
The evolution of numerical methods for predicting the

distribution of surfactant in the bubble-scale dynamics

of foams

Simon Cox, Tudur Davies

Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ, UK

Abstract

Many numerical methods now exist to simulate the structure and dynamics
of surface-tension dominated aqueous foams at the level of the individual
films and the liquid structures where they meet. We review these meth-
ods, focusing in particular on bubble-scale simulations of foam rheology. We
highlight methods that allow the distribution of surfactant during flow to be
taken into account.
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1. Introduction

Liquid foams, and their closely-related cousins highly-concentrated emul-
sions, constitute not only much of the food that we eat but find use in many
of the industrial processes on which our society relies, such as enhanced oil
recovery and metallic ore separation [1, 2]. Since Plateau’s experiments on
the way in which the interfaces of a foam fit together [3] and Kelvin’s pro-
posal that the aether consists of a foam-like packing [4], both working in the
late 19th century, scientists from a broad array of disciplines have sought to
describe and explain the properties of foams and emulsions.

The microstructure of a foam in itself is rich in geometry, with links to
the honeycomb conjecture as well as Kelvin’s partition of three-dimensional
space. Of more interest in applications is the effect of gravity, which changes
the local foam density via the process of drainage (or creaming) [1], with the
denser liquid phase collecting towards the bottom of the material. Nonethe-
less this does not destroy the foam: it is when films thin that bubbles burst
and the foam finally collapses.
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In the 1980s, Princen used a model of a hexagonal (“ordered”) foam [5]
to predict some of the properties of a sheared foam, particularly the elastic
shear modulus and yield stress. This triggered an extensive body of work over
the last forty years on foam rheology [6] which shows no signs of stopping.
Much of it is concerned with the development of continuum models of foam
flow, using and extending the Herschel-Bulkley constitutive model [7, 8, 9]
for a viscoplastic (yield stress) fluid to include elasticity.

Here we focus on the bubble scale, where the emphasis is on combin-
ing existing models, for example of foam rheology and gravity-driven liquid
drainage [10] or including Marangoni surfactant redistribution with rheol-
ogy [11]. This is a response to the recognition that while a model such as
Herschel-Bulkley can be fitted to experimental data with high fidelity, the
dependence of the fitting parameters (such as the power law exponent) on the
material properties (bubble size and polydispersity, for example) is obscure.

Following in Princen’s footsteps, we therefore survey existing methods for
simulating foam structure and dynamics, emphasising recent developments
in combining film-level redistribution of surfactant during flow of disordered
foams.

2. Static Structure

In an aqueous foam in which the bubbles are at rest, liquid drains down
through the foam under gravity to collect at its base. Over time, the top of
the foam dries out, leaving what is known as a dry foam with vanishingly
small liquid fraction φl. The foam structure in this limit consists of gas
contained within thin curved films, a simple approximation that is attractive
for theory. Further simplification is found in two-dimensional (2D) models
of such dry foams as a collection of curved lines separating planar bubbles;
these are approximately realizable in practice by trapping a foam between
two closely-spaced parallel glass plates [2] (figure 1). 2D models, particularly
of dry foams, have enjoyed great success in elucidating the structural (and
dynamical) properties of foams, but foams in real applications are rarely dry
(or 2D, but past experience suggests that there is much that can still be
learned from the 2D case), and so it is important to consider “wet” foams
in which the regions where films meet, known as Plateau borders, contain
liquid.

The Young-Laplace law states that in a foam at equilibrium each interface
balances the pressure difference p± on different sides by adjusting its mean
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curvature C. The coefficient of proportionality is the interfacial tension γ:

p± = γC. (1)

This law applies both to an interface that separates the liquid in the Plateau
borders from a bubble and to an interface between two bubbles; in the latter
case this is in practice treated as a double interface (gas – liquid – gas) and
so the effective interfacial tension is doubled to 2γ. At equilibrium we also
expect the interfacial tension to be constant, noting that this is the result
not only of a cessation in any changes of area of each interface, but also
of the movement of surfactant along and between interfaces in response to
gradients in surfactant concentration. Then since the pressure in each bubble
is constant on each side of an interface, the mean curvature of each interface
is constant.

In a 2D foam this means that interfaces are arcs of circles. In a dry 3D
foam at equilibrium, Plateau’s rules [3] dictate the local structure: interfaces
meet in threes along Plateau borders and Plateau borders meet in fours. The
interfacial tensions then dictate the angles between interfaces and between
Plateau borders. Any imbalance in the tensions between Plateau border
surfaces and thin film surfaces may lead to a finite contact angle where the
two meet; this may trigger flocculation of the structure, in which the liquid
is no longer uniformly distributed through the foam or emulsion [12].

Numerical techniques for predicting foam structure often rely either on
satisfying Plateau’s laws [13, 14] or, more usually, minimizing the free energy
of the foam (which is equivalent to Plateau’s laws [15], but computationally
more straightforward). High precision can be achieved with Brakke’s Surface
Evolver [16], particularly for small foams (less than about 1000 bubbles)
with low liquid fraction, providing information about quantities including
film curvature and bubble pressure [17] and, for example, the actual 3D
liquid structure in a quasi-2D foam [18] (figure 1) in a deterministic way.
With many bubbles, this level of precision means that the simulation is slow,
while at high liquid fraction any significant departure from the proposed
initial foam structure during relaxation may require changes in the topology
of the liquid network, which are difficult to perform. In these cases the
Potts model [19] provides similar (but less accurate) information about the
structure, again using minimization of energy, in a stochastic manner, and
hence offers an easier route to simulating many realisations of a disordered
foam.
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Figure 1: The liquid distribution in a layer of hexagonal bubbles squeezed between parallel
plates. The vertical interfaces between bubbles are shown in cyan, the Plateau border
interfaces in light blue, and the regions where the liquid touches the upper plate in dark
blue.

Recently, a “Morse-Witten” theory [20] for the way in which compressed
droplets (or bubbles in this case) deform has been used to generate equilib-
rium structures of monodisperse [21, 22] and polydisperse foams in which
bubble deformation is small [23], up to 10% of the bubble diameter. It re-
mains to be seen whether this method can provide a route to predicting foam
flow.

3. Foam flow with constant interfacial tension

Both the Surface Evolver and the Potts model (distributed as Compucell)
provide information about slow foam flows by assuming that the structure
never deviates from an equilibrium structure while changing the boundary
conditions (for example simple shear). Such quasi-static simulations, in which
the interfacial tension is generally considered constant, are appropriate for
predicting the evolution of foam structure when the mechanical relaxation
of this structure is much faster than, for example, the shear-rate, the rate of
gas diffusion between bubbles (coarsening, or Ostwald ripening) and the rate
of surfactant redistribution.

At finite strain-rate there are other possible numerical methods. For dry
foams, the vertex model assumes planar films and viscous dissipation at the
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vertices [24, 25], representing the effect of the liquid that would be present
there in a wetter foam. The simpler polygonal structure makes the numerics
faster, allowing more than 1000 bubbles to be simulated, and a simulation
proceeds by seeking to minimize the dissipation rate as well as a free energy
similar to the Surface Evolver one.

Also for dry foams, but for fast-flowing ones, the 2D Viscous Froth Model
(VFM) [26] includes friction along the length of each film to supplement
the Young-Laplace balance between curvatures and pressures. This is to
represent the external dissipation that occurs when a soap film moves between
parallel plates, as in a typical 2D experiment in a Hele-Shaw cell. The model
has successfully explained the motion of bubbles in microfluidic devices [27],
for which the 2D approximation is often appropriate, and recent work [28]
indicates how the VFM might be extended to wet foams.

Inspired by the other extreme of liquid fraction, Durian’s bubble model [29]
approximates a wet foam as a collection of spheres [30]. Now referred to more
generally as soft-disk models [31], the idea is that the overlap of two neigh-
bouring spheres represents the elastic repulsion between them, while any
lateral motion is opposed by a linear friction force. Adaptations of Durian’s
model also allow for short-range interactions between non-overlapping disks [32,
33], which models an attractive contribution to the disjoining pressure and
a shear flow in the thin interfaces. Although the soft-disk models have been
criticised [34] as unrealistic since they do not include bubble deformation,
their computational simplicity and ability to effectively capture important as-
pects of the rheological behaviour of a wet foam make them valuable [31, 33].

Other simulation techniques that are used for wet foams include two-
phase Lattice Boltzmann methods [35, 36], which are not well suited to re-
solving thin films, a “Soft dynamics” model [37] in which the bubbles are
deformable spheres, and Saye and Sethian’s level set approach [10], which
includes structural relaxation and flow, drainage, coarsening, and film rup-
ture, but as with the two preceding methods, has not been widely taken up
by the community, perhaps due to its complexity.

Finally in this section we describe recent work [38] that seeks to include
a disjoining pressure in a model of a wet 2D foam. In the sense that this
“DySMaL” method [38] treats the motion of each point of the circumference
of each (deformable) bubble using a balance of forces on a discretised line, it
is related to the VFM. The differences are that each side of a film is treated
independently, so the liquid fraction is an additional parameter, and the two
sides of the film are held apart by a disjoining pressure (see figure 2) which
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Figure 2: The DySMaL method for simulating the dynamics of a 2D foam uses discretised
straight interfaces (meeting at the vertices shown as dots). The force on a vertex on one
interface due to the disjoining pressure in the (shaded) liquid region between the bubbles
is determined by the distance d to the nearest interface in a perpendicular direction. Any
stretching of the interfaces can be related to local changes in interfacial tension via eq. (2).

could be taken to be proportional to e−d, where d is the distance between
the interfaces, as suggested by DLVO theory [39]. Moreover, the source of
dissipation is chosen to be due to the liquid flow around the bubbles, although
in a 2D setting it is natural and straightforward to replace this with a VFM-
like dissipation from external friction, as in our own work (see figure 3). We
find that simulations of the flow of around 100 bubbles can take days to
weeks of computer time. So while the model could be extended to 3D in a
natural way, the computations are likely to be very slow and would require
highly-parallel computations to provide information about the flow of a bulk
foam.

4. Accounting for surfactant motion

The variety of numerical methods that now exist to simulate foam flow
in the presence of various sources of dissipation, in both 2D and 3D and
for a range of liquid fractions, is evidence of remarkable progress in the
field. Examples include the differential flow of bubbles of different sizes [25]
and the prediction of bubble deformation in foam flow through convoluted
channels [27] and past obstacles [40].
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Figure 3: In our version of the DySMaL method the dissipation is due to friction with the
upper and lower plates that contain the foam. In this example a staircase structure flows
from left to right past an array of four discs, which leads to stretching and break-up of
the bubbles to create a finer foam.

However, there are still shortcomings, for example that many methods
require several days, weeks or even months of computer time and therefore
rely on rather small foam samples of not much more than 1000 bubbles.
More importantly, the methods described above all assume that the surface
tension γ in all the films of a given foam is a fixed constant γ0.

The local surface tension of a film is determined by the concentration Γ
of surfactant molecules there; hence sufficiently rapid flow of the foam may
induce currents within films or stretching of films, both of which are likely
to lead to changes in the distribution of surfactant.

A first-order correction to the surface tension of a film (or part of a film)
is given by the Langmuir expression

γ = γ0 −G ln

(
Γ

Γ0

)
, (2)

where Γ0 is the equilibrium surfactant concentration and G is the Gibbs
elasticity of the film. Simply put, as a film is stretched, the concentration
of surfactant within the film decreases below the equilibrium value and so
the surface tension rises, cf. figure 2. (If the rise is extreme this can lead to
rupture.)

Any non-uniformity in surfactant concentration will be compensated by
a flow of surfactant molecules that seeks to re-equilibrate the distribution,
known as the Marangoni effect [2]. This may occur within each film, or over
a wider region of the foam if flow across the Plateau borders where the films
meet is possible. To this can be added further effects, for example due to
adsorption of surfactant into the film [41], the effects of surface viscosity
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in resisting flow at the interface [42], and surfactant solubility, making the
determination of the relevant dynamics remarkably complex [2].

For a single film, Vitasari et al. [43] studied the balance between the
drainage of liquid from within the film (towards the Plateau borders) with a
surface flux of surfactant towards the depleted region at the centre, extending
an already extensive body of work on foam films, the Marangoni effect and
marginal regeneration [44, 45]. Critical to predictions of the importance of
Marangoni effects is the mobility of the interface: in this case, the dynamics
of a soap film with a rigid interface (in, for example, a foam stabilized by
proteins) is dominated by the surfactant flow and the drainage of liquid from
within the film is largely suppressed. As with simulations of several films
using the VFM [11], diffusion of surfactant from the film to the interface is
neglected.

Since in the DySMaL model [38] each bubble consists of a single closed
interface (figure 3), it is straightforward to implement a simple surfactant
balance in the model, since movement of surfactant molecules at vertices is
accomplished naturally. Moreover, as the local distance between interfaces is
part of the calculation, diffusion of surfactant molecules from one interface
to another could be included.

For foams, not only is it of interest to consider a collection of films and to
ask how each film is affected by the re-distribution of surfactant during flow,
and the extent to which there is transfer of surfactant between films, but in
particular we seek to determine the effects of topological changes (T1s) in the
foam structure. The paradigmatic geometry for this problem is a system of
five films connecting four pins (figure 4), in which the pins can be moved to
trigger a topological change in which one of the films shrinks to zero length
and reforms in a new orientation [42, 46, 47, 48].

The five film geometry has been analysed as a 2D problem in which ev-
ery film remains straight and in which the surfactant molecules cannot cross
vertices [42, 46]. This work was later extended to curved films with transfer
across vertices using the VFM [47]. Similarly, Titta et al. [48] have consid-
ered a T1 in a wet foam using a level-set method. In their comprehensive
calculations they also include many more facets of the relevant surfactant
dynamics.

What is lacking from analyses of the five film geometry is any discussion of
the effect of bubble pressures. An extension of the VFM attempts to rectify
this by considering a single 2D bubble being pushed along channels of various
geometries [11]. What this shows is that redistribution of surfactant is critical
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Figure 4: A 2D system of soap films between four fixed pins at four different times (in
units of λ/γ, where λ is the drag coefficient). The initial configuration is an unstable one
with four films meeting at a point. A short film is formed at the centre of the system
with low surfactant concentration (lighter shading) compared to the four “arms”. In this
simulation with the Viscous Froth Model [47], the drag with the bounding plates induces
curvature in the arms and there is a flow of surfactant from the arms to the central film
which balances the concentration throughout the system when it reaches equilibrium, some
time after the last image shown. Films are thickened for clarity.
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to the stability of the foam structure: above a certain velocity, disparities
in the surface tensions of different films (or more precisely, different parts
of the different films) lead to a situation where the flow of the foam along
the channel cannot be sustained. Then bubbles are left behind and the foam
structure is gradually lost.

Bubble-scale simulations of bulk foam flow that incorporate the local
effects of surfactant flow are rather rare. We highlight Cantat’s work [41]
which uses the vertex model (so the films are straight) to simulate 500 bubbles
at a range of shear rates, with a supplementary time-scale associated with the
adsorption of surfactant at the surface of each film and a linearised version
of eq. (2)) to determine variations in surface tension due to surfactant flow:

γ = γ0 −G

(
Γ − Γ0

Γ0

)
, (3)

appropriate for small variations in concentration. (This model could be taken
to include some effects of surfactant diffusion, provided they are not dominant
in determining surfactant flow.) There is no surfactant transfer across ver-
tices and the surface tension is constant on each film. This work shows how
the foam stress increases with strain-rate due to the effects of film stretching
on film tension, albeit without the inclusion of film curvatures.

5. Outlook

There is a variety of methods now available for predicting the effects of
surfactant concentration on foam dynamics. Each has advantages and disad-
vantages, and the choice of method will depend on factors such as the level
of geometric detail required (for example the extent to which interface curva-
ture drives the dynamics), the chemistry of the surfactants (is the interface
rigid or mobile?) and of course the available computing power.

Our own work now concerns the scaling up of VFM calculations which
incorporate curved films and surfactant transfer throughout the foam [49] to
predict the complex moduli of bulk foams in the dry limit. There is also
much scope to extend vertex model calculations [41] with additional film-
level surfactant dynamics. For wet foams, the DySMaL model [38] appears
a promising base on which to build.

To the best of our knowledge, there has been no research on how surfac-
tant transfer might be included in a soft disk model; this is surprising given
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its popularity. While this would necessarily neglect some aspects of the in-
terface geometry, such a large-scale calculation is likely to lead to further
insight.
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