
Strategies that Students Use to Trace Code:
An Analysis Based in Grounded Theory

Sue Fitzgerald
Information and Computer Sciences

Metropolitan State University
St. Paul, MN 55106 USA

+1 (651) 793-1473

sue.fitzgerald@metrostate.edu

Beth Simon
Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0404 USA
+1 (858) 534-5175

esimon@cs.ucsd.edu

Lynda Thomas
Department of Computer Science

University of Wales
Aberystwyth, Wales UK SY23 3DB

+44 (1970) 622452

ltt@aber.ac.uk

ABSTRACT
How do beginning students approach problems which require

them to read and understand code? We report on a Grounded
Theory-based analysis of student transcripts from 12 institutions
where students were asked to "think aloud" when solving such
problems. We identify 19 strategies used by students. Primary
results are that all students employ a range of strategies, there
were (in total) many different strategies that were applied,
students use multiple strategies on each individual problem,
students applied different strategies to different types of
questions, and students often applied strategies poorly. We show
that strategies conform with existing education theories including
Bloom's Taxonomy and the Approaches to Study Inventory.
Additionally, we discuss emergent theories developed through a
card sort process.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education.

General Terms
Theory.

Keywords
Grounded Theory, Problem Solving, Strategies, Multiple Choice
Questions (MCQs), Multi-institutional, Card Sort, Tracing, Think
Aloud, Test Taking Strategies.

1. INTRODUCTION
In this paper, we report on an analysis of students’ ability to
understand code. This work began during the ITiCSE 2004
working group which investigated student reading and tracing
skills by evaluating student success at completing 12 multiple
choice questions (MCQs) featuring arrays and loops [15]. The
working group, itself a follow-up of McCracken’s 2001 ITiCSE

working group that reported on beginning computing students’
inability to program [17], found that many students have fragile
knowledge which inhibits their ability to systematically and
manually exercise a piece of code. Fragile knowledge is defined
as when “a student may be able to articulate particular items of
knowledge when explicitly prompted for any of them, (but) when
that student is asked to apply that knowledge…the student ‘sort of
knows’” but can’t produce a correct answer [18] [17]. Here, we
focus on a subset of the Lister et al corpus of data to investigate
what strategies students used in answering code-based MCQs.
This is an exploratory study, utilizing the set of 37 transcripts that
were collected by the members of the ITiCSE 2004 working
group. The majority of the work presented here focuses on two
representative questions (Q2 and Q8) from the set of 12. The
exact text of Q2 and Q8 is shown in Figure 1.

The primary motivation of this work seeks to understand how
students approach problems that involve understanding and
tracing code. We elicit such information (recorded in transcript
form) using a “think aloud” format designed to get students to
answer questions of the form “What are you thinking?” and “Why
did you do that?”

The goal is to identify strategies used by students from analysis of
the transcripts and to examine these strategies and their use to
develop theories of how students approach the reading and
understanding of code.

This emergence of theories from the data is part of a Grounded
Theory approach that originates in the work of Glaser and Strauss
[7]. Glaser and Strauss outlined Grounded Theory as a way to
“[discover] theory from data systematically obtained from social
research” (p. 2). Theories emerge organically from the data
through a process of collection, coding and analysis of data.
These activities should “be done together as much as possible.
They should blur and intertwine continually, from the beginning
of an investigation to its end” (p. 43).

In this paper we describe the process by which we utilized think
aloud transcripts to identify strategies used by first year students
in answering code-based MCQs. We define and provide a
narrative of examples of these strategies from transcript data.
Then we describe a number of theories that arise from these
strategies that describe broader classifications and explanations of
the strategies that student use. It is this qualitative identification
of strategies – and the theories that we suggest arise from it – that
is the fruit of this Grounded Theory-based research, rather than a
quantified coding of exactly how often these strategies are found

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICER’05, October 1–2, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-58113-043-4/05/0010...$5.00.

.

Question 2.
Consider the following code fragment.

 int[] x1 = {1, 2, 4, 7};
 int[] x2 = {1, 2, 5, 7};
 int i1 = x1.length-1;
 int i2 = x2.length-1;
 int count = 0;
 while ((i1 > 0) && (i2 > 0)) {
 if (x1[i1] == x2[i2]) {
 ++count;
 --i1;
 --i2;
 }
 else if (x1[i1] < x2[i2]) {
 --i2;
 } else { // x1[i1] > x2[i2]
 --i1;
 }
 }

After the above while loop finishes, “count” contains
what value?

a) 3
b) 2
c) 1
d) 0

Question 8.
If any two numbers in an array of integers, not
necessarily consecutive numbers in the array, are out of
order (i.e. the number that occurs first in the array is
larger than the number that occurs second), then that is
called an inversion. For example, consider an array “x”
that contains the following six numbers:

4 5 6 2 1 3
There are 10 inversions in that array, as:

x[0]=4 > x[3]=2
x[0]=4 > x[4]=1
x[0]=4 > x[5]=3
x[1]=5 > x[3]=2
x[1]=5 > x[4]=1
x[1]=5 > x[5]=3
x[2]=6 > x[3]=2
x[2]=6 > x[4]=1
x[2]=6 > x[5]=3
x[3]=2 > x[4]=1

The skeleton code below is intended to count the number
of inversions in an array “x”:

int inversionCount = 0;

for (int i=0; i<x.length-1; i++) {
 for (xxxxxx) {
 if (x[i] > x[j])
 ++inversionCount;
 }
}
When the above code finishes, the variable
“inversionCount” is intended to contain the number of
inversions in array “x”. Therefore, the “xxxxxx” in the
above code should be replaced by:

a) for(int j=0; j<x.length; j++)

b) for(int j=0; j<x.length-1; j++)
c) for(int j=i+1; j<x.length; j++)
d) for(int j=i+1; j<x.length-1;j++)

Figure 1: Multiple choice questions analyzed.

Q2 requires selection of a variable value, Q8 requires the reader to fill in the correct line of missing code

in student work. Although traditional Grounded Theory research
claims that analysis of data should be intertwined with data
collection in order to inform data collection procedures, that was
not possible in the structure of this working group study.
Section 2 provides a discussion of the context and methodology
of the experiment and more details on Grounded Theory and
Section 3 discusses work related in both content and method. The
strategies that emerged in this study are shown in Table 1 and are
discussed in Section 4. In Section 5 we look at a number of
theories that are supported or suggested by the data and in Section
6 discuss future work. Section 7 states our conclusions.

2. CONTEXT OF THE EXPERIMENT AND
METHODOLOGY
In this section we describe the context in which this data was
gathered as part of an ITiCSE 2004 working group study on the
reading and tracing of code. Additionally, we describe the
methodology followed in the collection and analysis of the data.

2.1 The ITiCSE Working Group Study
The ITiCSE 2004 working group on reading and tracing code led
by Raymond Lister consisted of 12 participants from 8 countries.
Researchers were asked to solicit students in their first or second
computer science course. In general, students ranged over CS0,
CS1, and CS2 courses, though the amount of time students had
spent studying at each institution varied widely. In some
institutions, the MCQs were used as part of the procedure for
assigning a final grade to the students. In other institutions,
students volunteered to be part of the study. More details can be
found in the working group report [15].

2.1.1 Performance Data
Each working group member tested students on the 12 MCQs,
under exam conditions. The primary data collected was the
students’ answers for each MCQ, from which a score out of 12
could be calculated. A total of 941 students contributed data to
this part of the study, but of those students only 556 students were
given all twelve questions (some students took part in the test at
earlier stages).
We selected Questions 2 and 8 for further study because they
were representative of the skills examined in the test. Question 2
involved understanding and tracing a piece of code and was
answered correctly by 65% of the students. Question 8 involved
filling in one line of missing code to perform a task and was
answered correctly by 51% of students. The overall average
score on the entire set of 12 questions was 60% and the median
score was 66.7% (N=556).

2.1.2 Written Data
Students were encouraged to use their paper tests as “scratch”
paper upon which they were allowed to draw pictures or perform
calculations as part of answering the MCQs. [15] and [16] provide
a discussion of the relationship between these annotations and
performance.

2.1.3 Interview Transcripts
The 12 working group members interviewed a total of 37
students. In the interviews, students were asked to think aloud as
they answered the core set of MCQs. The interviews were
recorded and then transcribed verbatim by the individual working
group members who collected them. Some were translated into
English at transcription time.
Some differences in data collection occurred including the exact
timing of the think aloud (during an initial testing or after a
completed test) and also in instructor prompting and response to
student think aloud activities (ranging from no instructor input to
detailed instructor questions at points). Students were selected in
different manners at various institutions, with the majority
volunteering to participate. Nonetheless, all of the data were
deemed to be of comparable quality and, for the purposes of this
study, differences appear to be neutralized by the quantity of data
collected.

2.2 Methodology and Definitions
While general problem-solving strategy work has a significant
literature (see Section 3), in this paper we specifically define a
strategy as an approach used by a student to get to an answer to
one of the MCQ tracing-type questions.
Tracing, as used in this paper, refers to the overall process of
trying to emulate, at some level of detail and/or accuracy the
process of a computer executing code. Tracing is an entire
process that may or may not involve doodling – some form of
physical annotation on a piece of paper. In contrast, we'll later
describe a strategy that strikes close to the heart of the tracing
process called walkthroughs. A walkthrough is a verbal strategy
identified in the transcripts where students talk through some
level of code emulation. Students performing walkthroughs did
not always doodle and vice versa.
In the development and analysis of strategies used by students, we
followed a Grounded Theory-based approach to develop theory
emergent from the think aloud transcript data. Initially strategies
were identified by a preliminary reading of all 12 questions of the
37 transcripts. Strategies were then further refined by three
independent researchers’ readings of all 37 student transcripts of
Q2 and Q8. In these readings the researchers underlined and
noted student phrases and words that indicated a strategy was
being employed. Final strategies (and their names) were firmly
identified via a group review process. This process resulted in the
identification of 19 strategies that students used to get to an
answer in code-based questions (based on Q2 and Q8). Next, the
researchers individually returned to the transcripts and coded
which strategies were used by each student on Q2 and Q8. This
led to codings related to each of the questions. The codings are
not the focus of this report. Informally, we found significant
inter-rater reliability of this codings, but we only report on them
in the context of individual students using the same strategies –
sometimes successfully and other times not.
After completing this process we observed that most students
used multiple strategies in working on a given question, that
different strategies were used for different questions, and that
many strategies that were used successfully by certain students

would be used incorrectly or unsuccessfully by other students (see
Section 5.1). In order to uncover the theories underlying student
use of strategies in code-based problem solving, we performed
unconstrained card sorts [21] of the strategies identified. These
sorts led to the recognition of existing theories and development
of emerging theories that are discussed in Sections 5.2 and 5.3.

3. Related Work
3.1 Understanding Code
Educators have long understood the difficulties which students
experience in learning to program [22] [23]. An excellent recent
overview of research in this area can be found in [20].

A careful consideration of the problem makes it clear that this is
not very surprising. As du Boulay pointed out, the skill of
learning to program a computer has many facets and beginners
are faced with them all at the same time, including not only the
syntax of the language but also the notional machine on which
programs are run [4].

More recently, McCracken et al assessed the programming ability
of a large population of students from several universities, in the
United States and other countries [17]. The authors tested first
year students on a common set of programming problems. The
majority of students performed much more poorly than expected.
In fact, most students did not even get close to finishing the set
task. Numerous reasons were cited including: having no idea how
to solve the exercise, not enough time, inadequate designs and
inability to implement designs.
Lister et al sought to clarify the results of McCracken’s work
[15]. Lister’s question was “to what degree do [programming
students perform poorly] because of poor problem solving skills,
or because of fragile knowledge and skills?” In other words is the
problem a design problem or a language problem? If we further
restrict our consideration to the underlying skills necessary for
understanding code, we note that only 10% of college students
may be found to correctly answer questions in propositional logic
[9], a serious handicap in understanding the kind of code on
which our MCQs were based.

3.2 Multiple Choice Questions
In the study of test taking in general, MCQs have been the subject
of much study. In the realm of Computer Science, [14] discusses
use of MCQs to get at higher level assessment as defined by
Bloom’s taxonomy. In [13] Lister specifically claims that CS1
students should be examined via multiple choice in order to fairly
assess students. Additional work has been done on permutational
MCQs which are purported to address issues of guessing, trivial
recognition of facts, and construction versus choice [6]. A brief
discussion of a set of other optional marking schemes for MCQs
(especially those administered electronically) can be found in [3].

3.3 Grounded Theory
 Grounded Theory is an “emergent methodology” originally
proposed by sociologists Glaser and Strauss in 1967 [7] – though
a number of variants have been developed since. Several web
resources for getting a basic background in Grounded Theory
exist [2] [8].

4. Strategies
A review of the transcripts revealed a striking breadth and variety
of strategies exhibited by the subjects as they sought answers to
the test questions. An initial examination of the transcripts
revealed 19 distinct strategies. Given the limited experience of
these students, most of them in their first computer programming
class, the sheer variety of techniques used by students in
attempting to understand the questions and to come up with
solutions was of interest.

Table 1 identifies the strategies identified from the transcripts of
Q2 and Q8. Further explanation of each strategic approach is
given next, along with examples taken from student transcripts.
Quotes are identified by question and subject number in the form
[Q2, A037]. The letter in the subject number is an institutional
identifier.

S1. Reading the question

The transcripts revealed that some subjects explicitly and
carefully read through the problem statement before attempting to
solve the problem. They previewed the question and made sure
they understood what was being asked. For the more difficult
questions, those involving selection of a code segment rather than
determination of the value of a variable, reading the question
often involved understanding the meaning of the problem or
discerning the intent of the code by reading the textual
explanation. For the simpler problems, involving finding the
value of a variable, reading the question might mean determining
in advance which variable’s value was sought.

Some transcript data that identified students using a “reading the
question” strategy include:

“If any two numbers in an array of integers, not necessarily
consecutive numbers in the array, are out of order, that is - the
number that occurs first in the array is larger than the number
that occurs second - then that is called an inversion.” [Taken
literally from the problem statement for Question 8, A031, A038]

“This time I'm going to look to see what the question wants first.
So trying to find the value of count.” [Q2, A037]

In contrast, some subjects deliberately chose to read code before
studying the question.

“Basically, I'm reading the code to understand what's going on,
then I'll read the question.” [Q2, Q002]

S2. Previewing the code by identifying data structures

Another common beginning strategy was the identification of
program components on the syntactic level, specifically by noting
the data structures. Subjects employing this strategy were not
attempting to explain the meaning of the data or control
structures. Rather, they were simply recognizing and naming the
parts of the program.

“You’ve got two integer arrays” [Q2, L005]

“x1 is an array with four integers, x2 is an array with four
integers.” [Q2, S001]

Table 1: Strategies that students used as identified on Q2 and Q8.

Code Strategy Explanation Example

S1 Reading the question Previewing the question, looking for
what is asked

<<see Section 4>>

S2 Previewing the code by
identifying data structures

Identifying program components on the
syntactic level; an explanation of
meaning is not mentioned

That’s an array, a is an int

S3 Previewing the code by
identifying the initialization of
data structures

Identifying program components on the
syntactic level; an explanation of
meaning is not mentioned

i = 0

S4 Previewing the code by
identifying control structures

Identifying program components on the
syntactic level; an explanation of
meaning is not mentioned

There’s a nested loop

S5 Understanding new concepts:
Semantic

Understanding something new, a new
concept, by relating prior understood
knowledge to less understood
knowledge or by using an example

inversion – so, 4, 5, 6 there
are 10 inversions here

S6 Pattern Recognition: Temporally
self-referential

Syntactic; recognizing that this looks
like something from another question on
this test; multiple choice distractors

This goes to x.length-1 like
problem #1

S7 Pattern Recognition: Outside
knowledge

Syntactic; recognizing from outside
knowledge; something I’m familiar with
(but not on this test)

Loops always go from 0 to
length-1

S8 Pattern Recognition: Seeking
higher levels of meaning from the
code

What the code really does at a higher
semantic level

This is like a sort; it selects
the even numbers

S9 Walkthroughs

Tracing, testing boundary or error
conditions

so the condition is while
i1>0 which it is

S10 Strategizing

How would I write the code, what would
I need to do?

I’m trying to figure out
how I would do this …

S11 Grouping Looking for similarities and differences
in the answers; selecting more than one
answer at once, possibly for elimination
or inclusion

Answers A and D are alike

S12 Differentiation

Noticing differences between answers or
lines of code or choices

Answer A is i < j and
Answer B is i <= j

S13 Elimination Eliminating specific choices It can’t be A or D

S14 Guessing Explicitly stated I guessed.
I just picked one.

S15 Thoroughness After selecting an answer, checking for
correctness of other solutions just to be
sure

I’m pretty sure that C
works but I’ll just check
that D doesn’t

S16 Starting over

Getting lost, recognizing an error, simply
starting again

I’m backtracking.
I’m starting over

S17 Coming back to the question later Going on to another part of the test
without completing this problem

I’ll come back to this later.

S18 Posing questions Explicitly questioning What is the value of i here?
What is the program doing
here?
What do they want?

S19 Doodling Annotations on the test paper <<see [15] and [16] for
details>>

S6. Pattern Recognition: Temporally self-referential S3. Previewing the code by identifying the initialization of
data structures Pattern recognition is a powerful learning and test-taking tool. It

takes several forms. In some cases subjects recognized that one
test question resembled another test question and made
assumptions based on previous answers. Unfortunately, these
assumptions often led to the wrong answers – the multiple choice
question distractors.

Closely connected to previewing the code by identifying data
structures was the strategy of recognizing the initialization of
variables or data structures.

“int array x1 is equal to 1, 2, 4, 7. int array 2 is equal to 1, 2, 5,
7.” [Q2, N003]

“Number 2 says, consider the following code fragment. Again,
basically I did the same thing again as the first one.” [Q2, O002] “There are 2 variables i1 and i2 that start at 3.” [Q2, L019]

Although the identification of data structures and the initialization
of data structures would seem to naturally be related, they were
not always used together. In some cases initialization was noted,
but the type of data structure was not identified.

“And the second problem I did is, it's like what I did before, but I
just look at these two, so I can just guess, like what it's saying is
like when the numbers are different?” [Q2, O003]

S7. Pattern Recognition: Outside knowledge “…the initial values of I1 and I2 were both 3” [Q2, C002]
Subjects also recognized patterns learned in other settings. This
category, limited to syntactic or data-structure level semantic
pattern recognition, is distinct from the following category,
Pattern Recognition: Seeking higher levels of meaning from the
code. Subjects often used this pattern recognition to understand
looping behavior.

S4. Previewing the code by identifying control structures

Similar to the identification of data structures is the identification
of control structures. Some subjects chose to locate loop
statements, nested loops and if statements as a way of
understanding the problem. The detection and recognition of
control structures usually occurred as the subject began to look at
the problem, but occasionally it occurred later in the solution
process.

“Actually I think this one was not that hard. OK, so it's going to
go from 0 to length - 1, which means the whole interval, I mean
the whole array.” [Q8, O002]

“Uh, Oh, so I just noticed that it’s a nested loop.” [Q8, P002] “First of all I knew that in the for loop you’re going to compare j
to length-1, because the way the arrays are 0 through the number
of elements minus 1.” [Q8, O001]

“it wants to loop until and including the last element” [Q8, Q003]

It is interesting to note that when using this approach most
subjects focused exclusively on looping constructs; if statements
were more typically scrutinized while doing walkthroughs. This
may be an artifact of the type of problem used; looping drives the
problem. Alternatively, it may be a recognition on the part of the
subjects that looping behavior is inherently more difficult to
understand.

S8. Pattern Recognition: Seeking higher levels of meaning
from the code

In addition to the mundane use of pattern recognition to identify
the components of a program, pattern recognition was also used to
intuitively understand what the code was doing at a higher
semantic level. Here subjects related the test question to
previously understood algorithms, such as sorts. S5. Understanding new concepts: Semantic

“OK so it’s like a comparison.” [Q2, P002] This category is applies to semantics (meaning) rather than syntax
(form). Subjects sometimes identified an idea with which they
were not familiar. In those cases, many subjects constructed an
understanding of this new idea by relating it to some previously
understood information, or by using an example to make
understanding clearer. This strategy demonstrated an ability to
extrapolate from existing knowledge.

“So once again this is just a fancy method of sorting I would
think” [Q8, Q002]

“Um, yeah, I knew that it would count the number of equal
elements.” [Q2, Q003]

S9. Walkthroughs
This approach is most frequently seen in Q8 where the notion of
an inversion is introduced. Subjects were not intended to have
previously been exposed to the concept of inversion, and an
explanation and examples were given. For most subjects, this
question demanded new understanding on the semantic level.

When using the most frequent strategy, code walkthroughs,
subjects traced verbally through the code logic and/or updated the
values of variables while working through the sample code.
Walkthroughs were used to predict the values of variables, test
boundary or error conditions, and test hypothesized results. This
strategy was often, but not always, associated with written
annotations or doodles [15]. Although walkthroughs were indeed
the most common strategy employed, not all subjects used it.
This strategy includes partial walkthroughs, not necessarily
thorough, which were often employed.

“I'm reading over the question. Finding out what an inversion
means or is. So I see that it's when a number occurs first in the
array is larger than the number that occurs second. And it just
gives an example so you understand.” [Q8, A037]

“This one took me a while because I couldn’t figure out what
inversion was, and then I looked at it again and said OK well this
is bigger than that. .. Because this is bigger than that and so on
and so forth. And it took me a couple of minutes to figure what
inversion was.” [Q8, C001]

“int x1 is equal to 1, 2, 4, 7 and int x2 is equals to 1, 2
while i1 > 0
i1, i1 is x1.length which is x1.length = 4
i1 so i1 = x1.length-1

“So it can't be A. So now I'm trying. But I'm not going to bother
with B because it's starting out at the beginning of the array for j
too. So now I'm looking at C. … so it would skip the last value in
the array so D would not work so the answer is C.” [Q8, A037]

x.length is 4-1
is 4 – 1
just 3 and i2, x2.length which is 4-1 which is 3
i2 = 4-1 which is 3
so both of these are true so I enter the loop” [Q2, P001]

“So can’t be first two. j=i+1 I see we have to start off at i+1 and
go towards the ... you have a choice between going towards the
actual number or ... look at this example, if try to go all way to
position 6 we’ll have an array index out of bounds error so want
it to go to 6-1 cos that’ll be the actual array index – so it must be
4” [Q8, L005]

S10. Strategizing

The test questions were loosely grouped into two categories –
those that asked the subjects to predict the results of a code
segment (e.g., Q2) and those that asked the subjects to select the
correct set of missing lines of code (e.g., Q8). When faced with
the problem of choosing a matching answer for the missing code,
some subjects asked themselves how they would write the code or
what they would need to do in order to solve the problem. That
is, instead of trying out the answers given to them, these subjects
asked themselves what code they would need to write or what
they would need to do to solve the problem.

S14. Guessing

Perhaps the most amusing strategy is guessing. Subjects employ
guessing when they have no idea what the correct answer is (pure
guessing) and sometimes after reducing the number of viable
choices through elimination (educated guessing).

“I was totally lost on this one, I just took a wild guess.” [Q8,
H002] “And it’s just sort of … what an inversion is and what this code is

trying to do now just sort of thinking what I would logically put in
there before I look at any of the answers” [Q8, N001] “There was like 5 minutes left and I just picked what I thought

looked best at that time.” [Q8, H003]
“Trying to work out what sort of code would follow.…int j cannot
be... am trying to, you know, trying to find out which, which
would be the missing code. So for that I am trying to sort of, think
out and work out how the code would sort of look like, you know
the structure of that code fragment.” [Q8, N003]

“It would be a complete guess to be honest.” [Q2, L002]

S15. Thoroughness

A small number of subjects checked their work after identifying
the correct answer by checking all the remaining alternatives.

“Now I’m writing some code, then I’ll try to check the number of
inversion in array x” [Q8, E002] “So it seems that one would work. I'm going to go ahead and try

D real fast.” [Q8, A37]
S11. Grouping

S16. Starting over
A number of strategies directly related to taking multiple choice
tests emerged. Subjects often engaged in grouping or looking for
similarities and differences in the answers or selecting more than
one answer at once, possibly for elimination or inclusion.
Grouping strategies were often paired with the differentiation or
elimination strategies described below.

Some subjects recognized that they had become confused and
needed to begin again.

“Now I'm looking at the question again and wondering, I'm just
going to start over because I didn't write down enough.” [Q8,
A37]

“So I narrowed it down to two answers. and then it left me
choosing whether to initialize j to 0 or i+1” [Q8, O001]

“Once again I'm going to do the same thing … I messed
everything up” [Q2, Q002]

“Yes, so that one has the same problem as the first one … C has
the same problem as A and I can tell it's pretty much comparing
… there are only two differences really. A and C have the same
problems and B and D have the same problems.” [Q8, N002]

S17. Coming back to the question later

A related strategy was to leave the question and return to it later.

“I’ll skip that one and go back to it.” [Q8, P001]
S12. Differentiation S18. Posing questions
Another strategy related directly to taking multiple choice tests,
differentiation involved noticing differences between answers or
lines of code.

When puzzling out the answers to a question some students asked
questions. This strategy may simply be a stylistic artifact.
However, the transcripts indicate deeper thinking in some cases.

“So the problem is, is it x.length or x.length-1?” [Q8, P001] “Ten, why are there ten?” [Q8, T001]
“So I narrowed it down to two answers. and then it left me
choosing whether to initialize j to 0 or i+1, and I chose i+1
because what you're counting in the loop is dependent upon i, so I
don't know whether that's a good explanation, but that's how I did
it.” [Q8, O001]

“Can this be an endless loop?” [Q2, T003]

“What am I looking for?” [Q2, P003]

S19. Doodling

We refer the interested reader to the discussion on doodling or
written annotations given in [15] and [16].

S13. Elimination

Elimination, often used with grouping and differentiation,
involves the removal of some MCQ choices.

Table 2: Sample students and the strategies they employed

ID Question 2 strategies Correct ID Question 8 strategies Correct
L005 Reading the question (S1),

Previewing the code by
identifying data structures (S2),
Previewing the code by
identifying the initialization of
data structures (S3),
Walkthrough (S9)

yes T001 Reading the question (S1),
Understanding new concepts:
Semantic (S5),
Walkthrough (S9),
Strategizing (S10),
Differentiation (S12),
Elimination (S13)

yes

N003 Reading the question (S1),
Previewing the code by
identifying data structures (S2),
Previewing the code by
identifying the initialization of
data structures (S3),
Previewing the code by
identifying control structures
(S4),
Walkthrough (S9)

no N003 Reading the question (S1),
Understanding new concepts:
Semantic (S5),
Strategizing (S10),
Grouping (S11),
Elimination (S13)

no

Students L005, T001 and N003 used a wide range of strategies
(observation 1). There were many strategies that were applied
overall (observation 2), and students used multiple strategies on
each individual problem (observation 3). The two problems
elicited different strategies (observation 4). But although students
used similar, possibly “good”, strategies, L005’s application of
them resulted in success on question 2 and N003 in failure on the
same question (observation 5). Likewise on question 8, T001’s
application of strategies resulted in success and N003’s
application of similar strategies, in failure. More discussion of
student performance and strategies can be found in Section 5.4.

5. Theories
Analysis and immersion in the transcript data produced the list of
utilized strategies presented in Section 4. This was a first step in
the development of theory grounded in empirical data. According
to Glaser and Strauss, some theories should become clear from
examination of the data. When we came to analyze our data, we
found some theories emerged in this fashion (organically and
obviously).2 These are theories that are directly evident from the
data collected and are reported on in Section 5.1. Some theories
were more indirectly spurred by consideration and discussion of
the data. We propose these theories in Sections 5.2 and 5.3 – but
note that full elicitation of these theories from the data would best
be guided by further, more specialized, data collection. This is in
line with Grounded Theory practice where data collection should
be informed by theory development (not something immediately
possible in the working group format).

5.1.1 Computing versus Test Taking Strategies
To discuss another immediately evident theory, we need to return
to the original problem and area of research interest. We were
interested in whether a ‘language problem’ existed – that is, could
students read and trace code. We were not primarily focused on
the fact that these issues were examined in the light of multiple
choice questions. 5.1 Evident Theories

Several things were immediately obvious from an examination of
the identified strategies and where they were observed. In examination of the data set it was obvious that some strategies

seem more crucial for our central research question than others. In
particular, Pattern Recognition: Temporally self-referential (S6),
Grouping (S11), Differentiation (S12), Elimination (S13),
Guessing (S14) and Coming back to the question later (S17) all
seem to be strategies related to test-taking rather than
understanding code. This leaves us then with the following pool
of 12 strategies relevant to Computer Science code reading rather
than MCQ style:

1. All students employed a range of strategies.
2. Many strategies were applied overall – both by individual

students and across various problems.
3. Students used multiple strategies on each individual

problem.
4. Students applied different strategies to different questions.
5. Students often used good strategies poorly.

These observations can be made throughout our coding of the
transcripts but for a clear example see Table 2. Recall that Q2
and Q8 were selected as representatives of the two types of
problems on the test: obtaining output from code, and determining
which of a set of options should be used to fill in a line of code.

• Reading the question (S1)
• Previewing the code by identifying data structures (S2)
• Previewing the code by identifying the initialization of data

structures (S3)
• Previewing the code by identifying control structures (S4)
• Understanding new concepts: Semantic (S5)
• Pattern Recognition: Outside knowledge (S7) 2 Only strategies relevant to theories are listed in tables in this

section.

• Pattern Recognition: Seeking higher levels of meaning from
the code (S8)

• Walkthroughs (S9)
• Strategizing (S10)
• Thoroughness (S15)
• Starting over (S16)
• Posing questions (S18)

Parts of the list are still problematic in terms of the strength of
their relevance to Computer Science code reading in contrast to
test taking. For instance, some of the remaining strategies might
be test-taking or might be code related (Thoroughness (S15) and
Starting over (S16), for example). Others need further
investigation. Is ‘posing questions’ merely a rhetorical device? Or

does it elicit other issues related specifically to code
understanding? These issues might merit further study, but we
can report with certainty that some strategies are more related to
test taking (and some specifically to MCQ-style test taking) and
others more directly to code reading and tracing.

5.2 Conformance of the Strategies to Existing
Theories
There is some evidence that the strategies outlined above conform
with existing theories about learning and problem solving.
Clearly, more work in this area is needed, but we present
preliminary analysis based on the available data.

Table 3: Strategies as organized by structure within Bloom’s Taxonomy [1]

Bloom Keywords Strategies

Knowledge Recognition Pattern Recognition: Outside knowledge (S7)

Comprehension Understanding Previewing the code by identifying data structures (S2)
Previewing the code by identifying the initialization of data structures (S3)
Previewing the code by identifying control structures (S4)

Application Using concepts Walkthrough (S9)

Analysis Breakdown of material and
relationships

Understanding new concepts: Semantic (S5)

Synthesis Skill in writing / creation Strategizing (S10)

Evaluation High level comparison of alternatives Pattern Recognition: Seeking higher levels of meaning from the code (S8)

Table 4: Strategies as organized by deep versus surface versus strategic learning [5] [19]

Approach Characteristics Strategies

Deep Intends to understand learning material
Looks for patterns and underlying
principles
Relates ideas to previous knowledge

Pattern Recognition: Seeking higher levels of meaning from the code (S8)
Understanding new concepts: Semantic (S5)
Strategizing (S10)
Walkthrough? (S9)

Surface Intends to fulfill the immediate task
Attempts to memorize facts
Finds it difficult to make sense of new
ideas
Does not search for patterns or
connections

Reading the question (S1)
Previewing the code by identifying data structures (S2)
Previewing the code by identifying the initialization of data structures (S3)
Previewing the code by identifying control structures (S4)
Pattern Recognition: Outside knowledge (S7)
Walkthrough? (S9)

Strategic Intends to do well in assessments
Focuses on assessment criteria

Test-taking strategies fit here (S10, S11, S12, S13, S14)

Bloom’s second level of abstraction is called comprehension. The
strategies of Previewing the code by identifying data structures
(S2), Previewing the code by identifying the initialization of data
structures (S3) and Previewing the code by identifying control
structures (S4) are ways in which students understand the
meaning of problems, interpret instructions and state problems in
their own words [10].

5.2.1 Bloom’s Taxonomy and Strategies
One popular educational framework is Bloom’s Taxonomy of
Educational Objectives where learning skills are divided into six
graduated levels. These are, from least difficult to most difficult:
knowledge, comprehension, application, analysis, synthesis and
evaluation [1]. Strategies utilized by the students also clearly fell
into similar levels of cognitive complexity as shown in Table 3.
For example, the Pattern recognition: Outside knowledge (S7)
strategy involves the recollection of previous examples. Bloom
identifies recognition or recall as belonging to the first or most
simple level of his taxonomy of cognitive learning.

Walkthroughs (S9) fall into Bloom’s application level. At this
level learners apply previous learning in a new context. That is,
the skill of tracing code is now being applied to code examples
the student has not previously seen.

At the analysis level, Bloom expects to the learner to “see
patterns” [11], to “separate material or concepts into component
parts so that its organizational structure may be understood” [10].
Another way of putting this is that the learner “distinguishes
between facts and inferences” [10]. The strategy of
Understanding new concepts: Semantic (S5) fits at this level of
Bloom’s taxonomy. Here students identified ideas with which
they were unfamiliar and made inferences based on previously
understood information or by working an example.
As subjects seek to fill in missing lines of code, some choose to
strategize (S10) or ask themselves how they would approach and
solve a problem rather than looking first at the answer choices.
Bloom calls this process of predicting or drawing conclusions,
synthesis.
Bloom’s highest order thinking skill is called evaluation. Here
the learner compares and contrasts alternatives, interprets and
summarizes. The Pattern recognition: Seeking higher levels of
meaning from the code (S8) fits here. Students engage in pattern
recognition, but at a high level. They seek meaning from the code
by comparing a new problem to known problems such as sorts
and counting loops. They seek understand the intent of the
problem, as compared to other known problems, such that the
answers are meaningful rather than achieved by rote
memorization or mechanized tracing.
Although the exact categorization of strategies according to
Bloom’s taxonomy may be open to interpretation, it is clear that
some strategies engage higher order thinking while others rely
more on the lower level skills of memory and recognition.

5.2.2 Deep, Surface and Strategic Approaches to
Learning
Another categorization of learning strategies is found in the work
of Entwistle and others and has resulted in the Approaches to
Study Inventory [5]. For instance Richardson [19] describes how
students “manifest a number of different approaches …that are
dependent on the context, the content, and the demands of the
learning tasks.” The approaches may be categorized as shown in
Table 4 where we matched appropriate strategies with each
approach.

In particular, the Walkthrough (S9) strategy was interesting.
Lister was disappointed [12] that so many students solved
questions like Q2 by ‘cranking through the code’. He would see
this strategy as a surface approach, compared to Pattern
Recognition: Seeking higher levels of meaning from the code
(S8). However, since the questions had little deeper meaning,
following the logic might be the deeper meaning for beginners.

5.3 Emergent Theories
Although it was possible to fit the strategies that were observed
into existing theories of learning, other theories, evidenced by
different ways of categorizing strategies, are also suggested by the
data.

In order to find ways of categorizing the strategies, each of the
three researchers performed unconstrained card sorts [21] on the
strategies. Although the naming of the resulting categories

differed, many of the actual groupings showed remarkable
similarity. These led to a consideration of emergent theories, two
of which are presented below.

5.3.1 Temporal Groupings
As described in our methodology, 19 strategies were identified
and, later, coded. Before the second more detailed examination of
the data, these strategies were in fact grouped into several main
sets. These sets correspond, more or less, with a ‘temporal
grouping’ which later emerged in the card sorts. The groups are
shown in Table 5. The first column of Table 5 refers to when, in
the course of the transcript, strategies were observed to be used.
“Outside time” strategies could be employed at any time and, in a
sense, break the timeline of a student approach. “Final step”
strategies were used as students were making the final steps of
selecting a multiple choice answer. These temporal groupings
reflect observed time-based and process-based behaviors that
were some of the most evident within the transcripts.

5.3.2 Syntax, Semantics, and Pragmatics
An evaluation of programming languages is often conducted in
terms of syntax or grammar, semantics or how it works, and
pragmatics or how it can be used (‘you use a loop when you want
to go through all the elements of a collection’).

The student strategies can also be grouped in this way (see Table
6). While we might hope that students follow all of these
strategies in appropriate situations, we might expect that more
successful students would use sets of strategies that span all of
these categories. Particularly, students who only use syntactic
strategies are unlikely to solve dynamic tracing problems.
Similarly, students who fail to grasp the semantics of the problem
are not likely to correctly choose the missing lines of code.

5.4 Special Consideration: Success and
Strategies
An initial aim in conducting this research was that we would be
able to determine what strategies are likely to lead to success
versus those that are likely to lead to failure. For example, the
ITiCSE researchers hypothesized that ‘doodles’ which showed
evidence of tracing the code would be correlated with success
and, in fact, that does seem to be borne out by the data [15].
In our examination of strategies we observed no such clear
correlations. For example, we thought that Walkthrough (S9)
would be an “obvious” successful strategy, but almost all students
used it – some successfully, some not. Success seems to be
determined not just by which strategies were employed but rather
by “how well” the particular strategies were employed. When we
examine in more detail, almost all students did walkthroughs on
Q2 but many were not complete, were not careful, or had
semantic difficulties that led to crucial mistakes. In this case
particularly, in order to better develop theories on strategies that
lead to success, a more refined data collection approach needs to
be devised.

Table 5: Temporal grouping

Time Group Strategy

Initialization /
Familiarization

Reading the question (S1)
Previewing the code by identifying data structures (S2)
Previewing the code by identifying the initialization of data structures (S3)
Previewing the code by identifying control structures (S4)
Understanding new concepts: Semantic (S5)

Recognition Pattern Recognition: Outside knowledge (S7)
Pattern Recognition: Seeking higher levels of meaning from the code (S8)

Early

Late

Modeling Walkthrough (S9)
Strategizing (S10)

Outside time Thoroughness (S15)
Starting over (S16)

Final step Selection (MCQ
specific)

Grouping (S11), Differentiation (S12) , Elimination (S13), Guessing (S14)

Table 6: Syntax, semantics and pragmatics

Programming Language Construct Strategy

Syntax related strategies Reading the question (S1)
Previewing the code by identifying data structures (S2)
Previewing the code by identifying the initialization of data structures (S3)
Previewing the code by identifying control structures (S4)
Pattern Recognition: Outside knowledge (S7)

Semantics related strategies Understanding new concepts: Semantic (S5)
Walkthrough (S9)

Pragmatics related strategies Pattern Recognition: Seeking higher levels of meaning from the code (S8)
Strategizing (S10)

6. Future Work
In keeping with the Grounded Theory framework, this work
should serve to inform further studies where proposed theories
can be used to develop more specialized data collection. For
example, time augmented transcripts could be utilized to
identify temporal strategy use. Different questions could be
developed to more specifically target the levels of Bloom’s
taxonomy and tested to see if certain strategies are more
correlated with particular questions.
Specifically, a more detailed and structured think aloud might
need to be developed in order to define theory to explain why
use of similar strategies can lead to such different results. Why
and where do students “go wrong” in applying a strategy? Were
they attempting to emulate a strategy demonstrated by an
instructor in a classroom setting – but perhaps had fragile or
incomplete understanding of that strategy? Were they
attempting to use a strategy that they use in solving homework-
style problems where a computer is available for
experimentation? Can students recognize for themselves when
their strategies are going wrong?
Finally, would the same strategies (at least those identified as
more code-related) occur in a non-multiple choice environment?

Would students continue to use such a broad variety of
strategies if they had an open-form response?

7. Conclusions
In this work we report on the strategies employed by beginning
computing students in seeking to read and understand code.
Primary findings show that many different strategies are used by
students and that all students employ a range of strategies –
even on individual problems. Additionally, problem structure
affected the type of strategies used and, finally, students often
employed strategies poorly – perhaps indicating fragile
knowledge of how to read and trace code.
This data is based in a Grounded Theory-based analysis of
transcripts from 37 students (from 12 institutions) performing a
think aloud when answering two different questions requiring
the ability to read and understand code. This study was part of a
larger ITiCSE Working Group project led by Raymond Lister in
2004. Further analysis of and immersion in the original working
group data led to development of emergent theories.
This work has value for the computing education community in
that it informs us of beginning students’ approaches to reading
and understanding code. Transcripts provide clues to what
students are thinking, what they did to solve problems and how

[8] Grounded Theory: a thumbnail sketch,
http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html
(last accessed April 29, 2005).

well they did it. Linking students’ strategies to Bloom’s higher-
order thinking skills and Entwistle’s Study Inventory connect us
to bodies of literature and approaches we might not otherwise
examine as we seek ways to help our students. Emergent theory
related to temporal grouping and programming language
constructs (syntax, semantics and pragmatics) provide new
avenues to explore as we seek insight into how and where
novice programmers go wrong in the problem-solving process.

[9] Lawson, A.E., Karplus, R. and Adi, H. The acquisition of
logic and formal operational schemata during the
secondary school years. Journal of Research in Science
Teaching, 15, 6 (1978), 465-478.

[10] Learning Domains or Bloom's Taxonomy,
http://www.nwlink.com/~donclark/hrd/bloom.html (last
accessed August 18, 2005).

8. Acknowledgements
We gratefully acknowledge Raymond Lister for his always
cheerful and brave leadership of the strong-willed and
occasionally rebellious 2004 ITiCSE Working Group with
additional thanks to the other members of the Working Group
for assistance in preparation of this paper. We also wish to
express our sincere appreciation to all of the students who so
generously gave their time to this project. Finally, we thank
Sally Fincher for her helpful discussions on Grounded Theory
and to the NSF supported workshops on CS Education
Research, led by Sally Fincher, Marian Petre and Josh
Tenenberg, (DUE-0243242) in which all three authors
participated. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

[11] Learning Skills Program: Bloom’s Taxonomy,
http://www.coun.uvic.ca/learn/program/hndouts/bloom.htm
l, (last accessed August 18, 2005).

[12] Lister, R. Personal communication, 2005.
[13] Lister, R. Objectives and Objective Assessment in CSl. In

Proceedings of the thirty-second SIGCSE technical
symposium on Computer Science Education (SIGCSE
2001) (Charlotte, NC, USA, February 21-25, 2001). ACM
Press, New York, NY, 2001, 292-296.

[14] Lister, R. On Blooming First Year Programming, and its
Blooming Assessment. In Proceedings of the fourth
Australasian computing education conference (ACE 2000)
Melbourne, Australia, December, 2000). ACM Press, New
York, NY, 2000, 158-162 9. References

[15] Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J. E., Sanders, K.,
Seppälä, O., Simon, B. and Thomas, L., A Multi-National
Study of Reading and Tracing Skills in Novice
Programmers. ACM SIGCSE Bulletin, 36, 4 (December
2004), 119-150.

[1] Bloom, B. S., Mesia, B. B. and Krathwohl, D. R.
Taxonomy of Educational Objectives (two vols: The
Affective Domain & The Cognitive Domain). Addison-
Wesley, 1956.

[2] Borgatti, S. Introduction to Grounded Theory,
http://www.analytictech.com/mb870/introtoGT.htm (last
accessed April 29, 2005). [16] McCartney, R., Moström, J.E., Sanders, K., and Seppälä,

O. Take note: The effectiveness of novice programmers'
annotations on examinations. Informatics in Education. 4.
1, (2005), 69-86.

[3] Bush, M. Alternative Marking Schemes for On-Line
Multiple-Choice Tests. In Proceedings of the Seventh
Annual Conference on the Teaching of Computing (Belfast,
Ireland, 1997). CTI Computing, 1999. [17] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,

Hagen, D., Kolikant, Y., Laxer, C., Thomas, L., Utting, I.,
and Wilusz, T. A Multi-National, Multi-Institutional Study
of Assessment of Programming Skills of First-Year CS
Students. ACM SIGCSE Bulletin, 33, 4 (2001), 125-140.

[4] du Boulay, J. B. H., O'Shea, T. and Monk, J. The black box
inside the glass box: Presenting computing concepts to
novices. In E. Soloway and J.C. Spohrer (Eds), Studying
the Novice Programmer. Lawrence Erlbaum Associates,
Hillsdale, 1989, 431-446. Reprinted from du Boulay,
O'Shea and Monk (1981).

[18] Perkins, D. and Martin, F. Fragile Knowledge and
Neglected Strategies in Novice Programmers. In Soloway,
E. and Iyengar, S. (Eds). Empirical Studies of
Programmers. Ablex, NJ, USA, 1986, 213-229. [5] Entwistle, N.J. and Tait, H. The Revised Approaches to

Study Inventory. Edinburgh: Centre for Learning and
Instruction, University of Edinburgh, 1994. [19] Richardson, J. T. E., Using Questionnaires to Evaluate

Student Learning: Some Health Warnings. Gibbs, G. (ed.)
Improving Student Learning – Theory and Practice.
Oxford: Oxford Centre for Staff Development, 1994.
(http://www.city.londonmet.ac.uk/deliberations/ocsd-
pubs/isltp-richardson.html)

[6] Farthing, D. W., Jones, D.M., McPhee, D. Permutational
Multiple-Choice Questions: An Objective and Efficient
Alternative to Essay-Type Examination Questions. In
Proceedings of the Third Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE
’98), (Dublin City University, Ireland, August 18-28,
1998). ACM Press, New York, NY, 1998, 81-85.

[20] Robins, A., Rountree, J., and Rountree, N. Learning and
Teaching Programming: A Review and Discussion,
Computer Science Education, 13, 2 (2003), 137-172. [7] Glaser, B.G. and Strauss, A.L. The discovery of Grounded

Theory: Strategies for qualitative research. Aldine:
Chicago, 1967.

[21] Rugg, G., and McGeorge, P. The sorting techniques: a
tutorial paper on card sorts, picture sorts and item sorts.
Expert Systems, 14, 2 (1997), 80-93.

http://www.analytictech.com/mb870/introtoGT.htm
http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html
http://www.nwlink.com/~donclark/hrd/bloom.html
http://www.coun.uvic.ca/learn/program/hndouts/bloom.html
http://www.coun.uvic.ca/learn/program/hndouts/bloom.html
http://www.city.londonmet.ac.uk/deliberations/ocsd-pubs/isltp-richardson.html
http://www.city.londonmet.ac.uk/deliberations/ocsd-pubs/isltp-richardson.html

[23] Soloway, E. and Spohrer, J. (Eds). Studying the Novice
Programmer. Lawrence Erlbaum Associates, Hillsdale,
NJ, 1989.

[22] Soloway, E. and Iyengar, S. (Eds). Empirical Studies of
Programmers. Ablex, NJ, USA, 1986.

	INTRODUCTION
	CONTEXT OF THE EXPERIMENT AND METHODOLOGY
	The ITiCSE Working Group Study
	Performance Data
	Written Data
	Interview Transcripts

	Methodology and Definitions

	Related Work
	Understanding Code
	Multiple Choice Questions
	Grounded Theory

	Strategies
	Theories
	
	Computing versus Test Taking Strategies

	Conformance of the Strategies to Existing Theories
	Bloom’s Taxonomy and Strategies
	Deep, Surface and Strategic Approaches to Learning

	Emergent Theories
	Temporal Groupings
	Syntax, Semantics, and Pragmatics

	Special Consideration: Success and Strategies

	Future Work
	Acknowledgements
	References

