

Checklists for Grading Object-Oriented CS1 Programs:
concepts and misconceptions

Kate Sanders

Mathematics and Computer Science Dept.
Rhode Island College

Providence, RI 02908 USA
ksanders@ric.edu

Lynda Thomas
Department of Computer Science
University of Wales, Aberystwyth
Ceredigion, SY23 3DB Wales, UK

ltt@aber.ac.uk

ABSTRACT
In this paper, we begin by considering object-oriented
programming concepts and typical novice misconceptions, as
identified in the literature. We then present the results of a close
examination of student programs in an objects-first CS1 course,
in which we find concrete evidence of students learning these
concepts while also displaying some of these misconceptions.
This leads to the development of two checklists that educators
can use when designing or grading student programs.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education—computer science education

General Terms
Human Factors.

Keywords
CS1, object-oriented concepts, misconceptions, empirical
research, assessment

1. INTRODUCTION
Teaching programming has always been challenging. There is
an ongoing debate about whether object-oriented (OO)
programming is more difficult to teach than procedural [6].
Whether or not it is inherently more difficult, it is currently
harder because many instructors simply don’t have as much
experience with the OO approach and typical student problems.

 In this paper, we hope to make teaching OO programming a
little easier by offering checklists to help instructors quickly:
• verify that students are using the OO concepts typically

taught in a CS1 course, and also
• diagnose some common student problems based on the

programs they write.
(See Tables 1 and 2).

In Section 2, we discuss OO programming concepts and typical
novice misconceptions as identified in the literature. Both
misconceptions and concepts are shown in bold so that we can
refer back to them later.

In Section 3, we describe the CS1 course that this research was
based on, the programs, the concepts they covered (also in
bold), the students, and the way we examined their submitted
solutions to determine whether they appeared to understand the
relevant concepts or exhibited the identified misconceptions.

Section 4 presents the results of this examination. We observed
that the ways in which students exhibit misconceptions are more
subtle than we expected and give several examples. Our results
are summarized in two checklists for use in designing and
grading programs.

Section 5 presents some general conclusions and future work.

2. RELATED WORK
Armstrong [1] surveys numerous papers on object-oriented
development and compiles a list of object-oriented concepts.
Those identified in more than half of the sources include
inheritance, object, class, encapsulation, method, message
passing, polymorphism, and abstraction.

Several empirical studies have looked at student understanding
and misconceptions of object-oriented programming, based on
student questions during labs [4], student designs for a simple
object-oriented program [10,7], students’ responses when asked
to predict which of a set of programs would work [3], and
extensive interviews [2]. In addition, Holland et al. [5] suggest a
list based on their experience teaching CS1.

These studies examine different areas of object-oriented
programming, but they draw a consistent picture. To summarize,
they find the following misconceptions:

1. errors in basic mechanics
2. instance/class conflation: classes and instances are the

same [5,4]
3. problems with linking and interaction [10]
4. class /collection conflation [10]: a class is a collection of

instances, not an abstraction from its instances
5. problems with abstraction [7] and hierarchies (including

inheritance, abstract methods, overriding, interfaces) [4]
6. problems with modelling [2,10]: failing to recognize that

a class models something in the problem domain
7. classes just text [2]

8. class/variable conflation: classes are just wrappers for
instance variables [5]

9. identity/attribute confusion: a variable that references an
object is part of the identity of the object, like its name [5]

10. belief that objects are simple records for storing and
retrieving data [5]

11. problems with encapsulation [3]
12. work in methods is all done by assignment, not by

message passing [5]
13. problems with accessors/mutators [4]
14. problems with constructors [3, 4]

3. METHODOLOGY
3.1 Overview
In this project, we take an in-depth look at the programs written
by the students in a single section of CS1. The class from which
our data were gathered contained sixteen students, five women
and eleven men. Five of the sixteen (four men and one woman)
were CS majors. Five had had some previous programming
background, including only one of the CS majors.

The course took an objects-first approach [9]. Classes,
inheritance, and polymorphism were covered before such
traditional topics as arithmetic and conditionals. There were five
programming projects, all of which featured graphics (the first
three using a simple graphics library provided with the text [9],
the fourth and fifth using Java2D and Swing).

Aside from the topic order and the extensive use of graphics, the
course design was fairly typical. There were three hours of
lecture/discussion per week, plus a one-hour weekly lab,
quizzes, a final exam, and the five programming assignments.
All the programs were based on subjects previously covered in
lectures and lab and there were also examples of relevant code
for all programs in the text.

Altogether, the students submitted 71 programs, totalling several
hundred pages of code. We read and re-read these, looking for
significant features. We then turned again to the literature for a
list of key concepts and misconceptions, developed and refined a
list of features that we thought might indicate understanding (or
lack thereof), and read the programs yet again.

3.2 The programs
The students had the opportunity to demonstrate understanding
of all the concepts (and most of the misconceptions) listed above
in their programs. The terms in bold in this subsection represent
the essential concepts that were covered in each program.

Program 1 required the students to use the textbook’s graphics
library to create a simple cartoon. Each cartoon was required to
include three instances of a “Cartoon Critter” class with at least
five parts. This assignment has four main goals. The students
were to: demonstrate understanding of the basic mechanics of
defining classes, instance variables, and methods; define and
instantiate a composite class (the CartoonCritter), show
understanding of the containment (has-a) hierarchy; show an
ability to work with constructors and parameters by giving the
CartoonCritter constructor parameters that allowed
different instances of the Critter to vary (if only in location); and
show an understanding of the class/instance distinction by
instantiating three different Critter objects.

Program 2 was required to display a “tour guide” and some
other objects on the screen, such that when the user clicked on
one of the other objects, the tour guide would display
information about the object that was clicked on. There were to
be two different classes of object that behaved slightly
differently when clicked on. In addition to the OO requirements
of Program 1, students were to create objects that interact with
each other (by sending messages and making use of the return
values from those messages), and create a small inheritance (is-
a) hierarchy of classes, where instances of the subclasses would
behave polymorphically.

Program 3 required the students to display an object with at least
six parts, plus a row of five “buttons” (colored ellipses). When
one of the parts of the object was clicked on, it should display a
black outline. Then when one of the buttons was clicked on, the
currently selected shape should change to the color of the
button. Two new concepts were key to this program: Students
needed to (1) create a very simple invisible object (i.e., an object
that doesn’t correspond to anything visible on the screen) to hold
the currently selected shape; and (2) create use-a relationships
by passing this peer object as a parameter to each of the other
objects that needs to communicate with it. Thus students were to
demonstrate a deeper understanding of interacting objects and
abstraction by adapting and using a very simple design
pattern, the Holder pattern. This pattern, introduced in the text
[9], consists of one object that manages a particular piece of data
(generally one instance variable plus accessor/mutator methods)
and two or more objects that use that piece of data.

Program 4 required the students to switch to Java’s graphics
libraries to code a subset of the Tetris game. The Tetris shapes
were simply supposed to appear at the top of the window, fall to
the bottom, and disappear. In this program there was an
opportunity to define an inheritance hierarchy (by defining a
Piece class and extending for different shapes). Whether or not
the students chose to do so (with no prompt), gave us some
sense of how well they had integrated inheritance into their
mental model.

Program 5 introduced no new concepts. It was intended to be a
capstone experience for the semester, pulling together the
concepts previously studied into a somewhat longer program
requiring more abstraction. It gave students the choice of two
very simple games.

4. RESULTS
The students all showed some understanding of the key concepts
we wanted to teach: inheritance, object, class, encapsulation,
methods, message passing, polymorphism, and abstraction
[1]. All students created multiple instances of some classes;
created objects that interacted; used containment and inheritance
hierarchies; and some used invisible objects and design patterns.

Most of them also showed evidence of some misconceptions,
however. In Section 2 we identified the essential misconceptions
that a reading of the literature might lead us to expect in student
programs. We now look at each of these misconceptions in turn.

4.1 Basic mechanics
Unlike Garner et al. [4] we did not see much evidence of
problems with basic mechanics. All but one of the students
submitted a working program for the first assignment that

approximated what was required; the remaining student (Student
4) submitted a working, satisfactory program for the second
assignment. This knowledge may have been somewhat ‘fragile,’
however [8]. As programs got harder, fewer of them compiled,
and students made elementary mistakes such as leaving code
outside of methods (e.g., Student 2, Program 5). On the other
hand, these errors may have been due to lack of time rather than
lack of understanding.

4.2 Instance/class conflation
Program 1 was designed to get students thinking about the
difference between class and instance [5]. Surprisingly, even
though we found no evidence of difficulty distinguishing
between library classes and their instances, we observed several
problems distinguishing between user-defined classes and
instances of those classes. Students 2 and 8, for example,
defined separate classes for Program 1 and instantiated each one
once, instead of instantiating the same class three times (e.g.,
Head, Head_1, and Head_2; Body, Body_1, and
Body_2). The classes have the same fields and methods; they
differ only in their property values.

Another student (S15) created three very different classes for
Program 1 and instantiated each one once. This design could
have been explained as an artistic decision rather than a
misconception (although it did conflict with the assignment
specifications). The code’s comments, however, show an
identification of classes and instances, for example: “Definition
of the SweetBunny class … Also known as _black in
BunnyApp.”

In Program 3, the problem of instance/class confusion was
displayed in a more sophisticated way. The students had now
learned about inheritance, and some of them over-used it. They
were required to create six buttons (i.e., clickable Ellipses)
that each corresponded to a different colour. Instead of using a
single class and creating different instances for each colour,
Student 1 (for example) defined a class ColorButton with
subclasses OrangeButton, CyanButton, etc. It seems that
students were confusing subclass with instances.

4.3 Problems with linking and interaction
As noted above, all but one of the students showed the ability to
successfully link multiple classes together into a compiling
program in Program 1 [10]. There was evidence that they didn’t
completely understand this process, however: all but three of the
programs passed parameters into constructors that were not then
used.

All 13 of the students who submitted Program 2 gave evidence
of understanding how objects interact in simple ways with
effective use of method calls and parameters. These programs
contained from 3 to 9 different classes.

Program 3 required objects to communicate in a more
sophisticated way. 13 of the 16 programs used parameters in
simple situations correctly, and nine of those used the return
values of methods. But only two students understood the Holder
pattern (with its use-a relationship) well enough to get their
programs to work properly. Four students had near misses. They
created the shapes correctly, for example:
 Tree tree = new Tree(10,150,_cursor);
but never linked up the _cursor in the Tree constructor.

In Program 4 (the minimal Tetris game) 11 of 14 students
passed the basic board into the shapes as a peer object and then
used methods on that board, thus demonstrating an
understanding of the ‘use-a’ relationship.

As the semester went on, they occasionally referenced
nonexistent classes, but that seems to have been due to the
increased complexity of the programs, rather than
misconceptions about linking.

4.4 Class/collection conflation
One of the programs showed evidence of class/collection
conflation [10]. Program 2 by Student 8 contained two classes,
Team and Team1. The two class definitions were very similar.
Upon examination, it became clear that the instances of Team
all belonged to one United States’ baseball league (the American
League East), and the instances of Team1 all belonged to
another (the American League West).

4.5 Problems with hierarchies and abstraction
Abstraction is a fundamental concept of programming. Data
abstraction is fundamental to the OO paradigm [1]. And it has
been widely claimed that object-oriented programming is
difficult because of the amount of abstraction it requires [6].

In addition to the abstraction inherent in the idea of classes and
objects, and discussed above, OO programming requires the
understanding of both containment and inheritance hierarchies.
In Program 1, all but one of the programs submitted contained at
least two classes and used some form of containment
hierarchy.

Students 5 and 12 showed continuing problems with the
containment hierarchy. In Program 1, Student 12 put all three
hats in one class, all three bodies in another, etc., and Student 5
put all his or her code in a single class. In Program 4, they each
instantiated several squares, enough to make two or more Tetris
pieces, in a single class.

Students created inheritance hierarchies by extending library
shapes like Ellipse and Rectangle. In Program 2, for
example, Student 5 created two classes, Player and
Pitcher, that both extended Ellipse but responded
differently to user input. They also defined their own inheritance
hierarchies. Student 9 defined a Ghost class for Program 2
with two subclasses, LazyGhost and ScaryGhost.

The students did not always use inheritance correctly. In some
cases, as noted above in Section 4.2, subclasses should have
been instances of a single class.

Finally, students frequently failed to use inheritance when they
could have done so. In Program 4, for example, although the
various Tetris piece classes shared code, the students defined
completely separate classes for each. Because it’s easy to cut
and paste from one class to another, there’s no immediate
incentive to factor out code.

Another form of abstraction involves the use of interfaces,
which might be considered ‘abstraction by role’. Students used
interfaces in Programs 3, 4 and 5 that were similar to those they
had seen in the lectures, the labs, or the text, but did not factor
out method signatures into new interfaces of their own.

Students seem to be comfortable using ‘recipes’ or abstractions
of small pieces of code. For example, they all consistently used
the recipe we provided for class definitions: instance variables
first, then a constructor, then other methods, with the main
method (if any) at the end.

The students had more trouble with design patterns. Many
succeeded in using the Composite Pattern, but less than half
came close to success with the Holder Pattern in Program 3 (see
Section 4.4).

4.6 Failures in modelling
Eckerdal and Thuné’s students experienced classes and objects
at different levels, from the lowest level as pieces of code, up to
models of the real world [2].

In Program 4 (a very simple Tetris program) the students in our
sample used a fish-tank program they had seen in lab as a
starting point. 10 programs (of 14 submitted) included remnants
of the code for the fish tank. These students appear to be
experiencing code as no more than text that is merely copied and
pasted rather than something with real-world meaning.

Other students gave evidence of Eckerdal and Thuné’s next
level: they created objects that functioned within a program, but
didn’t correspond to the domain. For example, Student 2 in
Program 1 defined a Body class that contained a _body
instance variable of type Ellipse (as well as arms and legs).
Student 3 in Program 1 defined a Leg class as part of his or her
Critter that itself contained two Leg instance variables.

Other students, as noted above, modelled classes successfully
but failed to model the inheritance relationship among them.

4.7 Misconceptions we didn’t find
There was little evidence in these programs of class/variable
conflation, identity/attribute conflation, or objects-only data
records. Students did not define classes with only one instance
variable, unless this was appropriate. The nature of the programs
made identity/attribute conflation more or less impossible, and
using graphics so immediately and extensively made it unlikely
that students would assume objects were only data records.

We found no evidence of problems in understanding
accessor/mutators. Fleury [3] noted that students had problems
with encapsulation, being reluctant to give the same method
names to methods on different classes. We did not observe this.

We found no evidence of work in methods being exclusively
done by assignment. Starting in Program 1, students wrote
methods that sent messages to other objects (e.g., setting their
size or location). Where needed, these methods also involved
computation.

Finally, we found no evidence of problems with constructors.
As noted above, the students followed our recipe for class
definitions, which included a constructor, and consistently used
constructors where appropriate.

5. CONCLUSIONS AND FUTURE WORK
Looking so closely at students’ programs has been a fascinating
and sometimes sobering experience for us. We realise that
frequently when grading student programs we are so rushed for
time that we look at superficials: does it compile, does it fulfil

the test cases, are there some comments? We hope that we note
when there is something really wrong with the design.

What is evidenced in these programs, however, is that working
programs can contain subtle errors that suggest a serious
misconception. For instance, the variations that students showed
of the class-instance-conflation misconception were a real
surprise to us.

We summarize our results in two checklists (Tables 1 and 2) of
things instructors can look for when grading CS1 programs. We
hope that these checklists will help instructors both in designing
assignments that test particular concepts and misconceptions and
in grading those assignments (without spending hours reading
and re-reading each program, as we did!)

We plan to build on this work by examining programs from
other classes and other institutions. Moreover, having identified
these symptoms, we plan to design experiments that will further
investigate student misconceptions.

6. REFERENCES
[1] D. J. Armstrong. The Quarks of Object-Oriented
Development. Communications of the ACM, 49(2):123–128,
2006.
[2] A. Eckerdal and M. Thuné. Novice Java Programmers’
Conceptions of ’object’ and ’class’, and Variation Theory.
ITICSE-05, pages 89–93, 2005.
[3] A. E. Fleury. Programming in Java: student-constructed
rules. SIGCSE-00, pages 197–201, 2000.
[4] S. Garner, P. Haden, and A. Robins. My Program Is Correct
But It Doesn’t Run: a preliminary investigation of novice
programmers’ problems. ACE-05, pages 173–180, 2005.
[5] S. Holland, R. Griffiths, and M. Woodman. Avoiding object
misconceptions. SIGCSE-97, pages 131–134, 1997.
[6] R. Lister, A. Berglund, T. Clear, J. Bergin, K. Garvin-
Doxas, B. Hanks, L. Hitchner, A. Luxton-Reilly, K. Sanders, C.
Shulte, and J. Whalley. Research Perspectives on the Objects-
Early Debate. SIGCSE Bulletin (2006).
[7] R. Or-Bach and I. Lavy. Cognitive activities of abstraction in
object orientation: an empirical study. SIGCSE Bulletin, 36(2):
82–86, 2004.
[8] Perkins, D. and Martin, F. (1986) Fragile Knowledge and
Neglected Strategies in Novice Programmers. In Soloway, E.
and Iyengar, S. (Eds) Empirical Studies of Programmers. Ablex,
NJ, USA. pp. 213-229.
[9] K. Sanders and A. van Dam. Object-Oriented Programming
in Java. Addison-Wesley, Boston, 2006.
[10] B. Thomasson, M. Ratcliffe, and L. Thomas. Identifying
novice difficulties in object-oriented design. ITICSE-06, 2006.

ACKNOWLEDGMENTS
Thanks to Robert McCartney, to Ann Moskol, to NSF for their
support of this project under grant DUE-0410546, and most of
all, to our students.

Some things to look for Suggests understanding of:

√ Program compiles

Basic mechanics

√ Constructors defined and used

Constructors

√ Multiple instances of same class Object and class
√ Variables/methods with same name in different classes Encapsulation
√ Multiple classes defined in program
√ Composite object (object with parts) defined
√ Object passed as parameter to constructor (peer object)
√ Peer object assigned to instance variable
√ Methods other than constructors defined
√ Message sent to part / peer object
√ Methods’ return values used

Linking; message passing; methods

√ Library classes extended
√ User-defined classes extended
√ Shared properties/methods factored into superclass

Inheritance

√ Single library class has multiple subclasses that define
the same method differently

√ Single user-defined class has multiple subclasses that
define the same method differently

Polymorphism

√ Classes correspond to visible objects in domain
√ Some class corresponds to invisible (conceptual) object

Modelling

√ Methods have parameters
√ Method parameters used
√ Inheritance hierarchies defined and used
√ Simple recipes used
√ Design patterns used

Abstraction

Table 1: Indications that a student understands basic OO concepts

Some things to look for Suggests misconception:

√ Classes identical except for class names
√ Classes identical except for property values that could be set

in constructors
√ Classes identical except for very minor changes
√ Classes rarely/never instantiated more than once
√ Superclass/subclass used instead of class/instance

Instance/class conflation (Holland)

√ All code in a single class
√ Code in single class instead of composite class and parts
√ Classes defined but not linked in
√ Work in methods exclusively done by assignment
√ Objects passed as parameters but not used

Problems with linking and interaction
(Thomasson et al.)

√ Class whose instances all model elements of some collection Class / collection conflation (Thomasson
et al.)

√ Classes identical except for property values that could be set
in constructors

√ Duplicate code not factored into superclass
√ Duplicate method signatures in different classes not defined

as interface

Problems with abstraction (Or-Bach &
Lavy)

√ Classes joined that should be separate or vice versa
√ Classes do not correspond to objects in domain
√ Failure to use inheritance to model hierarchical domain

Problems with modelling (Thomasson et
al.; Eckerdal & Thuné)

√ Failure to delete irrelevant code when adapting Classes just text (Eckerdal & Thuné)
√ Variables with names that are really values of attributes Identity/attribute conflation (Holland et

al.)
√ No classes with methods other than constructors or

accessor/mutators (or main)
Objects are only data records (Holland et
al.)

√ Methods / variables in different classes always have
different names

Problems with encapsulation (Fleury)

Table 2: Indications that a student has one of the OO misconceptions found in the literature

