Local asymptotic normality for quantum Markov chains

Mădălin Guță

School of Mathematical Sciences University of Nottingham

Stochastic Processes at the Quantum Level Aberystwyth, October 2009

Collaborators

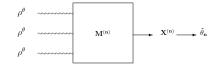
- Richard Gill (Leiden)
- Jonas Kahn (Lille)
- Luc Bouten (Caltech)
- Anna Jencova (Bratislava)
- Bas Janssens (Utrecht)

Quantum Statistics in the 70's: the classics

- Helstrom, Holevo, Belavkin, Yuen, Kennedy...
- Formulated and solved first quantum statistical decision problems
 - quantum statistical model $Q = \{ \rho_{\theta} : \theta \in \Theta \}$
 - decision problem (estimation, testing)
 - find optimal measurement (and estimator)
- Quantum Gaussian states, covariant families, state discrimination...
- Elements of a (purely) quantum statistical theory
 - Quantum Fisher Information
 - Quantum Cramér-Rao bound(s)
 - Holevo bound
 - •

More recent trends in Quantum Statistics

Asymptotics

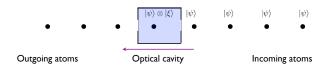


- New quantum statistical problems
 - Quantum (homodyne) tomography
 - Channel estimation
 - quantum cloning / broadcasting
 - quantum benchmarks for teleportation
 - Statistical inference for dynamical systems (system identification)

Plan

- Quantum Markov chains: the Schrödinger picture
- Local asymptotic normality for i.i.d. states
- Quantum Markov chains: the Heisenberg picture
- Theorem: L.A.N. for mixing quantum Markov chains
- Forgetful quantum Markov chains
- C. L.T. for forgetful quantum Markov chains

Quantum Markov chains

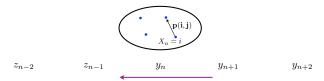


- Examples: quantum optical networks, atom maser, solid state cavity QED...
- Dynamics: unitary 'scattering' of atoms by cavity

$$U: M(\mathbb{C}^d \otimes \mathbb{C}^k) \to M(\mathbb{C}^d \otimes \mathbb{C}^k)$$

 \blacksquare System identification: estimate U by measuring outgoing atoms

Classical analogue



- Bernoulli shift *Y_n*
- Markov chain X_n driven by Y_n

$$X_{n+1} = F(X_n, Y_n)$$

■ Observed (scattered) process Z_n

$$Z_n = S(X_n, Y_n)$$

A few examples

■ Creation-annihilation coupling $U: \mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}^2 \otimes \mathbb{C}^2$

$$U = \exp\left[\alpha(\sigma_{-} \otimes \sigma_{+} - \sigma_{+} \otimes \sigma_{-})\right]$$

■ Jaynes-Cummings coupling $U: \mathbb{C}^2 \otimes \ell^2(\mathbb{N}) \to \mathbb{C}^2 \otimes \ell^2(\mathbb{N})$

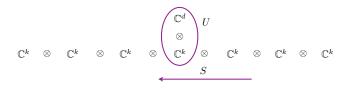
$$U = \exp \left[\alpha(\sigma_{-} \otimes a^* - \sigma_{+} \otimes a) + i\beta\sigma_z + i\gamma a^* a\right]$$

■ Continuous-time quantum Markov process

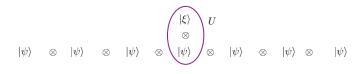
$$U_t$$
: $\mathbb{C}^d \otimes \mathcal{F}(L^2(\mathbb{R}_+)) \to \mathbb{C}^d \otimes \mathcal{F}(L^2(\mathbb{R}_+))$

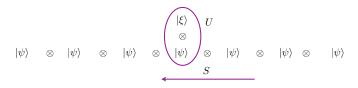
$$dU_t = \left\{ L \otimes dA_t^* - L^* \otimes dA_t - \frac{1}{2} L^* L dt - iH dt \right\} U_t \qquad (QSDE)$$

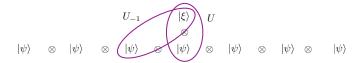
• 'system' \mathbb{C}^d , 'noise unit' \mathbb{C}^k , interaction unitary U

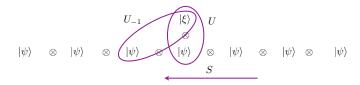


■ One step joint evolution: $W = S \circ U$

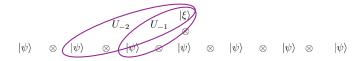








lacksquare 'system' \mathbb{C}^d , 'noise unit' \mathbb{C}^k , interaction unitary U



■ Output state after *n* steps

$$|\psi_n\rangle := U_{-1} \circ \cdots \circ U_{-n} |\xi\rangle \otimes |\psi\rangle^{\otimes n} \in \mathbb{C}^d \otimes \mathbb{C}^k$$

INTERMEZZO

- Convergence of quantum statistical models
- Local asymptotic normality for i.i.d. states

Convergence of quantum statistical models

- Sequence of quantum statistical models $Q_n := \{\rho_{\theta,n} : \theta \in \Theta\}$
- Statistical decision problem for Q_n (estimation, testing...)

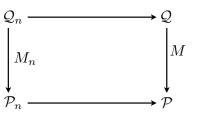
Convergence of quantum statistical models

- Sequence of quantum statistical models $Q_n := \{\rho_{\theta,n} : \theta \in \Theta\}$
- Statistical decision problem for Q_n (estimation, testing...)

Guiding Principle

If \mathcal{Q}_n 'converges' to $\mathcal{Q}:=\{\rho_\theta\ :\ \theta\in\Theta\}$

then the optimal measurements M_n (and risks) 'converge' as well



Weak and strong convergence for pure states models

Let
$$Q_n := \{ |\psi_{\theta,n}\rangle : \theta \in \Theta \}$$
 and $Q := \{ |\psi_{\theta}\rangle : \theta \in \Theta \}$

 \blacksquare Q_n converges weakly to Q if

$$\lim_{n\to\infty} \left<\psi_{\theta_1,n}\,|\,\psi_{\theta_2,n}\right> = \left<\psi_{\theta_1}\,|\,\psi_{\theta_2}\right>, \qquad \text{(for some choice of } \text{phases!)}$$

Weak and strong convergence for pure states models

Let
$$\mathcal{Q}_n := \{ |\psi_{\theta,n}\rangle \ : \ \theta \in \Theta \}$$
 and $\mathcal{Q} := \{ |\psi_{\theta}\rangle \ : \ \theta \in \Theta \}$

 \blacksquare Q_n converges weakly to Q if

$$\lim_{n \to \infty} \left< \psi_{\theta_1,n} \, | \, \psi_{\theta_2,n} \right> = \left< \psi_{\theta_1} \, | \, \psi_{\theta_2} \right>, \qquad \text{(for some choice of } \text{phases!)}$$

■ Q_n converges strongly to Q if there exist channels T_n, S_n such that

$$\begin{split} &\lim_{n \to \infty} \sup_{\theta \in \Theta} \left\| \mathcal{T}_n \left(|\psi_{\theta,n}\rangle \langle \psi_{\theta,n}| \right) - |\psi_{\theta}\rangle \langle \psi_{\theta}| \right\|_1 = 0 \\ &\lim_{n \to \infty} \sup_{\theta \in \Theta} \left\| |\psi_{\theta,n}\rangle \langle \psi_{\theta,n}| - \mathcal{S}_n \left(|\psi_{\theta}\rangle \langle \psi_{\theta}| \right) \right\|_1 = 0 \end{split}$$

The quantum Gaussian shift model

Quantum harmonic oscillator with canonical observables Q, P

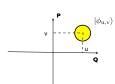
$$QP - PQ = i\mathbf{1}$$
 (Heisenberg's commutation relations)

■ Vaccum (Gaussian) state $|\phi_0\rangle$

$$\langle \phi_0 \mid \exp(-ivQ - iuP) \mid \phi_0 \rangle = \exp(-(u^2 + v^2)/4)$$

Coherent states

$$|\phi_{u,v}\rangle := \exp(-ivQ - iuP) \, |\phi_0\rangle$$



- Optimal measurements
 - lacktriangledown one-parameter: $\hat{u} \sim \mathcal{N}(u,1/2)$ by measuring Q
 - two-parameter: $(\hat{u}, \hat{v}) \sim N((u, v), 1)$ by 'joint' (Q, P) measurement

Local asymptotic normality for I.I.D. pure states

- lacksquare $|0\rangle$ and $|1\rangle$ ON basis in \mathbb{C}^2
- Rotated spin $|\psi_{ heta}\rangle := \exp(i\theta\sigma_x)|1\rangle = \cos\theta\,|1\rangle + \sin\theta\,|0\rangle$

Local asymptotic normality for I.I.D. pure states

- lacksquare |0
 angle and |1
 angle ON basis in \mathbb{C}^2
- Rotated spin $|\psi_{\theta}\rangle := \exp(i\theta\sigma_x)|1\rangle = \cos\theta |1\rangle + \sin\theta |0\rangle$
- *n* I.I.D. spins with local parametrisation $\theta = \theta_0 + u/\sqrt{n}$

$$|\psi_{u,n}\rangle := |\psi_{\theta_0 + u/\sqrt{n}}\rangle^{\otimes n}$$

Local asymptotic normality for I.I.D. pure states

- lacksquare $|0\rangle$ and $|1\rangle$ ON basis in \mathbb{C}^2
- Rotated spin $|\psi_{ heta}\rangle := \exp(i\theta\sigma_x)|1\rangle = \cos\theta\,|1\rangle + \sin\theta\,|0\rangle$
- *n* I.I.D. spins with local parametrisation $\theta = \theta_0 + u/\sqrt{n}$

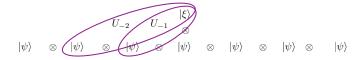
$$|\psi_{u,n}\rangle := |\psi_{\theta_0 + u/\sqrt{n}}\rangle^{\otimes n}$$

Local asymptotic normality

 $Q_n := \{ |\psi_{u,n}\rangle : u \in \mathbb{R} \}$ converges to the Gaussian model $\{ |\phi_{\sqrt{2}u}\rangle : u \in \mathbb{R} \}$

$$\langle \psi_{u,n} | \psi_{v,n} \rangle = \cos((u-v)/\sqrt{n})^n \longrightarrow e^{-\frac{1}{2}(u-v)^2} = \langle \phi_{\sqrt{2}u} | \phi_{\sqrt{2}v} \rangle$$

Back to quantum Markov chains

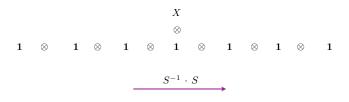


- lacksquare One step joint evolution: $W=S\circ U$
- lacktriangle Output state after n steps

$$|\psi_n\rangle := U_{-1} \circ \cdots \circ U_{-n} |\xi\rangle \otimes |\psi\rangle^{\otimes n} \in \mathbb{C}^d \otimes \mathbb{C}^k$$

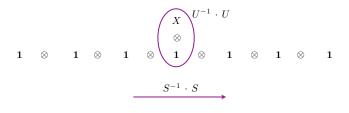
$$X \mapsto T(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$

$$X \mapsto \mathcal{T}(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$

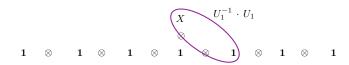


$$X \mapsto \mathcal{T}(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$

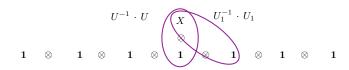
$$X \mapsto T(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$



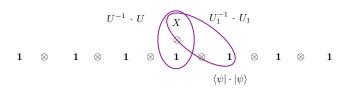
$$X \mapsto \mathcal{T}(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$



$$X \mapsto \mathcal{T}(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$



$$X \mapsto \mathcal{T}(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$



$$X \mapsto T(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$

$$X \mapsto T(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$

lacksquare $T:M(\mathbb{C}^d) o M(\mathbb{C}^d)$ describes the 'reduced' evolution of the system

$$X \mapsto T(X) := \langle \psi \mid U^{-1} (X \otimes \mathbf{1}) U \mid \psi \rangle$$

after n steps

$$X \mapsto T_n(X) := \left\langle \psi^{\otimes n} \middle| \hat{U}^{-n} (X \otimes \mathbf{1}) \hat{U}^n \middle| \psi^{\otimes n} \right\rangle = T^n(X)$$

Mixing quantum Markov chain

- The Markov chain (transition operator T) is called mixing if
 - ▶ T(X) = X if and only if $X = \alpha \mathbf{1}$
 - ▶ All other eigenvalues λ satisfy $|\lambda| < 1$.
- Convergence to equilibrium

If T is mixing then there exists a unique invariant state ho_∞ on $M(\mathbb{C}^d)$ and

$$\lim_{n\to\infty}T^n_*(\sigma)=\rho_\infty,\qquad \text{for all initial states }\sigma$$

Classical analogue

Finite state irreducible aperiodic chain (Perron-Frobenius Therem)

Theorem: L.A.N. for (one parameter) coupling constant

- $U_{\theta} = \exp(i\theta H) \in \mathcal{U}(\mathbb{C}^d \otimes \mathbb{C}^k)$ with unknown coupling θ .
- Mixing transition operator $T_{\theta}(X) := \langle \psi \mid U_{\theta}^{-1}(X \otimes \mathbf{1}) U_{\theta} \mid \psi \rangle$.

Theorem: L.A.N. for (one parameter) coupling constant

- $U_{\theta} = \exp(i\theta H) \in \mathcal{U}(\mathbb{C}^d \otimes \mathbb{C}^k)$ with unknown coupling θ .
- Mixing transition operator $T_{\theta}(X) := \langle \psi \mid U_{\theta}^{-1}(X \otimes \mathbf{1}) U_{\theta} \mid \psi \rangle$.

Then the output state (statistical model)

$$|\psi_{u,n}\rangle := \left(S \circ U_{\theta_0 + u/\sqrt{n}}\right)^n |\xi \otimes \psi^{\otimes n}\rangle$$

is asymptotically normal, i.e

$$\lim_{\mathbf{n} \to \infty} \left\langle \psi_{\mathbf{u},\mathbf{n}} \, | \, \psi_{\mathbf{v},\mathbf{n}} \right\rangle = \left\langle \phi_{\sqrt{2V}u} \, | \, \phi_{\sqrt{2V}v} \right\rangle = \exp\left(-V(u-v)^2/2\right),$$

where $\{|\phi_{\sqrt{2V}u}\rangle: u \in \mathbb{R}\}$ is the quantum Gaussian shift with Fisher info 4V.

Fisher information = variance of generator

■ The 'variance' *V* is given by

$$V = V(H, H) := \mathbb{E}(H^{2}) + 2\sum_{k=1}^{\infty} \mathbb{E}\left(H \circ \left(W_{\theta_{0}}^{-k}HW_{\theta_{0}}^{k}\right)\right)$$
$$= \mathbb{E}(H^{2}) + 2\mathbb{E}\left(U_{\theta_{0}}^{-1}\left(H \circ \left(\operatorname{Id} - T_{\theta_{0}}\right)^{-1}(K)\right) U_{\theta_{0}}\right)$$

where

- $\mathbb{E}:=
 ho_\infty\otimes|\psi\rangle\langle\psi|^{\otimes\infty}$ is the stationary state at $heta_0$
- $K := \langle \psi | H | \psi \rangle$ is the conditional expectation of H onto the system,
- $A \circ B := (AB + BA)/2$

Fisher information = variance of generator

■ The 'variance' *V* is given by

$$V = V(H, H) := \mathbb{E}(H^{2}) + 2\sum_{k=1}^{\infty} \mathbb{E}\left(H \circ \left(W_{\theta_{0}}^{-k}HW_{\theta_{0}}^{k}\right)\right)$$
$$= \mathbb{E}(H^{2}) + 2\mathbb{E}\left(U_{\theta_{0}}^{-1}\left(H \circ \left(\operatorname{Id} - T_{\theta_{0}}\right)^{-1}(K)\right) U_{\theta_{0}}\right)$$

where

- $\mathbb{E} := \rho_{\infty} \otimes |\psi\rangle\langle\psi|^{\otimes \infty}$ is the stationary state at θ_0
- $K:=\langle \psi|H|\psi \rangle$ is the conditional expectation of H onto the system,
- $A \circ B := (AB + BA)/2$

■ Interpretation:

- ▶ limit model is family of coherent states $\tilde{\phi}_{\sqrt{2V}u} = \exp(iu \, \mathbb{G}(H))$
- for optimal estimation of u measure conjugate variable of $\mathbb{G}(H)$

More insight into the limit model

- Forgetful quantum Markov chains
- Central Limit Theorem

Forgetful Markov chains [Kretschmann and Werner 2005]

■ A quantum Markov chain is called forgetful if there exist linear maps

$$R_n: M(\mathbb{C}^d) \to M(\mathbb{C}^k)^{\otimes n}$$

such that

$$\lim_{n\to\infty}\|W^{-n}(X\otimes\mathbf{1})W^n-\mathbf{1}\otimes R_n(X)\|=0,\qquad X\in M(\mathbb{C}^d)$$

$$U^{-1} \cdot U$$
 X $U_1^{-1} \cdot U_1$ $\mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1}$

Forgetful Markov chains [Kretschmann and Werner 2005]

■ A quantum Markov chain is called forgetful if there exist linear maps

$$R_n: M(\mathbb{C}^d) \to M(\mathbb{C}^k)^{\otimes n}$$

such that

$$\lim_{n\to\infty}\|W^{-n}(X\otimes\mathbf{1})W^n-\mathbf{1}\otimes R_n(X)\|=0,\qquad X\in M(\mathbb{C}^d)$$

Example: the creation-annihilation interaction on $\mathbb{C}^2 \otimes \mathbb{C}^2$

$$U_{\alpha} := \exp(-\alpha(\sigma_{+} \otimes \sigma_{-} - \sigma_{-} \otimes \sigma_{+}))$$

is forgetful in a neighbourhood of $\alpha=\pi/2$, and

■ Conjecture: U_{α} is forgetful for all $\alpha \in (0, \pi)$

Properties of forgetful Markov chains

■ Forgetfulness is equivalent to asymptotic abelianess

$$\lim_{n\to\infty} \left\| \left[W^{-n} (X\otimes \mathbf{1}) W^n, Y\otimes \mathbf{1} \right] \right\| = 0, \qquad X,Y\in M\mathbb{C}^d$$

- Forgetfulness implies mixing property
- Controllability

The system can be driven to any state asymptotically

Observability

Any measurement on the system can be performed indirectly

CLT for forgetful Markov chains

- Forgetful Markov chain with unitary $U \in M(\mathbb{C}^d \otimes \mathbb{C}^k)$
- lacksquare 'Local observable' $A\in M(\mathbb{C}^d\otimes\mathbb{C}^k)$ such that $\mathbb{E}(A)=0$
- Fuctuation operator associated to A

$$\mathbb{F}_n(A) := \frac{1}{\sqrt{n}} \sum_{k=1}^n A(k), \qquad A(k) := W^{-k} A W^k$$

CLT for forgetful Markov chains

- Forgetful Markov chain with unitary $U \in M(\mathbb{C}^d \otimes \mathbb{C}^k)$
- 'Local observable' $A \in M(\mathbb{C}^d \otimes \mathbb{C}^k)$ such that $\mathbb{E}(A) = 0$
- Fuctuation operator associated to A

$$\mathbb{F}_n(A) := \frac{1}{\sqrt{n}} \sum_{k=1}^n A(k), \qquad A(k) := W^{-k} A W^k$$

Then $\mathbb{F}_n(A)$ converges in distribution to N(0, V(A, A)) where

$$V(A,A) := \mathbb{E}(A^2) + 2\sum_{k=1}^{\infty} \mathbb{E}(A \circ (W^{-k}AW^k))$$
$$= \mathbb{E}(A^2) + 2\mathbb{E}(A \circ (U^{-1}(\operatorname{Id} - T)^{-1}(B)U)), \qquad B := \langle \psi | A | \psi \rangle$$

Outlook

Optimal measurement

Solution of Gaussian optimisation problem Can it be implemented in the lab?

■ Strong convergence

Extend LAN to strong convergence of statistical models and mixed states

■ Continuous time

LAN can be obtained by using a perturbation theorem of B. Davies

Forgetfulness

Is forgetfulness a 'generic' property?

Can we prove CLT with weaker assumptions?

References

M. Guta, J. Kahn

Local asymptotic normality for qubit states P.R.A 73, 05218, (2006)

M. Guta, A. Jencova

Local asymptotic normality in quantum statistics Commun. Math. Phys. 276, 341-379, (2007)

M. Guta, B. Janssens and J. Kahn

Optimal estimation of qubit states with continuous time measurements Commun. Math. Phys. 277, 127-160, (2008)

J. Kahn, M. Guta

Local asymptotic normality for finite dimensional quantum systems Commun. Math. Phys, 289, 597-652 (2009)

M. Guta. L. Bouten:

Local asymptotic normality for quantum Markov chains (in preparation)

M. Guta. L. Bouten:

Central Limit Theorem for quantum Markov chains (in preparation)