Student Understanding of Object-Oriented Programming
as Expressed in Concept Maps

Kate Sanders
Department of Math and
Computer Science
Rhode Island College
Providence, Rl USA

ksanders@ric.edu

Robert McCartney

Dept. of Computer Science and Engineering

University of Connecticut
Storrs, CT USA

robert@cse.uconn.edu

Lynda Thomas
Department of Computer Science
Aberystwyth University
Aberystwyth, Wales

[tt@aber.ac.uk

ABSTRACT

In this paper, we present the results of an experiment in
which we sought to elicit students’ understanding of object-
oriented (OO) concepts using concept maps. Our analysis
confirmed earlier research indicating that students do not
have a firm grasp on the distinction between “class” and “in-
stance.” Unlike earlier research, we found that our students
generally connect classes with both data and behavior. Stu-
dents rarely included any mention of the hardware/software
context of programs, their users, or their real-world domains.
Students do mention inheritance, but not encapsulation or
abstraction. And the picture they draw of OO is a static one:
we found nothing that could be construed as referring to in-
teraction among objects in a program. We then discuss the
implications for teaching introductory OO programming.

Categories and Subject Descriptors

K.3.2 [Computers and Education|: Computers and In-
formation Science Education— Computer Science Education

General Terms

Human Factors, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’08, March 12-15, 2008, Portland, Oregon, USA.

Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

Jonas Boustedt
Dept. of Mathematics, Natural
and Computer Science
Hoégskolan i Gavle
S80176 Gavle, Sweden

jbt@hig.se

332

Anna Eckerdal
Department of Information
Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Jan Erik Mostrém
Department of Computing Science
Umea University
901 87 Umed, Sweden

jem@cs.umu.se

Carol Zander
Computing & Software Systems
University of Washington, Bothell

Bothell, WA USA

zander@u.washington.edu

Keywords

CS1, object-oriented, empirical research, concept maps

INTRODUCTION

In this paper, we report on an investigation of student
understanding of object-oriented (OO) concepts. Our ques-
tions were: (1) What do students who have recently learned
about object-oriented programming see as the most impor-
tant OO concepts? and (2) How do they express the rela-
tionships among those concepts?

We asked students at six institutions in three countries to
draw concept maps summarizing their knowledge of OO pro-
gramming. Concept maps are directed graphs in which each
node is labeled with the name of a concept, and each edge
is labeled with a description of the relationship between its
endpoints. While the most frequently-mentioned concepts
were not surprising, other concepts that we hoped to see
appeared only rarely. In addition, while some maps indi-
cated a good understanding of concept relationships, many
were vague, and some suggested misconceptions.

In Section 2, we present related work on OO concepts,
student misconceptions, and concept maps. We give our
methodology in Section 3, our analysis and results in Sec-
tion 4, some implications of our study for the teaching and
learning of OO concepts in Section 5, and conclusions and
future work in the final section.

1.

2. RELATED WORK

This study builds on several previous projects. We took
as a starting point for our analysis Armstrong’s list of OO
concepts: object, class, method, message passing, inher-
itance, polymorphism, encapsulation, abstraction, and in-

Figure 1: Sample concept map

stantiation (or instance). [1] We added “modeling,” since it
is another key idea that not all novices grasp. [4]

In addition to looking for these key concepts, we also
looked for evidence of misconceptions reported in the lit-
erature: confusion between the ideas of instance and of class
[6, 7]; confusion about the difference between a class and a
collection of instances [19]; and the belief that objects are
just records for storing and retrieving data and methods sim-
ply perform assignment. [7] A recent study examining CS1
programs by two of the authors found most of these mis-
conceptions, with the exception that students showed little
tendency to see classes as mere data storage. [15]

Concept maps are based on the theory “that people
think with concepts and that concept maps serve to exter-
nalize these concepts and improve their thinking.” [13, p.
2] They have been used to help students learn, to gain a
static picture of what they know, and to measure changes
in student understanding. [5, 12, 18|

There have been several suggestions for how to evaluate
concept maps. Some techniques rely on a quantitative anal-
ysis where the number of nodes, edges, etc. are counted
and compared. Some look at the structure of the maps.
Kinchin and Hay, for example, propose a classification of
concept maps in which they identify three basic types: net,
spoke and chain. [9] Other techniques take a more qualita-
tive approach, looking at the meanings of the node and edge
labels, the likeness to a predefined “master” concept map or
the quality of the maps as evaluated by “raters.” [11]

3. METHODOLOGY

Data were collected during the 2006-2007 academic year
at six institutions in three countries. We collected 119 maps

333

from 107 participants. The participants included 71 novices
(first-year students who had been introduced to encapsula-
tion, inheritance, and polymorphism), 12 intermediate stu-
dents, 15 graduating students, and 9 instructors. A week
before their final version, 12 of the novices did practice
maps. The novices were from 6 different institutions; the
other groups of participants were from only one or two in-
stitutions each. In this paper, we focus on the 71 novice
maps (not including the 12 practice maps).

All participants were given a sample concept map that
started with the concepts “kitchen” and “dinner” and the
following task:

Put the concept map here that starts with the
two concepts “class” and “instance” with labeled
arrows and other concepts that creates a par-
tial map of object-oriented programming, as you
have learned it so far.

In our analysis, we used some but not all of the tech-
niques suggested in the literature. We counted the numbers
of nodes, edges, and unlabeled edges, and computed the di-
ameters of the graphs and the degree of the maximum-degree
node in each graph. We examined the maps’ structures, as
suggested by Kinchin and Hay [9], but found that technique
did not yield any useful information, as almost none of our
graphs fell into their simplified categories.

We also applied quantitative techniques to the node and
edge labels. First, we normalized the data, replacing la-
bels like “contain,” “contains,” and “may contain” with a
uniform “contains.” Then we computed the most common
node names, the most common edge labels, and the most
frequent “sentences.” Sentences are built by concatenating
a node label, the label of one of its out-edges, and the other
endpoint’s label. For readability here, we adopt the conven-
tion that edge labels are contained in angle brackets. So for
example, one of the sentences generated by the sample map
shown in Figure 1 is “Class <has one or many> Instance.”

We used qualitative techniques in searching for the OO
concepts and misconceptions. Some terms such as “method”
were explicit in most of the maps; others were present im-
plicitly. For each topic, a pair of researchers agreed on what
might indicate an implicit reference, closely examined the
maps, and then compared their results. Any differences were
resolved by discussion. More details are given in Section 4.

We did not compare the maps to a predefined master con-
cept map. There are many possible good maps, and they
differ considerably from each other. Nor did we attempt
to rate the maps. For purposes of this analysis, we were
more interested in examining what the students know than
in ranking them relative to each other.

4. RESULTS AND DISCUSSION

Our analysis produced quantitative results having to do
with graph topologies and frequencies of nodes, edges, and
node-edge-node combinations. Structural features such as
these may provide insights to the overall knowledge organi-
zation. Additionally, we examined qualitative details—whether
concepts were implicitly present in a map, how groups of
various related concepts are linked, and so forth. Finally,
we consider how well concept maps worked to examine our
questions.

Table 1 summarizes some structural information about
the maps, viewed simply as graphs. The maximum degree

|

71 Novice Maps [Maximum [Minimum [Average ‘

Number of Nodes 30 4 14
Number of Edges 38 4 16
Maximum Degree 17 2 [§
Diameter 14 2 5
Table 1: Concept-map structure
| | Most common [number |
Class 75
Methods 67
E:riZs Instance 67
Variable 39
Object 36
<—> denotes unlabeled edge 414
<has> 92
Edges <contains> 85
<can be> 72
<is a> 70
Class <contains> Methods 9
Sentences Instance <—> Variables 8
Class <—> Instance 8
Instance <—> Class 6

Table 2: Most common labels and sentences

| Concept [Explicit [Implicit [Total ‘

Class 71 - 100%
Instance 67 0 94%
Method 63 4 94%
Data/attribute/ 38 27 92%
Instance variable

Object 34 0 8%
Inheritance 23 13 51%
Encapsulation 2 16 25%
Modeling 5 3 11%
Polymorphism 5 0 7%
Abstraction 1 - 2%
Message Passing 0 0 0%

Table 3: OO concepts found

is the maximum of all node degrees in a map, treating the
edges as undirected. The diameter is calculated as the max-
imum of the minimum path lengths between all pairs of
nodes, ignoring edge direction.

There are 970 nodes and 1145 edges in total. Although the
instructions asked for “labeled arrows,” not all of the edges
were labeled and directed. Of the 1145 edges, 76% were
directed and 64% were labeled. Of the 71 maps, 43 (61%)
had all edges directed, 22 (31%) had some edges directed,
and 6 (8%) had no directed edges. All edges were labeled
on 21 (30%) of the maps, 40 (56%) had some labeled, and
10 (14%) had no edge labels.

Table 2 lists the most common node names, edge labels,
and sentences generated from the maps. Table 3 lists the OO
concepts we looked for and the percentage of maps in which
they were found. We considered a concept to be explicit if
it appeared (normalized) as a node or edge label. Implicit
references are discussed below.

334

4.1 Class, Object, and Instance

The concept maps suggest that students do not fully un-
derstand the meaning of Class, Object, and Instance. As
instructed, all of the novices included Class in their maps.
Only 67 included Instance (in spite of being instructed to
do so0). The remaining 4 students may not have read the in-
structions carefully, or they may have been less comfortable
with the term. One student who did include Instance anno-
tated the node, saying ‘not actually sure what that means.”
34 students included Object, including 3 of the students who
omitted Instance. 31 maps contained all 3 nodes.

Only 29 of the maps that contain both Class and Instance
(43.3%) and 8 of the maps containing both Class and Object
(24.2%) contain labeled edges that express what we consid-
ered a reasonable understanding of the concepts’ relation-
ships. In one way or another, 15 say that Class is used to
create Instance, and 6, that Class is used to create Object.
Two say that Instance <instantiates> Class, and one that
Instance <example of > Class. Ten say that Class <has> In-
stance or Instance <belongs to> Class, and one that Class
<has> Object. One says that Class <declares the instance
variables> Instance - limited, but implying some under-
standing. One says Class <represents> Object, and another
says Instance <represents> Object; these students seem to
think of Object as the real-world thing being modeled.

Other edges between Class-Object and Class-Instance sug-
gest a lack of understanding. Five students say that Class
<contains> Instance, and one says Instance <is part of>
Class. One says Class <is an> Instance, one says Instance
<can be a> Class, and one says Class <is one of> Instance.
One says Class <implements> Object.

The Object-Instance edges also suggest problems. Ten
maps correctly equate the two (32.2%, including one that
combines Instance and Object in a single node labeled In-
stance/Object.) Several maps have no direct connecting
edge or an unlabeled edge. One says Instance <becomes
an> Object. One says Instance <is a copy of > Object.

Four maps appear to identify Class and Object, referring
to an Instance <of an> Object. One of these maps sug-
gests a reason for this confusion. It connects Object with
Superclass, noting that Object is the top Superclass. The
fact that the root class of Java’s hierarchy is named Object
might well cause a Java student to equate Class and Object.

4.2 Class = data + behavior

On the other hand, these students do seem to understand
that classes incorporate both data and behavior. They do
not seem to have the classes-as-data-storage misconception:
indeed, their maps focus more on the behavioral aspect of
classes than on their data.

We considered Data, Attribute, and Instance Variables as
explicit references to data, and Variable, Accessor, and Mu-
tator as implicit mentions. We counted Method (by itself)
as an explicit reference to behavior, and Function and ref-
erences to particular kinds of methods (Accessor, Mutator,
Constructor Method) as implicit.

While 88.7% of maps explicitly mention behavior, only
53.5% mention data. Counting explicit and implicit refer-
ences together, they are nearly the same, with behavior at
94% and data at 92%. But (again counting explicit and im-
plicit together), 71.6% of the maps have an edge between
Class and behavior, while only 40.8% have an edge between
Class and data.

4.3 Other important concepts

Encapsulation, inheritance, and polymorphism are arguably

the three most important features of OO programming [16];
abstraction is fundamental to all of computing; message
passing reflects the classic view of an OO program as a set
of communicating objects.

We considered encapsulation to be implicit in any map
that includes something about restricted visibility — pri-
marily maps that include Private and Public connected to
Method or Class. Only two students mentioned it explicitly
and another 16 implicitly, about 25% of all the maps.

The implicit understandings were sometimes quite detailed;
in one map, Private and Public were linked to a node Class*
with the labels “Only available to one” and “Available to all.”
All of these implicit understandings showed Private, Public
(and sometimes Protected) linked to appropriate concept(s)
as different possibilities. A map that simply used the term
“public” in a code fragment was not classified as having im-
plicit understanding.

Implicit understanding of inheritance was exhibited by
connections among nodes named class, subclass, or super-
class, or the use of the word “extends.” We counted 23 maps
with explicit inheritance, and another 13 implicit — just over
half of the maps.

Unlike other concepts, inheritance often showed up as an
edge label (e.g., Subclass <inherits from> Superclass). Of
the 23 maps with explicit inheritance, 12 had it as a node
and 12 had it as an edge — one had both. For other concepts
nearly all explicit mentions occurred on nodes.

Polymorphism showed up explicitly in only five maps
and implicitly in none. We looked closely for implicit un-
derstanding, looking for things like method resolution, dy-
namic binding, actual type v. declared type, and so forth:
it wasn’t present.

Of the five that mentioned polymorphism, three showed
a fairly deep understanding: one linked “polymorphism”
to “interface,” one linked “inherits/polymorphism” to “sub-
class,” and one linked “that can do the same thing in different
ways (polymorphism)” between “use interface to organize to
standard” and “capabilities describe behaviors.”

Abstraction showed up explicitly in only one map, as a
node at the end of an unlabeled path Class <—> Inheritance
<—> Abstraction, possibly showing an understanding how
inheritance supports abstraction.

We decided not to tag for implicit understanding of Ab-
straction: many OO concepts are abstractions, including
“Class,” which was in all of our maps.

None of the novice maps referred to message passing be-
tween objects either explicitly or implicitly. We were fairly
conservative in what we would consider to be implicit: we
did not include references to methods calling other meth-
ods, as this could have been inside a single instance, but we
would have included an instance invoking another instance’s
method, communicating with, sending a signal to, or inter-
acting with another object—these were not in the maps. This
complete omission is striking; it may reflect an unfamiliarity
with the OO paradigm, or a change in the vocabulary used
in introductory-level courses (see Section 5).

4.4 Modeling and programming in context
We would like our students to have some understanding of

the context of the programs they write. Programs run on a

computer, usually along with other programs, are compiled

335

by another program, and store data in memory, they have
users, and they are models of the real world. Indeed, there
is some empirical evidence that the OO paradigm makes it
easier for students to make the connection between a pro-
gram and its domain.[14]

Accordingly, we looked for three things in the novice con-
cept maps that might indicate a broader focus: the interac-
tion between the program and other software or hardware;
the interaction between the program and potential users;
and the connection between the program and the real world.

We found strikingly few examples. Out of 71 maps, 25
(35.2%) included information that fell into one or more of
these categories. Five were in two of the three, and none
was in all three. Most of the novice concept maps focused
narrowly on programming.

Only 18 maps referred to the hardware or software con-
text in which the program runs. Three of these mentioned
libraries, and one of those referred to the “3d party” who
writes the libraries. Six maps referred to memory or data
storage in some way, one mentions the keyboard, and seven
maps (all from the same institution) mention threads. Only
four maps made any reference to users.

Only 8 maps mentioned modeling. Three of the references
were implicit: Attributes Describe What is, and Capabilities
Describe Behaviors (two nodes in the same map); Object
<should> Resemble Reality; and Instance <is a> Single
Person, Object, or Event.

4.5 Quality of data and analysis

Collecting data at multiple institutions in multiple coun-
tries is a good way to maximize the applicability of results.
There are aspects of this work, however, that may reduce
the validity of the results.

The concept maps were gathered in different settings: at
one institution as a part of an examination, at another as a
voluntary task after lecture on a Friday afternoon. The work
put into making the concept maps varied, and the average
time spent on the maps was just a few minutes. The maps
might be different if the students spend more time reflecting
on the task. On the other hand, the short time spent on
constructing the maps may make students write down what
is on top of their mind, reflecting their “practical knowledge”
of the subject.

It is also possible that the level of familiarity with concept
maps affected the result. We do not know which students
(if any) had previous familiarity with concept maps. We do
have a small number of data points — 12 students who did
the maps twice a week apart. Although they did not receive
any feedback in between, preliminary analysis indicates that
having done the map once and having time to think about
it made a difference in the maps.

S. IMPLICATIONS FOR TEACHING

Learning the concepts of OO programming and the lan-
guage to describe them is a big job, and these students are
just beginners. They seem to fixate on language details,
losing the big picture, no matter how much we stress all of
these concepts. This may be, at least in part, the natural
result of inexperience.

Choosing a new book is probably not the solution. We
reviewed several major Java texts, including those used by
these students, and they covered all of these concepts (with
one exception, discussed below). They covered them in dif-

ferent orders, and with different examples, but, generally in
a clear, understandable way. [2, 3, 8, 10, 16, 17|

There are some steps we can take as instructors, however.
First, we can emphasize the difference between Class and
Instance/Object as often as possible. Stick with a single ex-
planation — the “blueprint” metaphor may be a good choice,
as it is popular with these students — and give lots of ex-
amples. Second, explicitly tell students that Instance and
Object are nearly always the same. Mention that Object
sometimes refers to the thing in the real world that is mod-
eled by an Instance, and address the confusion that can be
caused by the name of Java’s top-level Object class.

Additionally, we can talk about objects interacting and
communicating with each other. This is the one topic that
is rarely mentioned in textbooks (for an exception, see [16]).
There is no obvious term other than “message passing” and
this terminology seems to be out of fashion as it was almost
never found in the books’ glossary or index.

Lastly, making concept maps seems to be a useful exercise.
[9] It gives students a chance to think about OO and see
connections.

6. CONCLUSIONS AND FUTURE WORK

Our analysis confirmed earlier research indicating that
students do not have a firm grasp on the distinction be-
tween “class,” “object,” and “instance.” Earlier results sug-
gested that some students think of classes as just being data
storage (like arrays or structs); we found that while many
students do connect classes with data, even more make the
connection to behavior. Students rarely included any men-
tion of the hardware/software context of programs, their
users, or their real-world domains. Although OO may make
it easier for students to connect programs and real-world
domains, as some have found [14], and both textbooks and
instructors make that connection, few students see model-
ing as one of the most important OO concepts. Students
do mention inheritance, but not encapsulation or abstrac-
tion. And the picture they draw of OO is a static one: there
is almost nothing that could be construed as referring to
interaction among objects in a program.

In future work, we plan to compare the first and second
maps of students who draw them twice about a week apart,
to try to isolate the effects of familiarity with the technique.
We would like to follow up some of the maps with more in-
depth interviews. And we plan to gather additional maps
from upper-level students, in order to examine whether the
upper-level-student understanding of OO concepts has been
transformed by their additional experience.

7. ACKNOWLEDGMENTS

Thanks to our students for inspiration and data, and to
Uppsala University and Umea University for physical and
electronic meeting places.

8. REFERENCES

[1] D. J. Armstrong. The quarks of object-oriented
development. Communications of the ACM,
49(2):123-128, 2006.

336

[2] D. Barnes and M. Kélling. Objects First With Java: A
Practical Introduction Using BlueJ. Prentice Hall, 3rd
edition, 2006.

H. Deitel and P. Deitel. Java How to Program.
Prentice Hall, 7th edition, 2007.

A. Eckerdal and M. Thuné. Novice java programmers
conceptions of "object" and "class", and variation
theory. SIGCSE Bull., 37(3):89-93, 2005.

E. Ferguson. Object-oriented concept mapping using
UML class diagrams. Computing in Small Colleges,
18(4):344-354, 2003.

S. Garner, P. Haden, and A. Robins. My program is
correct but it doesn’t run: a preliminary investigation
of novice programmers’ problems. In 7th Australasian
conf. on Computer Education, pages 173—-180, 2005.
S. Holland, R. Griffiths, and M. Woodman. Avoiding
object misconceptions. SIGCSE Bull., 29(1):131-134,
1997.

C. S. Horstmann. Java Concepts for Java 5 and 6.
John Wiley & Sons, 5th edition, 2007.

I. Kinchin, D. Hay, and A. Adams. How a qualitative
approach to concept map analysis can be used to aid
learning by illustrating patterns of conceptual
development. Educational Research, 42(1):43-57, 2000.
J. Lewis and W. Loftus. Java Software Solutions:
Foundations of Software Design. Addison Wesley, 5th
edition, 2006.

J. McClure, B. Sonak, and H. Suen. Concept map
assessment of classroom learning: Reliability, validity,
and logistical practicality. Journal of Research in
Science Teaching, 36(4):475-492, 1999.

J. Nash, R. Bravaco, and S. Simonson. Assessing
knowledge change in computer science. Computer
Science Education, 16(1):37-51, 2006.

J. Novak and D. Gowin. Learning How to Learn.
Cambridge University Press, 1984.

V. Ramalingam and S. Wiedenbeck. An empirical
study of novice program comprehension in the
imperative and object-oriented styles. In ESP ’97:
Seventh Workshop on Empirical Studies of
Programmers, pages 124-139, 1997.

K. Sanders and L. Thomas. Checklists for grading
object-oriented CS1 programs: concepts and
misconceptions. SIGCSE Bull., 39(3):166-170, 2007.
K. Sanders and A. van Dam. Object-Oriented
Programming in Java: A Graphical Approach.
Addison Wesley, 2006.

W. Savitch. Absolute Java. Prentice Hall, 3rd edition,
2007.

M. Steyvers and J. Tenenbaum. Graph theoretic
analyses of semantic networks: Small worlds in
semantic networks. Cognitive Science, 29:41-78, 2005.
B. Thomasson, M. Ratcliffe, and L. Thomas.
Identifying novice difficulties in object oriented design.
SIGCSE Bull., 38(3):28-32, 2006.

3]
(4]

)

5]

(6]

(7]

18]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

