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Quantum Statistics in the 70's: the classics

m Formulated and solved first quantum statistical decision problems

Helstrom, Holevo, Belavkin, Yuen, Kennedy...

> quantum statistical model Q@ = {py : 0 € ©}
> decision problem (estimation, testing)

» find optimal measurement (and estimator)

m Quantum Gaussian states, covariant families, state discrimination...

Elements of a (purely) quantum statistical theory
» Quantum Fisher Information
» Quantum Cramér-Rao bound(s)
> Holevo bound

> .



More recent trends in Quantum Statistics

m Asymptotics

p M L X0,

m New quantum statistical problems

» Quantum (homodyne) tomography
» Channel estimation
» quantum cloning / broadcasting

» quantum benchmarks for teleportation

v

Statistical inference for dynamical systems (system identification)



m Quantum Markov chains: the Schrédinger picture
m Local asymptotic normality for i.i.d. states
m Quantum Markov chains: the Heisenberg picture

m Theorem: L.A.N. for mixing quantum Markov chains

m Forgetful quantum Markov chains

m C. L.T. for forgetful quantum Markov chains



Quantum Markov chains
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Outgoing atoms Optical cavity Incoming atoms

m Examples: quantum optical networks, atom maser, solid state cavity QED...

m Dynamics: unitary ‘scattering’ of atoms by cavity

U: M(C?®Ck) — M(C? @ Ck)

m System identification: estimate U by measuring outgoing atoms



Classical analogue

Zn—2 Zn—1 Yn Yn+1 Yn+t2
-—

m Bernoulli shift Y,
m Markov chain X, driven by Y,

Xn+1 = F(Xna Yn)

m Observed (scattered) process Z,

Z, = S5(Xp, Ya)



A few examples

m Creation-annihilation coupling U : C?> ® C? — C? @ C?
U = explafo-®oy —0r®@0_)]
m Jaynes-Cummings coupling U : C? ® (?(N) — C2 ® (?(N)

U = explafo-®a" —op®a)+ifo,+ iva*al

m Continuous-time quantum Markov process

Us :+ CP@ F(LA(R,)) — C? @ F(LA(R,))

1
du, = {L®dA’§—L*®dAt—2L*Ldt—int}Ut (QSDE)



Hilbert space evolution

m ‘system’ C9 ‘noise unit’ C¥, interaction unitary U

ci\ ¢y
®
cCk ® Cc ® Cct ®\Ccr/® CcF ® CcF ® C*
S
-2

m One step joint evolution: W =So U
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Hilbert space evolution

m ‘system’ C9 ‘noise unit’ C¥, interaction unitary U

m Output state after n steps

W) = U_y 00 U_,|¢) ® [1h)®" € C? ® C*



INTERMEZZO

m Convergence of quantum statistical models

m Local asymptotic normality for i.i.d. states
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Convergence of quantum statistical models

m Sequence of quantum statistical models Q, := {pg,, : 0 € O}

m Statistical decision problem for Q, (estimation, testing...)

Guiding Principle
If Q, ‘converges' to Q :={py : 0 € ©}

then the optimal measurements M, (and risks) ‘converge' as well

9, > Q
M, IM
P, . P




Weak and strong convergence for pure states models

Let Q, :={|bg,n) : 0 €O} and Q:={|ypg) : 0 € O}

m Q, converges weakly to Q if

lim (Yo, n|Vo,.n) = (Yo, | Ve,), ( for some choice of phases!)
n—oo



Weak and strong convergence for pure states models

Let Q, :={|bg,n) : 0 €O} and Q:={|ypg) : 0 € O}

m Q, converges weakly to Q if

lim (g, n | %0,.n) = (Yo, | Va,), ( for some choice of phases!)
n—oo

m 9, converges strongly to Q if there exist channels T,,S, such that

lim sup I Tn (1900,n) (t00,n]) — [00) (6] I, = O

n—oo g

lim sup ||[1g,n) (v00,n| — Sn (I1h0) (vel) Il = O
n—oo gee



The quantum Gaussian shift model

m Quantum harmonic oscillator with canonical observables Q, P

QP —PR=1i1 (Heisenberg's commutation relations)

m Vaccum (Gaussian) state |¢p)

(do| exp(~ivQ — iuP) | do) = exp(—(u® + v*)/4)

m Coherent states

|puv) = exp(—ivQ — iuP) | ¢o)

m Optimal measurements
> one-parameter: & ~ N(u,1/2) by measuring Q

> two-parameter: (o, ¥) ~ N((u, v),1) by ‘joint’ (Q, P) measurement



Local asymptotic normality for I.1.D. pure states

m |0) and |1) ON basis in C?

m Rotated spin  |¢)g) := exp(ifoy)|1) = cos @ |1) + sin 6 |0)



Local asymptotic normality for I.1.D. pure states

m |0) and |1) ON basis in C?
m Rotated spin  |¢)g) := exp(ifoy)|1) = cos @ |1) + sin 6 |0)
m n |.I.D. spins with local parametrisation 0 = 6y + u/+\/n

%un) = Voo suym) "



Local asymptotic normality for I.1.D. pure states

m |0) and |1) ON basis in C?
m Rotated spin  |1y) := exp(ifoy)|1) = cosd|1) + sin6|0)
m n |.I.D. spins with local parametrisation 0 = 6y + u/+\/n

%un) = Voo suym) "

Local asymptotic normality

Qn = {|¥u,n) : u € R} converges to the Gaussian model {|¢ 5,) : u € R}

(Gusnlthun) = cos((u — v)/v/n)" — e 20 = (6 516 5.)



Back to quantum Markov chains

m ‘system’ C9 ‘noise unit’ C¥, interaction unitary U

m One step joint evolution: W =So U

m Output state after n steps

W) = U_y 00 U_,|¢) ® [1h)®" € C? ® C*



Markov (transition) semigroup and ergodicity

m T : M(C?) — M(CY) describes the ‘reduced’ evolution of the system

X T(X) = (p| U (X21) U|y)
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Markov (transition) semigroup and ergodicity

m T : M(C?) — M(CY) describes the ‘reduced’ evolution of the system

X T(X) = (p| U (X21) U|y)

T*(X)

1 ® 1 ® 1 ® 1 & 1 ® 1 ® 1

Wl (@- 1)

m after n steps

X o To(X) = < O U (X @ 1) O

w®n> — Tn(X)



Mixing quantum Markov chain

m The Markov chain (transition operator T) is called mixing if

» T(X)=Xifand only if X = al

> All other eigenvalues X satisfy |\| < 1.

m Convergence to equilibrium

If T is mixing then there exists a unique invariant state p,, on M(C%) and

lim T[(0) = poo, for all initial states o
n—oo

m Classical analogue

Finite state irreducible aperiodic chain (Perron-Frobenius Therem)



Theorem: L.A.N. for (one parameter) coupling constant

m Uy = exp(ifH) € U(C? ® C¥) with unknown coupling 6.

= Mixing transition operator Ty(X) := (| Uy (X ®@1) Uy | ©).



Theorem: L.A.N. for (one parameter) coupling constant

m Uy = exp(i0H) € U(CY @ C¥) with unknown coupling 6.

= Mixing transition operator Ty(X) := (| Uy (X ®@1) Uy | ©).

Then the output state (statistical model)
|'(/)u,n> = (5 o U90+u/\/;)n ‘5 & ¢®n>

is asymptotically normal, i.e

lim W)u,n | wV,n> = <¢\/Wu | ¢\/Wv> = exp (_ V(U - V)2/2) s

n—oo

where {| ¢ sy,) : u € R} is the quantum Gaussian shift with Fisher info 4V/.



Fisher information = variance of generator

m The ‘variance' V is given by
V=V(H H) = E(H +22 (We, “HWy,))

= E(H?)+2E (U‘;0 (Ho(Id—Teo)*l(K)) er)
where

> E = poo ® |1h)(1|®> is the stationary state at 6
» K := (¢|H[¢) is the conditional expectation of H onto the system,
> Ao B := (AB+ BA)/2



Fisher information = variance of generator

m The ‘variance' V is given by
V=V(H H) = E(H +22 (We, “HWy,))

_ E(H2)+2]E(U (Ho(Id To) (K)) Us,)
where

> E = poo ® [1h)(x|®> is the stationary state at o
» K := (¢|H[¢) is the conditional expectation of H onto the system,
> Ao B := (AB+ BA)/2

m Interpretation:
> limit model is family of coherent states ngu = exp(iu G(H))

» for optimal estimation of u measure conjugate variable of G(H)



More insight into the limit model

m Forgetful quantum Markov chains

m Central Limit Theorem



Forgetful Markov chains [Kretschmann and Werner 2005]

m A quantum Markov chain is called forgetful if there exist linear maps

R, : M(C) — M(C*k)®"

such that

lim (W™ (X®1) W"—=1@R,(X)| =0,  X¢& M(C?
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Forgetful Markov chains [Kretschmann and Werner 2005]

m A quantum Markov chain is called forgetful if there exist linear maps

Rn : M(C?) — M(Ck)®n

such that

lim (W™ (X®1) W"—=1@R,(X)| =0,  X¢& M(C?

m Example: the creation-annihilation interaction on C? ® C?

Uy = exp(—a(o1 ®o_ —0_ Q0y))

is forgetful in a neighbourhood of o« = 7/2, and

m Conjecture: U, is forgetful for all « € (0, )



Properties of forgetful Markov chains

m Forgetfulness is equivalent to asymptotic abelianess
lim |[[W™" (X®1) W™, Y®1]||=0, X,YeMC)
m Forgetfulness implies mixing property

m Controllability

The system can be driven to any state asymptotically

m Observability

Any measurement on the system can be performed indirectly



CLT for forgetful Markov chains

m Forgetful Markov chain with unitary U € M(CY @ C¥)
m ‘Local observable’ A € M(C9 ® C*) such that E(A) =0

m Fuctuation operator associated to A

Fo(A) = % Z A(K), A(k) == WkAwk



CLT for forgetful Markov chains

m Forgetful Markov chain with unitary U € M(C? @ C¥)
m ‘Local observable’ A € M(C9 ® C*) such that E(A) =0

m Fuctuation operator associated to A

1 n
Fo(A) = — ) A(k), A(k) == W—kAwk
i
Then F,(A) converges in distribution to N(0, V(A, A)) where

V(A A) = E(A2)+2§:E(A0(W"‘AW"))

= E(A?)+2E (Ao(U*1 (Id—T)’l(B)U)), B = (Y| Alp)



m Optimal measurement
Solution of Gaussian optimisation problem

Can it be implemented in the lab ?

m Strong convergence

Extend LAN to strong convergence of statistical models and mixed states

m Continuous time

LAN can be obtained by using a perturbation theorem of B. Davies

m Forgetfulness
Is forgetfulness a ‘generic’ property 7

Can we prove CLT with weaker assumptions ?



References

ﬁ M. Guta, J. Kahn
Local asymptotic normality for qubit states
P.R.A 73, 05218, (2006)

ﬁ M. Guta, A. Jencova
Local asymptotic normality in quantum statistics
Commun. Math. Phys. 276, 341-379, (2007)

ﬁ M. Guta, B. Janssens and J. Kahn
Optimal estimation of qubit states with continuous time measurements
Commun. Math. Phys. 277, 127-160, (2008)

ﬁ J. Kahn, M. Guta
Local asymptotic normality for finite dimensional quantum systems
Commun. Math. Phys, 289, 597-652 (2009)

ﬁ M. Guta, L. Bouten:
Local asymptotic normality for quantum Markov chains
(in preparation)

ﬁ M. Guta, L. Bouten:
Central Limit Theorem for quantum Markov chains
(in preparation)



	Quantum Statistics

