living, for example – and is often a difficult
time emotionally. Adolescents, especially in the early stages,
can behave like children one moment and adults the next,
oscillating back and forth between the two states. And they
learn to be adults, in part, by mimicking the adults around
them.

In educational settings Meyer and Land emphasize the
transformative character of threshold concepts as the main
reason for the liminal space: “owing to their powerful trans-
formative effects” [12, p. 10], and in [13, p. 380] the authors
explain: “we see the threshold as the entrance into the trans-
formational state of liminality.”

In the learning of threshold concepts mimicry can “in-
volve both attempts at understanding and troubled misun-
derstanding, or limited understanding, and is not merely
intention to reproduce information in a given form.” [13,
p. 377] The authors further relate both mimicry and emo-
tions of difficulties and anxiety to “stuck places.” Identifying
such stuck places in the learning process can lead to a fuller
understanding of the transformation student undergo.

The characteristics of the liminal space given by Meyer
and Land, applied to our empirical data, served as starting
points for an analysis on conceptual learning in computer
science. This research has the potential to shed light on why
some students get stuck at the threshold in the process of
becoming computer scientists. Meyer and Land write: “lim-
inality, we argue, can provide a useful metaphor in aiding
our understanding of the conceptual transformations stu-
dents undergo, or find difficulty and anxiety in undergoing,
particularly in relation to notions of being ‘stuck’.” [13,
p. 377]

3. RESEARCH QUESTIONS
This paper addresses two research questions.

1. Can the liminal space as discussed by Meyer and Land
serve as a “useful metaphor in aiding our understand-
ing of the conceptual transformations students undergo”
[13, p. 377] in computer science?

2. What specific characteristics do we observe in com-
puter science students when they are in the midst of
learning a threshold concept, and do these satisfy the
requirements of a liminal space?

By addressing these questions, we hope to gain better in-
sights in the complicated process of conceptual learning in
computer science. Furthermore we hope to shape the frame-
work for our specific discipline.

We looked for evidence of the different features of a limi-
nal space given in Meyer and Land’s definition (above). It
follows from the definition of a threshold concept that by
learning it, the student is being transformed and acquiring
new knowledge. Because threshold concepts are core con-
cepts within a discipline, students learning them can also
be said to be acquiring a new identity, that of an insider,
someone who understands the central ideas of a field.

We focused, therefore, on the remaining aspects of the
definition of a liminal space, looking for answers to the fol-
lowing questions in our interviews:

• Does the process of learning threshold concepts take
time? Do the students appear to oscillate between
the old and new states (i.e., not understanding and
understanding)?

• What emotional reactions do students express?

• Does the process of learning threshold concepts involve
mimicry?

We also formulated some questions that are not explicitly
addressed by Meyer and Land, but notwithstanding seem
to be important for a rich description of the learning of the
threshold concepts studied.

• What kinds of partial understanding knowledge do stu-
dents possess within the liminal space?

In the interviews we found that students made a clear dis-
tinction between different aspects of the concept they were
learning. Most students discussed one or several aspects as
troublesome to learn, but different students struggled with
different aspects. Each of these aspects is a place where
students might become stuck.

The second question we added was:

• Do students know that they have crossed a threshold,
and if so, how?

Whether students can tell when they have crossed a thresh-
old is relevant, since the liminal space seems to be accom-
panied by emotions of frustration or desire to pass through
it. If a student thinks he or she has crossed a threshold in
learning, even though he or she hasn’t, what are the conse-
quences for the motivation to learn?

4. RELATED WORK
This project fits squarely within the constructivist tradi-

tion. Constructivist theory holds that the learner actively
builds knowledge. Different theories propose different mod-
els for the learner’s knowledge: a hierarchy of anchoring
ideas [11], schemas [11], and mental models. [7] In each
case, however, learning involves adding to or modifying some
cognitive structure. To continue the construction metaphor,
threshold concepts are keystones, critical parts of the struc-
ture that hold the rest together, and the liminal space is the
construction site.

No work has specifically addressed the liminal space in
computer science. There is a substantial literature on con-
cept learning in general, however. We will restrict ourselves
to the work that is most closely related to the defining fea-
tures of a liminal space.

Perkins and Martin found that students were hindered by
what they called “fragile knowledge,” that is, when the stu-
dent “sort of knows, has some fragments, can make some
moves, has a notion, without being able to marshal enough
knowledge with sufficient precision to carry a problem through
to a clean solution.” [16, p. 214] Shymansky et al. found
support for oscillation – “a punctuated, saw-toothed, con-
ceptual growth process” – in a study of a group of middle-
school teachers. [17, cited in [18]] In a later study of stu-
dents, they found that while oscillations were not reflected
in the mean ratings, 10 of the 22 individual students did
show patterns of progress and regression. [18]

Mimicry is generally considered to be negative – the stu-
dents are said to be “just mimicking” or “only mimicking”
what they have seen. And it can be negative if the student
does not progress beyond this point. Hughes and Peiris [6],
for example, found a strong negative correlation between
course performance and a “surface apathetic approach” to
learning to program, in which the students memorize and
reproduce what they have seen without any deeper under-
standing.

On the other hand, if students persist in seeking a deeper
understanding while they mimic what they have seen, the

practice may be helpful. In some non-Western educational
traditions mimicry is considered to be an important step in
learning. [8, 9] In a comparative study of Chinese and Aus-
tralian students of accounting, Cooper found that “While
surface approaches to learning can be associated with me-
chanical rote learning, memorization through repetition can
be used to deepen and develop understanding and help achieve
good academic performance.” [2, p. 306]

Murphy and Tenenberg address the general question of
whether computer-science students know what they know.
[14] They asked students to predict how they would do on
a data structures quiz taken in courses that required data
structures as a prerequisite. They found that the students’
estimates correlated moderately with their performance, and
(interestingly) the accuracy of their estimates improved af-
ter the quiz. This was consistent with, or slightly better
than, the estimating ability of students in other fields.

Mead et al. propose a method of organizing a curriculum
around what are essentially threshold concepts, plus some
additional “foundational concepts.” [11, p. 187] They mod-
ify the definition of threshold concepts, requiring only that
a concept be integrative and transformative. It seems likely,
however, that the other defining features of threshold con-
cepts follow from these two. If a concept integrates other
ideas or causes you to see the field in a new way, it may well
be troublesome to learn, and you are not likely to forget it.
Thus, the set of concepts they focus on likely include all the
threshold concepts.

They suggest creating a directed graph with the thresh-
old and foundational concepts as nodes, showing the order
in which concepts should be presented in a curriculum. Con-
cept A should be taught before another concept B if it “car-
ries part of the cognitive load in learning it.” [11, p. 187] By
presenting the concepts in the right order, we may be able
to make it easier for our students to learn each of them.

Meyer and Land note that there is are inherent conflicts
between the use of threshold concepts, particularly as ar-
ticulated above by Mead et al. as steps in a logical passage
through a curriculum, and the more fluid and unordered as-
pects of liminality on which we will focus here. [13, p. 379-
380]

5. METHODOLOGY
The data used were gathered during a previous study

of threshold concepts [1, 5, 10],using semi-structured inter-
views with 14 students at six institutions in Sweden, the
United Kingdom, and the United States. For analysis, the
student interviews were transcribed verbatim; where neces-
sary, they were translated into English by the interviewer.

During the analysis of the data we identified two thresh-
old concepts: object-orientation and pointers. [1] This paper
continues the analysis by looking into how the idea of a lim-
inal space relates to these threshold concepts. The authors
once again read through all the interviews looking for quotes
related to liminal space, the resulting selections were then
discussed among the authors and related to the discussion
of liminal space as described in Section 2.2. The result of
this analysis is reported below.

In our interviews we specifically asked the students about
concepts they found troublesome to learn. In the present
study we have re-analyzed those interviews where students
entered deeply into discussions on pointers or object-oriented
programming.

6. RESULTS
The analysis was inspired by the goal to investigate the

usefulness of the liminal space metaphor in computer sci-
ence. We call our analysis a triangular conversation, that
is an ongoing conversation and negotiation between the re-
searchers, the data, and the liminal space as it is described
by Meyer and Land. The questions we asked are inspired
by the characteristics of the liminal space, but also by the
data, the observed characteristics from the quotes. The an-
swers we found are shaped by the research questions, the
data, and our lengthy experiences as teachers in the subject
domain.

6.1 Partial understanding
Since the liminal space for a concept is the time when the

student is trying to attain a concept but has not yet suc-
ceeded, it should be characterized by partial attainment of
a concept. When looking at the quotes relating to partial
understanding, we see a number of common themes emerge.
Students identify a number of different sorts of understand-
ing: the abstract concept, concrete implementations using
the concept, design using the concept, the rationale behind
using the concept, the application of the concept to new
problems, and mappings from one of these understandings
to another. The observed understandings could be placed
into these general categories:

• An abstract (or theoretical) understanding of a con-
cept;

• A concrete understanding—the ability to write a com-
puter program illustrating the concept—without hav-
ing the abstract understanding;

• The ability to go from an understanding of the abstract
concept to software design or concrete implementation;

• An understanding of the rationale for learning and us-
ing the concept; and

• An understanding of how to apply the concept to new
problems—problems beyond those given as homework
or lab exercises.

Abstract understanding
Some quotes showed that the abstract concept was not yet
attained. This quote showed a confusion between the no-
tions of class and object:

Subject 9: I can still remember that I tried to
do operations on the classes that I think I can
really remember, but I think I was trying to let
the lamp shine or don’t shine by doing something
with the lamp class instead of with the lamp ob-
ject.

Another showed the difficulty of learning pointers was tied
in with other unlearned concepts:

Subject 4: You know, and I’m not sure what I
didn’t understand, because there was plenty of
other things that we were doing at the same
time, like recursion and inheritance, that also
used pointers. Recursion was another huge stum-
bling block for me. And so taking a pointer and
throwing it in with a recursive function - [laugh]

- I felt like I was, you know when you stand in
front of those mirrors in a dressing room, the ones
that are in front of you and on the sides, and you
see reflections and reflections and it never ends?
That’s what I felt like with pointers and recur-
sion.

Some showed that some understanding had been successfully
attained:

Subject 6: But now I can ... I’m able to see
how the classes are related, I guess. How they’re
related and which classes share information.

Some students were knowingly striving for a deep under-
standing:

Subject 5: Why and how it [OOP] should be used.
I have a background that is very much procedu-
ral imperative ... programmed Basic, Assembler
and Pascal since the middle of the -80s ... so
it was a rather high threshold to, not to learn
how to use it, to get it to work, but to use it the
right way ... I thought it was very elegant but
it took probably several years before I saw the
really elegant solutions ...

Concrete understanding without abstract
Some students were able to work with object-oriented con-
cepts at a concrete level without a theoretical understand-
ing:

Subject 9: ... I’m pretty good at Java, but the
interface concept is little strange. Abstract class
and interface and stuff like that, ehh, is rather
complicated. Ahh, specially interface [giggle].
And to explain that to someone, I don’t think
I can do it, but I can use the term and I can use
interfaces.

Relating the abstract concept to implementation or de-
sign
Students commonly mentioned that they had a theoreti-
cal understanding, but were unable to translate that un-
derstanding to something less abstract. Specifically, many
students discussed their inability to use their abstract un-
derstanding to produce a concrete implementation:

Subject 7: There’s just some aspects to it that
just seem to remain kind of mysterious to me at
the programming level. Not the concept level,
not the theory level, not the technology level but
at the kind of code nuts and bolts level ... It’s
not that I don’t understand what I’m trying to
accomplish it’s just getting the syntax of the de-
tails right ... I’m a lot better in Java because I
don’t have to deal with the syntax of the details.
I can only deal with the concepts.

Subject 8: the abstract understanding is some-
thing you learn by education, by reading, you
can learn that in class, but the understanding of
actually applying it to programs you can’t, you
must, you must learn it by, by, by using it ...

Other mappings proved difficult, such as the application of
the abstract understanding to design, which is less concrete
than implementation:

Subject 8: ...but the harder thing is actually to
create what should be an object and what should
not be an object and, what classes should I have
for these things and, and that is the most ...

A similar observation is the following:

Subject 9: ... So it wasn’t like a big struggle to
understand the difference between class and ob-
ject for me actually. But it can be when you’re
designing a program ... To know where to stop
doing the classes and start doing the objects.
That ... that’s actually something you can think
about today, as well.

Rationale
Another aspect of understanding a concept is understand-
ing its rationale–why you would want to know and use this
concept. Students reported feeling the lack of this under-
standing as they were learning:

Subject 3: My thoughts were that I didn’t under-
stand why we needed pointers when references
worked perfectly well beforehand. I didn’t un-
derstand the power of pointers and I guess I just
didn’t see the purpose of declaring variable int*2.

Subject 5: I found it difficult during the first ...
the first course when I encountered it, I couldn’t
see the use of it, except that you could get some
kind of encapsulation.

Application
Another way of understanding a concept is to understand
how to apply it to new problems, not just in the related
assignments.

Subject 2: You understand how a theory works
but how do you take that theory and how it
works and apply it to a practical sense? I think
that is one of the hardest leaps to make.

Subject 8: ... it took a long time to understand
how object oriented programming works, but then
once I understood it more or less, the basic con-
cept, I still couldn’t use it, it wasn’t usable be-
cause I didn’t know what to apply to my prob-
lems.

6.2 Temporal Aspects and Oscillation
We examined how long students spend in the liminal space.

Since we started our discussions by asking students about
places where they were stuck, it is not surprising that all of
our students emphasized the prolonged process required to
learn threshold concepts.

Students and faculty alike will often talk about having an
“aha” moment. While this might imply a sudden insight,
this moment frequently is preceded by either a long time
in the liminal space or a depth of understanding in a re-
lated area. Subject 7 implies a lengthy journey through the
liminal space:
2int* is a reference to how a pointer to an integer is declared
in C-like languages

Subject 7: It unwound or wound it printed out
statements but I still didn’t understand it very
well. It really honestly wasn’t until I got to your
class that the light kind of came on and the idea
of doing the checks up front and sort of assuming
it’s going to do what you tell it to do.

Subject 5 describes a deep understanding before the “aha”
moment:

Subject 5: A friend that showed me some kind of
interpreter for some small little ... well, a model
of a computer, where he [...] took the instruction
object and told it ‘run’, [...] then I got some kind
of small aha-experience, ‘perhaps you can do it
that way instead of doing it in some more tire-
some way’, the way I should have done it myself.

Many students mentioned a prolonged time in the liminal
space. Across the board, the time to gain understanding
was lengthy:

Subject 13: I think there was definitely a point
where I definitely got the understanding, whether
I was still confident in doing it, that probably
took a lot of time.

Subject 2: ... when I finally did make the under-
standing, which actually took about two to three
years.

Subject 6: I think it is something that takes at
least a couple of semesters. I mean, unless you’ve
had prior experience, I just don’t see.

Subject 5: Object oriented programming was one
thing for example that took a long time before
... it clicked. [...] It took ... perhaps two years
before it was completely in-place ...

Students seemed to not only spend time learning the con-
cepts, but they also demonstrated understanding that the
prolonged process was necessary for learning. Subject 4
knowingly gives a lot of time to the learning process, while
Subject 7 implies it was natural to not understand yet :

Subject 4: So, I had a lot of time to spend,
you know, brain resources to spend understand-
ing, you know, stuff that’s pointing and how you
dereference it.

Subject 7: So everybody - it was just sort of like
they were talking a language I wasn’t fluent in
yet.

Students also implied oscillation in their learning. They
describe the nature of going back and forth between knowing
and not knowing, thinking that they know it, but realizing
they’re not there yet:

Subject 4: It was clear to me, it just seemed like
while I was in the thick of it I would forget. I
spent a lot of time lost in the - it was that forest
for the trees. I don’t know. Lost in the jungle.

Subject 6: ... with object-oriented [...] I think
you understand the basic - you have the concept
of it. But I ran into certain things with classes
where I didn’t have access to that particular class
and I’m thinking, What’s the problem here? [...]
So I did understand but I have run into problems
and it did kind of go back to objects and how
they’re relating.

Subject 9 nicely summarizes the oscillation between the
knowing and the not knowing:

Subject 9: ...most of the time it’s just iterates
on the outside of the knowledge spiral. [...] I
have to refresh the knowledge I learned recently
more often, but some things I have to go back
and refresh maybe the real basics of what it’s all
about. Not that I have forgotten it but to get a
deeper understanding.

6.3 Emotional reactions
Meyer and Land refer to the liminal space as “problem-

atic, troubling, and frequently involv[ing] the humbling of
the participant.” [13] They also warn that students may
experience “difficulty and anxiety” in relation to learning
threshold concepts. We examined our student quotes from
this perspective, to see if we could find evidence of emotion-
ally laden terms.

Students frequently mentioned that they found that learn-
ing threshold concepts was frustrating:

Subject 3: Felt? I think I felt frustrated. My
thoughts were that I didn’t understand why we
needed pointers when references worked perfectly
well beforehand.

Others referred to feelings of depression:

Subject 13: During ... well if I found it difficult
then I would probably mope slightly for a while
and then got down to it.

There was evidence of students feeling humbled:

Subject 2: Another thing that was very frustrat-
ing. I’m usually quick to understand things.

Subject 7: It just seems like it’s been such a long
and horrible road over pointers and that object
oriented thing. That’s just been my nemesis the
whole way through and I don’t remember any-
thing else being that difficult.

Students themselves note that there was a certain mys-
tique around becoming a programmer or understanding a
concept:

Subject 7: The class idea was just really myste-
rious.

Subject 4: ... it seemed like something really
hard. Like if you’re extremely smart then you
can program, you know. All computer geeks are
really smart and they can program. That’s my
sort of opinion of it before I started. Something
that was magical and hard.

The experience was definitely transformative if students
eventually grasped a concept:

Subject 4: While I was stuck they [pointers] were
a nightmare and I hated them. After I figured
them out, they were very cool and useful. And I
could see why you would want to have them.

Subject 6: And then when I do get it to work,
it’s almost like these people that run a 25-mile
marathon just for, like, that high or whatever.
I get that when I solve the problem. I get real
souped, screaming in my room.

Confidence can be seen as an emotion with a fairly com-
plex relationship with liminal spaces–being stuck can lower
it, but having it can make it easier to get unstuck. Student 9
describes his or her feelings about the importance of having
some prior knowledge in programming:

Subject 9: I got the aha experience again and
that just was like if I know a little then I can, eh,
jump in everywhere and catch up from there. [...]
And that’s really important to know, or to feel,
that you can catch up. [...] it’s not impossible.

The same student also emphasizes the importance of know-
ing "how to study” in terms of be able to use different online
resources and IDEs:

Subject 9: That helped in Java doc and API on
the Internet and the, aha experience again, that
how to use it [...] that you could actually go
there and see how you should do with any ques-
tion you have and also seek information on other
eh on Google for example on the Internet how
to solve a specific problem, problem in program-
ming. Eh, that have really helped me a lot, Ahh,
the confidence that I can do it with, eh, help of
Internet. [...] when I hear of a new concept it’s
just to see on the website to see what they mean
and how they, how you should use it and you use
it. Ah, and that’s a really big threshold to come
past.

6.4 Mimicry
During the interviews some of the students mentioned

that in beginning to learn a subject they ”imitated” someone
or some existing code. Subject 9 discusses starting object-
oriented programming:

Subject 9: And then ... when ... to learn some-
thing from an example, for example, it had to
be exactly almost the same example as the thing
you are trying to solve. You are trying to find ex-
actly the information how to solve this problem
in the textbook always search in the textbook.

and:

Subject 3: I think if a person can see the pattern,
I think I’m no different from anyone else. If I
can see the pattern, I can generally, I can take a
technique and I can go home and figure it out if
there’s a pattern to it. I understand the pattern,
why the pattern fits, and I can see how to figure
out the exceptions to those patterns.

Others indicated that it was a big help in the beginning to
have step-by-step instructions to follow:

Subject 7: I think the idea - and one of the things
in your teaching - one of the things about your
teaching is that you tend to give a procedure and
I think I don’t believe in - you actually in some
cases give a list of things. Step one, step two
like on recursion. I don’t think in other classes
that we’ve been that procedure oriented. Maybe
we’ve talked more about the idea and the concept
and the whatever, but it really helped.

Even if a behavior like this might seem counter-productive,
“the students are here to learn how to do things themselves,
right”, it is important to realize that for the interviewed
students the “mimicry” seemed to be just a stepping stone in
their further learning. Here is another example of a student
who started by mimicking and then progressed:

Subject 9: In the beginning I tried to look it up in
the textbook and find the exact example how to
solve this instead of, eh, while during the process
I found that an IDE can help me when I, when I
press the point it gets a list of everything that’s
possible to do with that object, and if you write
the class name, you, you get some sort of error
message, it probably meant that instantiation of
this object. Ah, so it helps ...
Interviewer: So, in this way ... are you using
this IDE. Your understanding of these concepts
changed?
Subject 9: They improved, yes.

In some cases, however, students did not progress beyond
mimicking:

Subject 7: I have so much trouble with that over-
load asterisk and there’s that – is it asterisk am-
persand symbol or whatever. Never got that.
Never had a clue. I just copied it. Yeah, it really
gave me trouble. Just looking at would just sort
of freeze me.

6.5 Crossing the threshold
Students in the interviews discuss object-oriented pro-

gramming and pointers from the perspective of having passed
the liminal space. This is expressed in different ways. Some-
times the descriptions of the experience of passing through
the liminal space is emotional:

Subject 2: It took a lot of just practicing and just
repeating. It’s to the point where when you see it
you wouldn’t be kind of intimidated. You would
already say okay I know what I can do with this.

One student discusses the emotions that characterizes his or
her conviction of having passed the liminal space, and the
previous emotional conviction of not having passed:

Subject 6: But I just remember at that moment
like it just kind of made, I don’t know, made
sense, I guess. I don’t know what about it made
sense. [...] I mean, I did get it before. I saw what
was going on. But I just didn’t feel like I had the
control, I guess, till I saw it.

Some students describe their conviction of having passed
the liminal space as being able to visualize their understand-
ing:

Subject 2: But the basic idea of passing by ref-
erence or value; no, once I understood that I –
every time it’s mentioned I immediately know
and understand – I can see a picture – a diagram
in my head of what I’m supposed to do.

Subject 7: I remember in the final I looked at a
problem that you wrote and I saw recursion ... I
remember it was a tree and I remember looking
at it and as I said some people see black and
white, some people see color. It was like I saw
color. Oh, you can solve this with recursion. It’s
a tree. I can solve this recursively and here’s this
relationship. [...] That was kind of like, "Whoa."
I actually saw it and that was pretty exciting.

Other students describe their conviction of knowing the
concepts on the foundation of mastering the handicraft of
programming:

Subject 13: And after ... its like you said before
it was one of those things like riding a bike, isn’t
it.

And another student says:

Subject 2: And then after it’s almost like it’s a
tool and you don’t even think about using it. You
say I need to do this. Okay, done. [...] And it’s
a seamless integration. It’s just there it is. And
you don’t - it’s almost like you don’t even think.
Like when you - right now I have to declare an
integer. I don’t think about how I do it or how
to syntax. I just type it away. It’s almost like a
memory response.

The same student contrasts his or her experience to how it
was before the passage of the liminal space:

Subject 2: So I think it comes from a point of
being completely lost and just randomly guessing
and hoping your guessing is good. To a point
where you’re confident with using that and you
may not want to use it as much as you would
something else you’re more confident with ...

Having passed the liminal space does not always mean
that there is never a need for going back. The students dis-
tinguish however between not understanding and practicing
for a better understanding, and between understanding but
still needing to practice syntactical details of the program-
ming language:

Subject 3: After a certain length of time, yeah,
sure, I have to review stuff.

Interviewer: Well, you review it to program, but
conceptually?

Subject 3: No, I understand it. It’s something I
do get.

Similarly:

Subject 2: I would have to look up the syntax and
possibly get a very brief example just to remind
myself that’s how the pointer works. Okay, done.
Then the memory jog hits me and I’m good.

An interesting question arises when studying students who
claim they have passed through the liminal space. Are
the students’ views are in line with the educators’ view of
what is required for a “good” understanding of the concept?
Are there students who believe they have passed the limi-
nal space, when they, according to the course requirements,
have not? And, on the other hand, are there students who
believe they have not passed the liminal space, while educa-
tors would say they have? Students from our study illustrate
this:

Subject 9: So then, and still, I, I mean that I’m
pretty good at Java, but the interface concept is
little strange. Abstract class and interface and
stuff like that, is rather complicated. ’specially
interface. And to explain that to someone, I
don’t think I can do it, but I can use the term
and I can use interfaces.

And later in the interview:

Subject 9: I think I should know why information
hiding is important but I can’t think of it now ...

It can be questioned whether the student has passed the
liminal space or not since the concepts the student fails to
understand are central to the object-oriented paradigm.

Another student demonstrates his or her understanding
of object-oriented programming, and yet says

Subject 5: object oriented programming was one
thing for example that took a long time before...it
clicked. [...] It took...perhaps two years before it
was completely in-place...and it’s really nothing
that I’ve really understood even today.

Reading the transcript as educators, we believe the student
has a good understanding, and still he or she is not convinced
of having passed the threshold.

rns out to be only partial. If the learning process is allowed
to continue, the student might experience that he or she
is back in the liminal space. The students’ experience of
passing the liminal space is thus not as reliable as it seems
to be at the first glance. We want to point to the finding that
there seem to exist students who think they have passed the
liminal space, and thus probably do not strive for a better
understanding, which is comparable with the discussion on
misconceptions. We believe that our finding is an important
aspect of the liminal space that might need to be considered
in future work.

7. DISCUSSION
Students certainly describe the features that define liminal

space according to Meyer and Land. Our analysis has raised
a number of interesting observations and questions.

First, we saw different partial understandings of students
during the liminal space. Students, at least in retrospect,
show an appreciation that full understanding includes a num-
ber of aspects: abstract, concrete, rationale, application,
and the connections among them. The need to attain all of

these somewhat independent understandings explains why
students get stuck at different places, and why the path
through this space is not a simple linear progression. That
we commonly observed the particular partial understanding
of not being able to translate from an abstract understand-
ing to concrete implementation or design may be specific to
computing as a discipline, a question worth deeper investi-
gation.

Second, when considering the question – “Does the pro-
cess of learning threshold concepts take time?” – the answer
seems to be a clear Yes. All of our subjects at some point
discuss the lengthy process of learning. What we found in-
teresting here was that whether acknowledging that learn-
ing occurs as a spiral action or as feeling lost in a jungle,
all of our graduating students admit and accept that learn-
ing computing concepts takes time. This may be a major
roadblock to first-year students who typically have not yet
learned about the time-consuming nature of learning, par-
ticularly in a technically demanding field such as computing.

If so, then one thing educators can do is to support stu-
dents during the experience that learning takes time. While
many of us attempt to do this indirectly with our assign-
ments and labs, is there something we can directly do about
this? How can we instill the notion that the time-consuming
nature of learning is normal?

This should also be taken into consideration by educators
when they meet novice students. The insight that these stu-
dents lack the experience that learning takes time might help
educators to better understand and cope with the difficulties
novice programmers demonstrate.

Third, we found that there was no lack of emotional reac-
tions while learning threshold concepts. As our interviews
show, students exhibit very strong feelings. This presence of
strong emotion in students discussing the field of computing
is rarely mentioned in the literature, but as CS educators,
many of us have had the experience of students telling us
that they “hate programming.” Despite purists’ belief that
computing concepts should not be anthropomorphized [4],
our students personalize threshold concepts, and say they
hate or fear them. They also exhibit feelings of euphoria
when they emerge on the other side of the threshold.

We suggest that instead of dismissing students’ emotional
reactions, as teachers and professionals we should recognize
that they are normal and desirable. We need to consider how
we can create a learning environment where the feelings that
programming is hard, magical and frightening are handled,
and students move through them rather than give up.

Fourth, many students state that at some stage during the
learning process they mimic what others have done with-
out exactly understanding what they are doing. For some
teachers mimicry is an undesirable action; students are sup-
posed to always understand what they are doing and to “just
mimic” someone is a failure. We suggest that teachers look
at mimicry in another way. Although some students do not
progress past mimicry, it can be a step to gaining a full un-
derstanding of the subject. Meyer and Land acknowledge
this when they write

...students might well adopt what appears to be
a form of mimicry as a serious attempt to come
to terms with conceptual difficulty, or to try on
certain conceptual novelties for size as it were.
We would not want to belittle or dismiss such
responses as they may well prove to be success-

ful routes through to understanding for certain
learners. [13, p. 383]

Our original interviews did not pursue the idea of mimicry
in depth, but the mixed results here suggests that further
study of the role of mimicry in learning programming (and
computing in general) is warranted.

Fifth, the question “Do students know that they have
crossed a threshold, and if so, how?” has no clear answer.
We have identified different ways students express their be-
lief that they have passed the liminal space. The descrip-
tions are often vivid and illustrate the students’ experiences
of a transformation. Yet, while students express that they
understand a subject, the evidence suggests that they might
be wrong. What are the consequences if students think they
have passed through the liminal space, when they have not?
And, on the other hand, how does it affect students if they
believe themselves not to have reached desired understand-
ing, when the educator judges that they already have passed
the liminal space?

8. CONCLUSIONS
In this study, we examined Meyer and Land’s notion of

liminal spaces in the context of learning concepts in com-
puter science. Addressing our research questions, we found

1. Liminal spaces provide a useful metaphor for the con-
cept learning process, at least for transformative con-
cepts. The absence of a single path through, the fact
that these changes can take time, the emotional reac-
tions of the students, and the students using mimicry
as a coping mechanism: these characteristics seem to
capture much of the learning experience.

2. In addition to observing the “standard” features of lim-
inal spaces, we have identified some that may be spe-
cific to computing. The kinds of partial understand-
ings observed—specifically those relating to levels of
abstraction—are closely tied to what computer scien-
tists need to do.

The particular emphasis on the difficulty in going from
the abstract to the concrete is quite interesting, and seems
counter-intuitive given the way we teach computing. The
emphasis in computer science education is on teaching stu-
dents to abstract away from the details, but the problems
observed here are in moving in the other direction.

The most important practical observation from this work
may be that different students take different routes through
the liminal space, with the possibility of getting stuck at
multiple places. This suggests that there is no fixed order
of topics that best serves all students, rather instruction
should be flexible enough to accommodate individual stu-
dents. Knowing what aspects of a concept are necessary to
gain full understanding, particularly those concerning differ-
ent abstraction levels and the mappings from more to less
abstract, could help here.

This work suggests a number of questions that deserve
further investigation. Would we get similar results if we in-
terviewed students while they were still in a liminal space,
rather than after they have attained understanding? Would
we see differences if we interviewed novices rather than grad-
uating seniors? Would other transformational concepts in
computer science—those less tied to programming, for example—
show similar partial understandings? How do students use

mimicry when trying to learn, and when might it be effec-
tive?

Stay tuned.

ACKNOWLEDGMENTS
The authors would like to thank Mark Ratcliffe and Jonas
Boustedt, who participated in the design, data collection,
and initial analysis of the threshold concept interviews. Thanks
also the Department of Information Technology at Uppsala
University for providing us with workspace and facilities in
Uppsala, and to Sally Fincher, Josh Tenenberg, and the
National Science Foundation (through grant DUE-0243242)
who provided workspace at the SIGCSE 2006 conference in
Houston. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation or Uppsala University.

9. REFERENCES
[1] J. Boustedt, A. Eckerdal, R. McCartney, J. E.

Moström, M. Ratcliffe, K. Sanders, and C. Zander.
Threshold concepts in computer science: do they exist
and are they useful? In SIGCSE-2007, pages 504–508,
Covington, KY, March 2007.

[2] B. J. Cooper. The enigma of the Chinese learner.
Accounting Education, 13(3):289–310, 2004.

[3] P. Davies. Threshold concepts: how can we recognise
them? 2003. Paper presented at EARLI conference,
Padova. http://www.staffs.ac.uk/schools/business/
iepr/docs/etcworkingpaper(1).doc (accessed 25
August 2006).

[4] E. Dijkstra. On the cruelty of really teaching
computing science. Commun. ACM, 32(12):1398–1404,
1989.

[5] A. Eckerdal, R. McCartney, J. E. Moström,
M. Ratcliffe, K. Sanders, and C. Zander. Putting
threshold concepts into context in computer science
education. In ITiCSE-06, pages 103–107, Bologna,
Italy, June 2006.

[6] J. Hughes and D. R. Peiris. ASSISTing CS1 students
to learn: learning approaches and object-oriented
programming. In ITiCSE-06, pages 275–279, Bologna,
Italy, June 2006.

[7] P. N. Johnson-Laird. Mental models: towards a
cognitive science of language, inference, and
consciousness. Harvard University Press, 1983.

[8] D. Kember. Misconceptions about the learning
approaches, motivation and study practices of asian
students. Higher Education, 40:99–121, 2000.

[9] F. Marton, D. Watkins, and C. Tang. Discontinuities
and continuities in the experience of learning: An
interview study of high-school students in Hong Kong.
Learning and Instruction, 7(1):21–48, 1997.

[10] R. McCartney, A. Eckerdal, J. E. Moström,
K. Sanders, and C. Zander. Successful students’
strategies for getting unstuck. In ITiCSE-07, Dundee,
Scotland, UK, June 2007. (To appear).

[11] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva,
C. St. Clair, and L. Thomas. A cognitive approach to
identifying measurable milestones for programming
skill acquisition. In ITiCSE-WGR ’06: Working group

reports on ITiCSE on Innovation and technology in
computer science education, pages 182–194, New York,
NY, USA, 2006. ACM Press.

[12] J. Meyer and R. Land. Threshold concepts and
troublesome knowledge: Linkages to ways of thinking
and practising within the disciplines. ETL Project
Occasional Report 4, 2003.
http://www.ed.ac.uk/etl/docs/ETLreport4.pdf.

[13] J. H. Meyer and R. Land. Threshold concepts and
troublesome knowledge (2): Epistemological
considerations and a conceptual framework for
teaching and learning. Higher Education, 49:373–388,
2005.

[14] L. Murphy and J. Tenenberg. Do computer science
students know what they know?: a calibration study
of data structure knowledge. In ITiCSE ’05:
Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science
education, pages 148–152, New York, NY, USA, 2005.
ACM Press.

[15] D. Perkins. The many faces of constructivism.
Educational Leadership, 57(3):6–11, 1999.

[16] D. N. Perkins and F. Martin. Fragile knowledge and
neglected strategies in novice programmers. In Papers
presented at the first workshop on empirical studies of
programmers on Empirical studies of programmers,
pages 213–229, Norwood, NJ, USA, 1986. Ablex
Publishing Corp.

[17] J. A. Shymansky, G. Woodworth, O. Norman,
J. Dunkhase, C. Matthews, and C.-T. Liu. A study of
changes in middle school teachers’ understanding of
selected ideas in science as a function of an in-service
program focusing on student preconceptions. Journal
of Research in Science Teaching, 30:737–755, 1993.

[18] J. A. Shymansky, G. Woodworth, O. Norman,
J. Dunkhase, C. Matthews, and C.-T. Liu. Examining
the construction process: a study of changes in level
10 students’ understanding of classical mechanics.
Journal of Research in Science Teaching,
34(6):571–593, 1997.

[19] V. Turner. From Ritual to Theatre: the human
seriousness of play. Performing Arts Publications,
New York, 1982.

