
Scaffolding with Object Diagrams in
First Year Programming Classes:

Some Unexpected Results

Lynda Thomas, Mark Ratcliffe and Benjy Thomasson
Department of Computer Science

University of Wales, Aberystwyth, UK, SY23 3DB
+44 (1970) 622424

{ltt, mbr, bjt98@aber.ac.uk}

ABSTRACT
This paper reports on an experiment in which first year
programming students were given explicit encouragement to use
Object (Instance) diagrams when tracing code in multiple-choice
questions. We conjectured that by providing scaffolding in this
technique, students would be helped to understand the code better
and that they would then continue to draw their own diagrams in
similar situations. This turned out not to be the case. Although
generally students who draw diagrams do better in questions that
test their understanding of code behaviour and object referencing,
our interventiondoes not appear to have helped students and the
students who were exposed to the intervention were not more
likely to go on to use the technique themselves.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information Science
Education –Computer Science Education.
D.2 [Software Engineering]: Coding Tools and Techniques–
Object-oriented Programming

General Terms
Human Factors, Design, Algorithms

Keywords
Object Diagrams, Interaction Diagrams, First Year Programming,
Tracing code.

1. INTRODUCTION
In this paper we report on an experiment with first year
programming students.. A randomly chosen group of students
attempting multiple-choice tracing questions were provided with
partially completed Object (Instance) diagrams on paper as a
scaffolding mechanism. We conjectured that the students who
were given this scaffolding would do better than the control group
on this type of test question since they had at leastsomehelp.

Later in the semester students were studied to see if those who had
received this scaffolding continued to use the technique in
subsequent tracing problems and if the intervention appeared to
have improved their understanding as measured by their
performance on such questions.

2. BACKGROUND
There seems to be a general agreement in the CS Education
community that many of our students have problems in mastering
programming [8]. This is not a new problem1. In addition to
showing up when students write programs, this difficulty is also
apparent when students have difficulty understanding program
behaviour.

One of the manifestations of lack of understanding of program
behaviour that we have observed in our classes, is that many
students do not seem to be able to trace code. Most CS educators
will recognise the experience of a student coming to them with a
program and saying 'it doesn't work' but not having performed the
most elementary trace through to determine why the program does
what it does. In particular, in the context of Object-oriented
programming, many students do not seem to be able to produce
for themselves a diagram that demonstrates an understanding of
object references.

Holland regards the misconceptions around object references as
one of the most fundamental in learning Object-oriented
programming and suggests that “the cleanest way to defuse this
misconception is to teach reference as a first class concept …” [6].
In the introductory programming sequence in Aberystwyth, we
certainly try to do this, demonstrating program behaviour in
lectures and tutorials mainly by drawing pictures of variables and
what they reference, as in Figure 1 (essentially rough Object
diagrams as described in Section 3). So studentshave been
exposed to the idea of tracing through Object diagrams – but
when they might appropriately use it themselves, weaker students
fail to do so. They are often impatient when the instructor resorts
to drawing a diagram, then amazed that the approach works. Even
in the more restricted situation of a test that asks the students to
trace out what happens when just a few lines of code are executed,
as in Figure 1, scratch sheets are often returned blank. In a
previous investigation we discovered that only 36% of the sheets
were returned with any kind of ‘working out’ on them [9].

1 For an excellent summary of research see, for example, [11]



Students must be operating from some kind of construction of
knowledge [1] in such situations – but it does not seem to be a
productive one. We wanted to increase their understanding and
change their behaviour to something more productive. We have
observed that instructors and high-performing students nearly
always draw some kind of picture when tracing code and it seems
reasonable to encourage weaker students to follow this approach.
But how can we encourage students to do this themselves? After
all they already see their lecturer using this technique in lectures
and lab sessions, yet have not adopted it.

Research has shown that methods of teaching and learning that
combine significant student autonomy, conjecturing and
articulation with dynamic scaffolding by the teacher are highly
effective [14]. We conjectured that providing such scaffolding (in
the form of partially completed Object diagrams) would help our
students understand the concept of object referencing when
tracing test code and also encourage them to use Object diagrams
with their own code.

Obviously this is a complex field, ideally encompassing both
students’ understanding of object references and how they debug
their own programs. In this paper we report on how we broke off a
manageable piece of the field for study. Instead of the
unconstrained arena of theirown programs, we have simply
looked at how students approach ‘tracing questions’ on multiple-
choice tests.

3. RESEARCH QUESTIONS
Specifically, we focused on three questions:

1. Is drawing some kind of Object-like diagram correlated
with success in solving multiple-choice tracing
questions?

2. Does providing students with scaffolding in the form of
partially completed Object diagrams help them correctly
answer multiple-choice tracing questions?

3. Do students who have been provided with this
scaffolding continue to use it in such multiple-choice
questions?

In the first question we are looking at diagrams that the students
may draw with or without our encouragement. With respect to the
second question, we have to consider what we mean by ‘help’. If
we give students a piece of code and an incomplete Object
diagram it seemed very unlikely that they would NOT do better
than if we simply give them the code with no help whatsoever
(but see later for the results). We wanted to confirm this
conjecture but were originally, in fact, more interested in research
question 3: whether giving the students incomplete Object
diagrams in their early learning is helpful to their later ability to
trace code.

4. WHY OBJECT DIAGRAMS?
We have found in our teaching that our students take on board the
idea of a class diagram very easily, perhaps because it reflects the
syntax of a Java class definition. Diagrams that illustrate dynamic
behaviour in a program are more difficult to grasp. The simplest
and most intuitive is probably the UML Object (or Instance)
diagram [2]. These diagrams essentially provide a snapshot of the
objects in a system at some point (see Figure 1). They show, not
the static relationship between classes, but the relationship
between current objects in a particular program at a particular
time. They can be combined with interaction diagrams, which
show how objects of different classes can collaborate in a
particular behaviour.

Interaction diagrams have been used successfully to visualise
Object-oriented programs. Lange and Nakamura have produced a
tool to visualise Object-oriented traces that generates the
Interaction diagrams (and simplifies them into something
meaningful for large systems) from code [7].

Interaction Diagrams are not however the only way of
understanding code. Sneed, for example, has used actual source
code animation [12]. Hendrix reported on using the more static
method of Control Structure Diagrams [5]. Although more
complex diagrams are necessary for visualising more complex
situations, Object diagrams were sufficient for our needs. In our
decision to use these diagrams, we were influenced by the

person1

Fred

Aberystwyth

person2

Person person1 = new Person(“Fred”,
“Aberystwyth”);

Person person2 = new Person(“Bill”,
“Borth”);

person2 = person1;
person1.setAddress (“Llanilar”);

-------------------------------------------
What is person2’s address?

Bill

Borth

Figure 1. A partially completed Object diagram and related question1

1 Note that this diagram only provides the flavour of the type of question. The actual questions involved two classes that were
previously well known to the students and came with some basic code. In addition we are ‘cheating’ in the representation of the
Strings, which are of course really references not primitive values. The idea was to make the diagrams ‘sloppy’ but effective.



work of Mary Hegarty who has made a study of cognitive models
that impact on the understanding of mechanical systems. In a
paper with Narayanan [3], they outline a cognitive model of
understanding dynamic systems that supposes that the viewer:

• decomposes the system into simpler components,
• constructs a static model by making representational

connections to prior knowledge and other components,
• integrates information between different representations

(e.g. text and diagrams),
• hypothesizes lines of action, and finally
• constructs a dynamic mental model by mental

animation.

Hegarty and Narayanan have empirically validated the design
guideline that people learn more from being induced to mentally
animate a system before viewing an animation than by passively
viewing the animation [4].

If we examine Object diagrams we can see that the first two steps
outlined in the Hegarty/Narayanan model are essentially the
creation of the basic diagram, and the last three steps involve the
actual tracing of the program code with reference to that diagram.
This provides some justification that our approach in encouraging
students to produce Object diagrams is a reasonable one.

5. APPROACH
Our experiment then was as follows. All the students in the
introductory programming class were shown Object diagrams and
many examples of their use in tracing code during their lectures.

We divided the class approximately in half for the experiment.
One section, the control group, were given pieces of Java code
and asked to trace them in a formative test (the intervention test).
The other (experimental) group were provided with both the code
and an incomplete Object diagram. We compared the results to
see how correct the subsequent tracings were (expecting that the
experimental group would do better since the control group had
no help at all).

Several weeks later we gave students in both groups further
questions that involved tracing (as part of the follow-up test). We
compared their correctness results again and we also collected
their scratch sheets to see if the experimental group used the
Object diagram technique with which they had been scaffolded.

There were two sections of this introductory course – one section
was comprised of students with little or no programming
experience (called ‘beginners’ here), the other section was
comprised of students with considerable high school experience
(we call these students ‘advanced’.)

6. RESULTS
The experimental group was chosen by where the students sat in
the lab. First of all we checked to see that the groups were indeed
comparable in terms of performance on previous tests. There was
no significant difference in the average group marks up to the
point of the experiment (see Table 1).

Table 1. Pre-Test results

Group n Pre-Test Average
(included non-tracing questions)

Control 51 63%
Experimental 55 58%

With respect to research question 2, when we initially tested the
experimental group (given incomplete diagrams) against the
control group (given no diagrams and a blank scratch pad), we
discovered that Object diagrams helped students trace code, but
only for our beginning students and not in a significant way (see
Table 2) . The students who had programmed before did not
appear to be at all effected by the intervention.

Table 2. Intervention Test results

Group n Test Average
Beginners Control 28 28%

Beginners Experimental 40 36%

Advanced Control 23 63%

Advanced Experimental 15 65%

When we looked at the results in the follow-up test, both for
tracing questions and the test as a whole (see Table 3), we see that
students who had been given the diagrams did essentially the
same as the control students. In fact they did slightly, but not
significantly, worse.

Table 3. Follow-up Test results

Group Average just
on tracing
questions

Test Average
(included non-
tracing questions)

Beginners Control 68% 58%

Beginners Experimental 56% 56%

Advanced Control 77% 75%

Advanced Experimental 66% 70%

With respect to research question 3, we wanted to see if the
students who had been given the diagrams were in fact more
likely to use them on the next test (see Table 4). In the beginners’
group the answer appeared to be ‘no’. In fact, the control group
were more likely to create their own diagrams. In the advanced
students the figures are reversed.

Table 4. Follow-up Test Behaviour

Group Created their own
diagram on next
test

Did not create
own diagram on
next test

Beginners Control 21 (75%) 7 (25%)

Beginners
Experimental

24 (60%) 16 (40%)

Advanced Control 10 (43%) 13 (57%)

Advanced
Experimental

11 (73%) 4 (17%)



As we discuss in section 8, these results were very unexpected. In
fact, they shook our belief that diagrams are in fact of use in this
kind of problem – but when we look generally at students who use
diagrams as opposed to those who don’t (research question 1),
there is in fact an indication that the techniqueis used by higher
achieving students. The higher scores achieved by beginners who
use diagrams, as opposed to those who do not, comes close to
statistical significance (p=.07 with one tailed t-test). But note that
advanced students seem to do better without diagrams!

Table 5. Correlation between Diagram Use and Performance

Group n Follow-up Test Average -
Just on tracing questions

Beginners who do
not use diagrams

23 47%

Beginners who do
use diagrams

45 68%

Advanced who do
not use diagrams

17 76%

Advanced who do
use diagrams

21 70%

7. ANALYSIS OF POSSIBLE SOURCES OF
ERROR
Since, as we discuss further in the next section, these results were
so unexpected, we would like to address possible sources of error.

The student groups do indeed appear to have been chosen
randomly (see Table 1).

The Object diagrams we gave the students were hand drawn
specifically so that students would be encouraged to recognise the
simplicity of the technique and use it themselves.

All the students were shown how to use Object diagrams and
could have used them, and, as can be surmised from Tables 4 and
5 many studentsdid use them who had not had the intervention.
Clearly, students talk to each other about what goes on in the lab,
and the control group was able to discover what the experimental
group had been given. Possibly that made themmore likely to
create their own diagrams in the follow-up test. This might have
encouraged control group students to create their own diagrams
but it does not explain why the experimental group of beginners
werelesslikely to do so.

We were so shaken by the results of this experiment that we have
questioned the utility of Object diagrams, foranyone. We can
only say that we use them ourselves – even in simple questions
such as the ones on the test - and that all our student
demonstrators (mainly second and third year high-achievers) do
likewise.

8. SIGNIFICANCE OF RESULTS
Quite honestly, the results of this experiment were not what we
had conjectured. In the rest of this discussion we will leave
experienced students aside because they appear to have been little
effected by the intervention and to be doing well enough in this
context without any help. So, we turn our attention to the
beginners group.

The results in Table 5 provide some evidence to support our belief
that, for beginning students, drawing Object diagrams is in fact
correlated with understanding object references and being able to
trace code.

The poor results on the tracing questions, as can be seen in Table
2, show us that these studentsare in need of help with this kind of
problem, but that providing them with what we considered to be
helpful diagrams did not significantly appear to improve their
understanding, as measured by performance on tracing questions.
This was completely unexpected. We thought that we were
‘practically doing the question for them’ and expected that the
experimental group would do brilliantly on the tracing questions.
In fact, the students did not appear to gain much from the partially
completed diagrams at all.

In addition, as shown in Table 3, beginning students who were
given the scaffolding in the first test wereless likely to then
construct their own Object diagrams in the follow-up. At first, we
were surprised by this finding. But in light of the previous
paragraph it seems more explicable – if the diagrams don’t help
you, why would you construct your own? In fact, the control
group students were more likely to construct diagrams. Perhaps
they were afraid that they had been missing something in the
intervention test and wanted to be sure not to in the next test?

If we return to the discussion in Section 3 we note that by
providing the students with the diagrams we are perhaps removing
the first few steps of Hegarty’s model of understanding systems.
Maybe it is necessary for the students to build the Object diagram
(model) themselves in order to animate it. Scaffolding might be a
useful idea – but we may have inadvertently provided the wrong
kind of scaffolding, or the wrong level of scaffolding.

An interesting discussion with colleague Raymond Lister leads us
to a related possible explanation [Lister, personal communication,
June 2003]. He suggests that weaker students cannot
systematically create code, or even trace code, because they do
not understand the function of the code elements that they are
manipulating. Instead they bolt together some coding elements
that they have frequently seen but do not understand, using
heuristics that they hope will be right often enough to get them a
passing grade. Thus, such students can create buggy code, but
lack the understanding to debug or even trace through that code.
This has been borne out in the third author’s work as a lab
instructor. In a depressing number of situations he has asked
“What does this code do?” and been answered “No idea, XXX
told me to put it in - it has something to do with sorting.” Lister
intends to closely observe student behaviour when tracing code,
and we look forward to the results of that research.

We note, however, that this is somewhat contrary to the classic
work of Spohrer and Soloway which indicated that students have
difficulties not so much in misconceptions about language
constructs as in putting the ‘pieces’ of a program together [13].

9. IMPLICATIONS
This research wasundertaken because we were concerned about
how to help students understand program behaviour and object
referencing. Results were not as we expected. In some sense that
is in itself valuable information.



One of the important findings of the ITICSE working paper on
assessment of first year programming skills [8], was that
educatorsbelievedthat their students could write a certain kind of
program, whenin fact many of them could not. This paper reports
on a similar situation with respect to a simple technique for
tracing code.

We believed that if we could only get our students touseObject
diagrams, then all their problems with tracing code would be over.
It seems that for, some of our students at any rate, there is a more
fundamental problem in that they cannot trace code even when
provided with a diagram that in the words of one of our lab
assistants “does it all for them!”. We have worried that this is “all
our fault” as the educators in question, but we feel that the
worrying inability to do this kind of tracing among beginning,
weaker students is more likely a widespread phenomenon. We
welcome others to try this kind of experiment with their own
students and to the results of other research on tracing code. In the
meantime, we have been led to certain practical conclusions with
respect to our own teaching and research.

9.1 Implications for Teaching
This experiment hassomewhatvalidated our belief that Object
diagrams are useful for understanding the object references in a
piece of code. We see the technique as fundamental and will
continue to use it and encourage our students to use it themselves.

We now understand, however, that the utility of the technique and
students’ resistance to it is much more complex than we had
realised. Providing beginning students with the diagrams does not
appear to either help them much with the problem or to encourage
them to use diagrams in the future. We need to convince students
to construct the diagramsthemselvesby somehow providing more
obvious utility for doing so. This must involve them in always
building their own diagrams.

9.2 Implications for Learning Environments
For several years, the research group to which the authors belong
has been working on the development of a learning environment
for first year students that combines frequent feedback with
support for students’ explicit awareness of class learning goals
and their individual learning styles [9]. We wished to take this
further in the direction of supporting student learning [10], but
before doing so we needed to determine what would be the most
effective direction for such support.

It appears that the technique of scaffolding students in the way
outlined in this paper is not as helpful to them as we had hoped.
We had been intending to produce Object diagrams in the learning
environment so that they might be used on-line by students as
they program. We are no longer sure that this is the right approach
since the creation of the diagrams appears to be fundamental.

10. ACKNOWLEDGEMENTS
Many thanks to the students and demonstrators of CS12230 and
CS12320, academic year 2002-2003!

Thanks also to colleagues fromBootstrapping Research in
Computer Science Education 2003who helped formulate those
pesky research questions!

11. REFERENCES
[1] Mordechai, Ben-Ari. Constructivism in Computer Science

Education. in Proceedings of SIGCSE 1998.

[2] Fowler, Martin with Kendall Scott. UML Distilled. Addison
Wesley, 2000.

[3] Narayanan, N. Hari and Mary Hegarty. Communicating
Dynamic Behaviors: Are Interactive Multimedia
Presentations Better than Static Mixed-Mode Presentations?
in Theory and Application of Diagrams, Diagrams 2000,
September 2000, Michael Anderson, Peter Cheng and Volker
Haarslev editors, Springer Lecture Notes in Artificial
Intelligence 1889.

[4] Hegarty, Mary, N. Hari Naranayan and P. Freitas.
Understanding Machines from Multimedia and Hypermedia
Presentations. in J. Otero, A. C. Graesser & J. Leon (Eds.).
The Psychology of Science Text Comprehension. Lawrence
Erlbaum Associates, 2002.

[5] Hendrix, D., J.H. Cross II and S. Maghsoodloo. The
Effectiveness of Control Structure Diagrams, in Source Code
Comprehension. IEEE Transactions of Software
Engineering, Vol 28, No 5, May 2002, pp.463-477.

[6] Holland, Simon, Robert Griffiths and Mark Woodman.
Avoiding Object Misconceptions. in Proceedings of SIGCSE
1997.

[7] Lange, Danny and Yuichi Nakamura. Object-Oriented
Program Tracing and Visualization. Computer, Vol. 30 No.
5, May 1997, pp 63-70.

[8] McCracken, M. et al.. A Multi-National, Multi-Institutional
Study of Assessment of Programming Skills of first-year CS
students. SIGCSE Bulletin, Vol. 34, No. 1, Mar 2002.

[9] Ratcliffe, Mark, Lynda Thomas and John Woodbury. A
Learning Environment for First Year Software Engineers. in
Proceedings of CSEE&T 2001.

[10] Ratcliffe, Mark, Lynda Thomas, Wayne Ellis, Benjy
Thomasson. Capturing Collaborative Designs to Assist the
Pedagogical Process. in Proceedings of ITiCSE 2003.

[11] Robins, A., J. Rountree, N. Rountree, Learning and Teaching
Programming: A Review and Discussion, Computer Science
Education, Vol. 13, Number 2, and June 2003.

[12] Sneed, Harry M. Source Animation as a means of Program
Comprehension for Object-oriented systems. in Proceedings
of the 8th International Workshop on Program
Comprehension, June 2000.

[13] Spohrer, James and Elliot Soloway. Novice Mistakes: Are
the Folk Wisdoms Correct? Communications of the ACM,
July 1986.

[14] Tanner, Howard and S. Jones. Dynamic Scaffolding and
Reflective Discourse: the Impact of Teaching Style on the
Development of Mathematical Thinking. in Proceedings of
the 23rd Conference of the International Group for the
Psychology of Mathematics Education, Haifa, 1999.


