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Anaerobic fungi are the significant constituent of rumen microbiota in livestock that rely on poor-quality fibrous diets. Such 
fungi colonize plant fragments in the rumen of cattle and other herbivores. Through rhizoidal growth, they penetrate the 
plant cell wall and increase the area susceptible to enzymatic attack. The fibrolytic enzymes produced perform in concert to 
efficiently degrade cellulose and hemicellulose to simple sugars with the end-products acetate, lactate, ethanol, formate, CO  2

and H . In contrast to the other rumen microbes, fungal enzymes also break ester linkages between lignin and hemicelluloses. 2

Therefore, these fungi are found attached mainly with the lignified tissues that remain in the rumen for extended periods and 
maintain highest number in animals receiving high-fibre diets but lack in rumen of animals receiving leafy forage, due to the 
shorter retention period of such feedstuffs. These qualities of anaerobic fungi together with the degree of colonization and 
growth on fibrous plant fragments collectively suggest that manipulation of such a group of microbes has immense potential 
for boosting digestive performance in the rumen and ultimately higher animal production response. The present chapter 
deals with history, nomenclature, life cycle and other characteristics of anaerobic fungi along with their contribution to the 
livestock.
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1. PREAMBLE

The unquestionable role of domesticated ruminants in agriculture has generated significant 

interest into the process of digestion of plant structural carbohydrates so as to improve the 

production efficiency of the consumer animals. A majority of the livestock in tropical countries 

subsists on poor quality fibrous grasses, bulky crop-residues and agro-industrial byproducts 

poorly digested in the rumen with the ultimate low voluntary intakes. Therefore, attempts are 

being made to improve the digestibility of poor quality feeds by various feed additives (Nagpal et 

al. 2007a). A clear positive relationship observed between counts of rumen anaerobic fungi and 

the voluntary intake of low digestibility herbage suggests the possibility of utilizing anaerobic 

fungi as probiotic feed additives to enhance the microbial activity.
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Rumen anaerobic fungi actively colonize plant cell walls and account for up to 8-12% of the 

microbial biomass in rumen (Rezaeian et al. 2004). Prior to their discovery, it was assumed that 

only rumen anaerobic bacteria and protozoa were involved in hydrolysis of plant biomass. But 

now, it is well established that these ruminal fungi effectively take part in fibre digestion in 

ruminants (Dey et al. 2004, Lee et al. 2004). The rhizoids of their vegetative thalli penetrate deep 

into plant tissues better than bacteria and protozoa, and thus achieve access to plant materials 

otherwise unavailable to other rumen microorganisms. This infiltration leads to a more rapid 

degradation of forage entering the rumen (Orpin and Joblin, 1988; Nagpal et al. 2007b). These 

fungi secrete high levels of very active fibre-degrading enzymes (cellulases, hemicellulases, 

xylanases, avicelases, glycosidases etc.) found to be associated with rhizomycelia (Williams et al. 

1994; Lee et al. 2001).

2. HISTORICAL MILIEU

The ruminal anaerobic fungi, reported as early as 1910, were thought to be flagellate protozoa 

(Liebetanz, 1910; Braune, 1913) and placed in the genera Callimastix, Sphaeromonas and Oikomonas. 

These flagellates were recognized as fungi for the first time in the 1970s (Orpin, 1975) with the first 

named species Neocallimastix frontalis. The flagellate zoospores encyst and germinate on ingested 

forage with radiating rhizoids that produce a single zoosporangium. In terms of lifecycle and 

morphology, N. frontalis is similar to members of Chytridiomycota and its fungal affinities are 

confirmed by chitin in the cell wall (Orpin, 1975); though uniquely among the fungi it is an 

obligate anaerobe. About twenty different species of anaerobic rumen fungi have been reported 

in various ruminant and hindgut-fermenting mammals. It is established that removal of these 

fungi from the rumen results in a significant diminution in in-vitro gas production and 

degradation of fibrous feeds, signifying a vital role such fungi play in fibre degradation (Lee et al. 

2004). The enzyme profiles of various fungi studied indicated secretion of a wide range of ligno-

cellulolytic enzymes. Scanning electron microscopic studies ascertained that these fungi 

preferably attach to most lignified tissues of plant feed (Akin, 1987). Hence, fibre-based diets 

stimulate their proliferation in the rumen compared to diets rich in easily fermentable 

carbohydrates (Paul et al. 2003). Pelleted diets generally have a shorter transit time through the 

gastro-intestinal tract and therefore do not support good anaerobic growth of rumen fungi in-situ. 

High soluble sugar content inhibits germination of fungal zoospores on plant tissues (Roger et al. 

1992), and this might be due to lowered pH of rumen liquor (Orpin, 1977). 

3. TAXONOMIC STATUS 

Anaerobic zoospore-producing fungi are very recently assigned to Chytridiomycota, a basal 

group within kingdom Fungi and subdivided into five orders i.e., Blastocladiales, 

Monoblepharidiales, Chytridales, Spizellomycetales and Neocallimastigales (Barr, 1990).  Based 

on the ultrastructural characteristics of zoospores, anaerobic fungi were originally placed in the 

order Spizellomycetales (Barr, 1980; Barr and Desaulniers, 1988) but later transferred to a separate 

order (Neocallimastigales) by Li et al (1993).  The precise relatedness of the Neocallimastigales to 

other chytrid fungi is at present unclear since they possess a number of features not common with 

other chytrid taxa (hydrogenosomes, polyflagellate zoospores, distinctive flagellar attachment; 

Barr, 1990; James et al., 2000), and are distinctive in other respects too (e.g. very high AT [ca. 70%] 

DNA base ratio; Brownlee, 1989). The recent international collaborative effort (AFTOL project: All 

Fungus Tree Of Life; http://aftol.org/) to establish a multiple gene genealogy for kingdom Fungi 

found Chytridiomycota to be polyphyletic (with loss of flagellate zoospores on several occasions) 

but confirmed anaerobic fungi basal to the 'core' chytrid clade (James et al., 2006a; b). On the basis 
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of many distinctive features of anaerobic fungi relative to other chytrids, these may be assigned to 

a new phylum Neocallimastigomycota phylum nov. (MycoBank no.: MB 501279), containing a single 

class Neocallimastigomycetes nov. (MycoBank no.: MB 501280) (Hibbett et al., 2007).

Gold et al (1988) recommended subdivision of anaerobic fungi into three genera 

Neocallimastix, Piromyces (formerly Piromonas) and Caecomyces (formerly Sphaeromonas). 

However, three other genera with more complex growth morphology have subsequently been 

discovered i.e. Orpinomyces (Barr et al. 1989), Anaeromyces (Breton et al. 1990) and Cyllamyces 

(Ozkose et al. 2001). In all such genera, multiple sporangia are formed in Orpinomyces and 

Anaeromyces on a more extensive polycentric thallus. Cyllamyces, like Caecomyces, forms bulbous 

holdfasts (which can cause rupture of plant tissues; Joblin, 1989) rather than a rhizoidal system 

with up to 12 sporangia formed on branched sporangiophores. Thus, the six genera can be 

divided into three groups based on colony morphology (monocentric, polycentric or bulbous). 

However, it is likely that zoospore flagellation represents a more fundamental division within the 

anaerobic fungi with Neocallimastix and Orpinomyces having multiflagellate (5-20 flagella) 

zoospores while other genera being uniflagellate.  Table 1 represents the classification and 

different morphological characteristics of ruminal anaerobic fungi. 

Table 1. Classification and morphological characteristics of anaerobic
fungi (after Barr, 1990; James et al., 2000; Hibbett et al., 2007).

Presently, 18 species of anaerobic fungi have been identified and described (Table 2). No 
anaerobic fungi have hitherto, been reported to have a sexual stage.

Kingdom:

 
Fungi

 

Phylum:
 

Neocallimastigomycota
 

Class:
 

Neocallimastigomycetes
 

Order:
 

Neocallimastigales
 

Genera: A. Monocentric: Neocallimastix: zoospore with 4 - 20 flagella; 
thallus with filamentous branching rhizoids; Piromyces: 
zoospore with 1 - 4 flagella and thallus with filamentous 
branching rhizoids, and 

 
B.

 
Polycentric: Orpinomyces: multiflagellate zoospores;
Anaeromyces: zoospore with single flagellum; Cyllamyces: 
zoospore with 1 - 2 flagella with thalloid branched 

sporangiophore.

 
 

Bulbous: Caecomyces: zoospores with 1 - 2 flagella; thallus with 
globular rhizoid; Cyllamyces: zoospore with 1 - 2 flagella, 
thalloid branched sporangiophores

 

4. THE LIFE CYCLE 

The life cycle of monocentric fungi is asexual and shifts between a motile, zoosporic and a 

vegetative, zoosporangial stage (Figure 1). The flagellate zoospores move by chemotaxis to 

colonize the fibre material (Orpin and Bountiff, 1978; Munn et al. 1988). N. patriciarum zoospores 

show chemotaxis towards several carbohydrates as receptors e.g. glucose, mannose, sorbitol and 

sucrose (Orpin and Bountiff, 1978), and move across the plant surface, presumably to stumble on 

the right location for encystment. After release, these get encysted and germinate exogenously to 

form a germ tube from which the rhizoids emerge (Orpin, 1977). The cell mass develops into a 
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Table 2. Classification of anaerobic fungi (after Cabe, 1998; Ozkose et al. 2001; Harhangi, 2002).

Fig.1. Life cycle of anaerobic fungi (Source: Teunissen and Op den Camp, 1993; Harhangi, 2002).

Genus/ Species Source(s) Reference(s)

Caecomyces:

 

C. communis; C. equi

 
 

Sheep; Horse

 
 

Gold et al. (1988)

 

Piromyces:
 

P. communis
 

;  P. mae; P. 
dumbonica ; P. rhizinflata; P. 
minutus; P. spiralis; P. citronii 

 

Sheep; cow; 
Horse; Elephant; 
Deer; Goat; 
Donkey  

 

Gold et al. (1988); Julliand et al. 
(1998); Li et al. (1990); Breton et al. 
(1991); Ho et al. (1993a & b); 
Gaillard-Martinie et al. (1995)

Neocallimastix:
 N. frontalis

 
; N. patriciarum

 
; 

N. hrleyensis; N. variabilis

 

 Sheep; Cow
 

 Heath et al. (1983); Orpin and 
Munn, (1986); Webb and 

Theodorou, (1991); Ho et al. 
(1993c)

 
Anaeromyces:

 
A. elegans; A. mucronatus

 
 

Cow; Sheep

 
 

Ho et al. (1993d); Breton et al. 

(1990)

 

Orpinomyces:

 

O. joyonii; O. intercalaris

 
 

Sheep; Cow

 
 

Breton et al. (1989); Ho et al. 
(1994)

 

Cyllamyces:
C. aberensis Cow Ozkose et al. (2001)

sporangium and cytokinesis results in uninucleate zoospores to be released to complete the cycle. 

From studies on Neocallimastix, it is established that the life cycle lasts about 23-32 hours (Lowe et 

al. 1987a), whilst in Cyllamyces aberensis, it is slightly shorter to 18-24 hrs (Ozkose et al. 2001). 

Zoospores development from young sporangia may occur within 8 hours after encystment under 

appropriate conditions (Orpin, 1977). 

Unlike monocentric and bulbous taxa, polycentric fungi have less determinate lifecycles and can 

differentiate multiple sporangia over periods of several days.  Nuclei are visible within rhizoids 

but it is unclear to what extent these resemble hyphae of higher fungi (Ho and Bauchop, 1991).  

Zoosporogenesis is asynchronous as in other taxa and in culture, zoospores are often very rare 

(Phillips, 1989 Fliegerova et al., 2004).  
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5. DISTRIBUTION IN NATURE 

Anaerobic fungi have been reported in all geographic regions of the world, being ubiquitous 

among fore-gut fermenters and ruminants such as cattle, buffalo, goat (Ho et al. 1993a; 1993c; 

Singhal, 2000; Thareja et al. 2006), red deer, impala (Bauchop, 1979) and wild Bluebull (Boselaphus 

tragocamelus) (Paul et al. 2004; Tripathi et al. 2007a) as well as marsupials including kangaroo, 

wallaroo and swamp wallaby (Breton et al. 1989). These fungi have also been isolated from faecal 

samples of the horse, zebra, donkey, rhinoceros and Indian elephant (Bauchop, 1983; Breton et al. 

1990; Li et al. 1990; Orpin, 1994; Theodorou et al. 1994), all being hindgut fermenters. Therefore, 

these fungi appear to be a standard constituent of the gut microflora in many herbivores fed on a 

highly fibrous diet.  

6. METABOLISM AND PHYSIOLOGY

Anaerobic fungi derive energy by anaerobic fermentation of carbohydrates (Trinci et al. 1994). A 

large number of poly-, oligo-, and monosaccharides including glucose, cellobiose, fructose, 

maltose, sucrose and xylose, support their growth (Orpin, 1975, 1976; Mountfort and Asher, 1983; 

Phillips and Gordon, 1988). Anaerobic fungi follow a mixed-acid fermentation profile similar to 

enterobacteria such as E. coli with the conversion of hexose to acetate, formate, lactate, succinate, 

ethanol, CO  and H  (Borneman et al. 1989, Trinci et al. 1994). These products may fluctuate among 2 2

different genera i.e. high malate and lactate by Anaeromyces spp. compared to Orpinomyces 

(Phillips and Gordon, 1988). Table 3 shows the outline of cellulose fermentation by N. frontalis:

 

 

Table 3. Fermentation of cellulose by N. frontalis (Bauchop and Mountfort, 1981).

Fermentation product mol/ 100 mol hexose

Acetate
 

72.7
 

Lactate
 

67.0
 

Ethanol 37.4  
Formate 83.1  
Carbon dioxide 37.6  
Hydrogen

 
35.3

 Methane   0.0

ANAEROBIC RUMEN FUNGI

Anaerobic fungi lack mitochondria, cytochromes and other biochemical features of the 

oxidative phosphorylation pathway. In cytosol, all major enzymes required for glycolysis 

through the Embden-Meyerhof-Parnas pathway are present while glucose-6-phosphate 

dehydrogenase and the other enzymes of Entner-Dodouroff pathway are absent (Yarlett et al. 

1986; O'Fallon et al. 1991; Marvin-Sikkema et al. 1993). The group possesses organelles 

(hydrogenosomes) for a major part of anaerobic energy metabolism (Muller, 1993; Trinci et al. 

1994; Benchimol et al. 1996). Hydrogenosomes are spherical double-membrane bound redox 

organelles (0.2 – 1 µm), and have been reported in phylogenetically distant amitochondriate 

eukaryotes that inhabit anaerobic or microaerophilic environments (Muller, 1993).   

7. TRANSFER AND SURVIVAL BETWEEN DIFFERENT HOSTS

Anaerobic fungi can be isolated from alimentary tracts of ruminants (Davies et al. 1990, 1993) 

and propagules survive in air-dried faeces up to 10 months (Milne et al. 1989; Theodorou et al. 

1990; McGranaghan et al. 1999). There have been attempts to identify putative aero-tolerant 

resting structures (Wubah et al., 1991b; Nielsen et al., 1995; Richardson et al., 1998), though only in 

a single unnamed Anaeromyces species have spores been unequivocally identified (Ozkose, 2001; 
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Brookman et al., 2000b).  In the latter case, fungi could be resuscitated from pure cultures after 

incubation at 39ºC for up to 11 months (anaerobic fungi, however, do not survive beyond 10 days 

without subculturing) (Ozkose, 2001).  Furthermore, thick-walled, elongate and septate spores 

are readily visible in these cultures. The ability of anaerobic fungi to form spores and possibly, 

other resting structures in large part explain why they can be transferred so readily between host 

animals, and far more easily than rumen protozoans which require direct animal contact 

(Williams, 1986). In fact, during an early study on rumen protozoans, Becker and Hsiung (1929) 

prevented re-infection by "Callimastix" [sic] of isolated defaunated goats for more than a few 

weeks (even if the feed was sterilized).  As is the case with rumen protozoans, transfer of 

anaerobic fungi from mother to neonates can also occur by direct contact with saliva during 

grooming and licking, or by coprophagy (Lowe et al. 1987b; Milne et al. 1989). In sheep, anaerobic 

fungal populations are established by 8-10 days of birth (Fonty et al. 1987).  As ruminal fungi can 

utilize lactose as a carbon and energy source, their population, along with other microorganisms, 

gets accumulated and develops in the under developed rumen of young lambs fed on milk; and 

subsequently stabilizes with the development of rumen as the animal starts consuming fibrous 

diet (Fonty et al. 1987; Fonty and Grenet, 1994). 

Fungal transfer in nature is not only inter-ruminant, but also from non-ruminant to ruminant 

as these can also be transmitted by aerosols and dried faeces (Orpin, 1989; Dehority and Orpin, 

1996). Interspecies transfer has been demonstrated by the establishment in sheep of high ruminal 

populations of Piromyces sp. isolated from horse faeces and also a strain of Neocallimastix from the 

reindeer rumen (Orpin, 1989). Orpinomyces sp. and Piromyces sp., from cow's rumen and faeces of 

wild blue bull, respectively, establish in the rumen after administrating to male buffalo calves fed 

with wheat straw based diets (Tripathi et al. 2007b). As with the rumen protozoans, where 

evidence of host specificity is equivocal (Williams, 1986), the various anaerobic fungal taxa show 

little geographic structure with diet having a far greater effect on fungal population than the host.  

However, Phillips and Gordon (1988) reported that polycentric taxa could not be isolated from 

sheep in Australia.

8. FIBRE DEGRADATION POTENTIAL

The role of rumen fungi in the degradation of plant fibre has been examined extensively 

(Theodorou et al. 1989; Samanta et al. 2001; Paul et al. 2004; Dey et al. 2004; Lee et al. 2004; Thareja 

et al. 2006; Dayanand et al. 2007; Tripathi et al. 2007a, b). The rhizoids or bulbous holdfasts of 

vegetative thalli are better at penetrating plant tissue than are bacteria and protozoa, so they gain 

access to the plant material not accessible to other rumen microorganisms (Orpin and Joblin, 

1988). Bauchop and Mountfort (1981) suggested that such penetrations lead to a faster and 

complete degradation of forage entering the rumen. Degradation of lignified plant cell walls is an 

important characteristic of rumen fungi (Mountfort et al. 1982; Akin and Benner, 1988). Zoospores 

of many species colonize the lignified tissues preferentially and establish colonies localized on 

sclerenchyma and xylem cells. Early observations indicated that lignified cell walls were 

degraded to a greater extent by rumen fungi than by rumen bacteria and protozoa. Experiments 
14with specifically labeled C polysaccharides or lignin indicated that the rumen fungi solubilize 

phenolics and degrade lignocellulose, although cannot consume the lignin moiety (Gordon and 

Phillips, 1989).

Anaerobic fungi penetrate the cuticle, the rigid structural barrier on the outside of the plant 

epidermis. These fungi often enter the leaf interior through stomata in the epidermal layer (Akin 

et al. 1983) giving these fungi an advantage in degrading plant fibre through substantial increase 
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in the area available for infection. Rumen fungi also show protease activity that may have role in 

degradation, because the plant structural proteins increase the integrity of plant cell wall (Wallace 

and Joblin, 1985). Species of Piromyces, Neocallimastix, Orpinomyces and Anaeromyces degrade fibre 

to a substantial degree. Caecomyces species degrade fibres but lesser than other genera (Gordon, 

1990), perhaps because of the lack of an extensive rhizoidal system. In Bermuda grass (Cynodon 

dactylon), stems and leaves harbour Neocallimastix and Orpinomyces species to degrade the plant 

material most effectively by weakening the textural strength of the residue (Akin et al. 1990). 

These findings suggest that the ability to degrade fibre varies among fungal genera, and that 

plants differ in their support for fungal growth. The greater ability of rumen fungi, compared to 

rumen bacteria, to weaken forage fibres may be vital to enhancing its utilization by the host 

animal (Borneman and Akin, 1990). 

Ito et al. (1994) studied sheep rumen fungi for degradability and digestibility of rice straw 

and observed significant decrease in lignin residue that in turn increased digestibility of the feed. 

Studies by Manikumar et al. (2002) and Dey et al. (2004) indicated increased in vitro dry matter 

digestibility, and decreased cell wall contents of straws by different anaerobic fungi viz, 

Orpinomyces, Piromyces and Anaeromyces relative to untreated controls. Also, the molar yield of 

acetate increased with simultaneous decrease for propionate and butyrate. In a subsequent 

report, hydrolysis of rice and wheat straw by Orpinomyces sp. (C14) was superior to that of 

Piromyces or Anaeromyces (Manikumar et al. 2003). 

Gordon and Phillips (1998) reported a 7-12% increase in voluntary intake of straw based diet 

by sheep dosed with monocentric fungi from other herbivores. In contrast, no such effect on feed 

intake was observed in crossbred calves dosed with polycentric Orpinomyces sp. However, the 

growth rate and nutrient digestion in cow calves improved in the fungus-administered sets. 

There was also a two and a half fold increase in the fungal count in rumen liquor of fungus-

administered animals (Dey et al. 2004). 

Lee et al. (2000, 2004) studied the effect of administration of Orpinomyces strain KNGF2 from 

Korean native goats, or their enzymes on the extent of ruminal fermentation, microbial 

population, enzyme activities and nutrient digestion in sheep rumen. There was a 2-3 fold 

increase in cellulolytic bacterial count in case of anaerobic fungal treatment of silage based ratios 

compared to the control.   

9. FIBROLYTIC ENZYMES 

The ability of ruminants in digesting the plant structural polysaccharides, primarily cellulose 

and hemicelluloses, depends on the capacity of microorganisms inhabiting rumen, and rumen 

fungi play a major role in degradation of lignified plant tissues (Akin and Benner, 1988). For plant 

cell wall degradation, such anaerobic fungi produce a wide range of hydrolytic enzymes, 

cellulases (Barichievich and Calza, 1990; Yanke et al. 1993), hemicellulases (Mountfort and Asher, 

1989), proteases (Michel et al. 1993), amylases, amyloglycosidases (Paul et al. 2004), feruloyl and 

p-coumaryl esterases (Borneman et al. 1992), various disaccharidases (Chen et al. 1994), 

pectinases (Gordon and Phillips, 1992) and exonucleases (Cabe, 1998). 

Three enzymes viz, endo-1,4--glucanase, exo-1,4--glucanase and -glucosidase act 

synergistically for efficient cellulose hydrolysis. These enzymes often bind to the substrate prior 

to hydrolysis, but they may also bind to other plant cell wall polymers such as xylan (Gilkes et al. 

1991). Aryl esterases, viz. p-coumaroyl esterases and feruloyl esterases are other important 

enzymes that hydrolyze the ester linkages between hemicellulose and lignin in plant cell walls, 
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and thus separating hemicelluloses and cellulose from lignin (Borneman and Akin, 1990) and 

render them accessible to hemicellulases and cellulases. Thus, through esterases, anaerobic fungi 

play a more important role over bacteria in separating the lignin-polysaccharide linkages in the 

plant particles by extensive rhizoidal elongation, and are thus ahead of bacteria. N. patriciarum 

solubilized lignin (up to 34%) in sorghum (McSweeney et al. 1994). Unlike rumen cellulolytic 

bacteria, rumen fungi also have proteases that facilitate penetration of the plant proteinaceous 

components by fungal rhizoids (Engels and Brice, 1985). 

Most fibrolytic enzymes have been found associated with rhizomycelium while some 

secreted into the surroundings (Gordon and Phillips, 1992; Williams et al. 1994). The activities of 

these enzymes are common to both the zoosporic and vegetative stages as well as in the cell-free 

spent culture fluid (Williams and Orpin, 1987); but depend on the stage of the life cycle (Martin 

and Nisbet, 1992; Lee et al. 2001). A few fibrolytic enzymes are constitutive, and regulated by the 

presence of soluble sugars (Mountfort and Asher, 1983, 1985, 1989), e.g. production of cellulase 

repressed by glucose (Mountfort and Asher, 1985). Growth conditions greatly influence enzyme 

production as the level of fibrolytic enzymes was 3-fold in a stirred fermenter compared to static 

batch cultures (Morgavi et al. 1994; Paul et al. 2003). 

Because of the ability of cellulases to rapidly attack crystalline cellulose, there has been 

considerable interest in the fibre degrading enzymes of anaerobic fungi (Teunissen et al. 1993). 

Wilson and Wood (1992) reported that isolates of Neocallimastix and Piromyces were the most 

rapid degraders of crystalline cellulose. The weakening of tissues by fungal enzymes may 

accelerate digestion, and thus making rumination more effective in reducing particle size and 

increasing protozoal and bacterial digestion in the rumen.

10. MICROECOLOGY IN THE RUMEN

The interactions of anaerobic fungi with other rumen microbes can be positive, negative or 

neutral, depending on the microbial group involved and the type of substrate used. Since, rumen 

fungi produce appreciable amounts of H ; they can interact with H  utilizers which in turn alter 2 2

their metabolite production. Methanogens are the principal H  utilizers in rumen; and stable 2

cocultures of fungi and methanogens have been established in vitro (Fonty and Joblin, 1991; Orpin 

and Joblin, 1997). Such cocultures resulted in increased fungal biomass (Bernalier et al. 1989) and 

also an increase in the rate and extent of cellulose degradation (Wood et al. 1986; Joblin et al. 1989; 

Bernalier et al. 1991). Interspecies H  transfer between the cellulolytic H -producing anaerobic 2 2

fungi and methanogens resulted in increased CO  and acetate formation but decreased ethanol 2

and lactate output (Bauchop and Mountfort, 1981; Mountfort et al. 1982). The presence of 

Methanobacterium arboriphilus, Methanobacterium bryantii, or Methanobrevibacter smithii also 

increased (5 to 10%) the level of cellulose fermentation by anaerobic fungi (Marvin-Sikkema et al. 

1990). By contrast, cellulose degradation and lactate production by N. frontalis decreased in 

cocultures with non-lactate utilizing Selenomonas ruminantium, the sugar fermenting, H  2

consuming rumen bacterium, thus indicating interspecies hydrogen transfer (Richardson and 

Stewart, 1990). 

The fungi are involved in cross-feeding in that they release free sugars, which in addition to 

several of their normal metabolites (except acetate), serve as energy sources for other bacterial 

species. The fungi themselves may also depend on the bacteria for supply of B vitamins, heme and 

amino acids, as the nutritional requirement (Williams et al. 1994). On the other hand, coculture of

anaerobic fungi with rumen bacteria inhibits the cellulolytic activity (Bernalier et al. 1992; Roger et 
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al. 1993) and growth (Dehority and Tirabasso, 2000) of the former. Stewart et al. (1992) and 

Bernalier et al. (1993) reported an extracellular, thermo-labile protein produced by ruminococci, 

which inhibits fungal cellulase activity.  Dehority and Tirabasso (1993) also reported that mixed 

rumen bacteria produce a heat stable compound in vitro, which markedly inhibits growth of 

rumen fungi.  

Since chitin is the main structural component of fungal cell wall, their growth is likely to be 

inhibited by rumen chitinolytic microorganisms such as Clostridium sp. Co-culturing of the 

anaerobic fungi with chitinolytic Clostridium tertium significantly reduced solubilization of 

crystalline cellulose, production of short-chain fatty acids and release of endoglucanase 

(Hodrova et al. 1995), suggesting the role of chitinolytic bacteria in controlling fungal activities in 

vivo. Thus, rumen fungi do not appear to attain their optimal fibre-degrading potential in rumen 

due to the inhibition by some bacteria. Small sized fungal zoospores are likely to be a prey for 

protozoa. Co-incubation of protozoa with fungi revealed that protozoa are able to ingest and 

digest fungi (Morgavi et al. 1994). The fungal growth and cellulolysis is negatively affected by 

rumen protozoa, possibly because of protozoal predation on zoospores. 

11. RESPONSE TO DIVERSE DIETS

The forage rich diets such as hay and silage, with a long ruminal transit time, consistently 

result in high population density of anaerobic fungi (Fonty and Grenet, 1994). The addition of 

maize to sorghum silage enhanced degradation by anaerobic fungi (Akin and Windham, 1989). 

Also, the addition of grain concentrate to the hay diet significantly increased the count of fungal 

zoospores in sheep rumen (Faichney et al. 1997). In sheep consuming appreciable amounts of 

fibres, a large number of sporangia are found attached to stem fragments before morning feeding 

(Bauchop, 1979). Fungal populations were also stimulated to a much greater extent with alfalfa 

diet than with coastal Bermuda grass (Windham and Akin, 1984). 

By contrast, diet rich in soluble carbohydrates (i.e. young pasture, whey and fodder beet) 

result in a relatively low population density of anaerobic fungi (Grenet et al. 1989). Silage diet 

from sorghum or maize reduced the numbers of anaerobic fungi in the rumen (Akin et al. 1988). 

Similarly, rye grass at the leafy stage, was also found unfavorable for fungi (Grenet et al. 1989). 

Anaerobic fungi are generally adversely affected by the addition of lipid to the diet (Jenkins, 

1993). Feeding a supplement of sunflower, cottonseed or rapeseed oil meal to animals also 

depressed fungal population in the rumen (Elliott et al. 1987; Fonty and Grenet, 1994).

12. CONTRIBUTION OF FUNGI TO HOST NUTRITION

Various reports suggest a positive correlation between anaerobic fungi and voluntary intake 

of low digestible herbage diet (Akin et al. 1983; Weston et al. 1988; Gordon and Phillips, 1993). This 

association is an outcome of fungal attack on lignified tissues (Akin, 1987; Akin and Borneman, 

1990) combined with the weakening of more recalcitrant plant components (Akin et al. 1983, 

1989). Soft feed fragments in the rumen may be anticipated to lead to less effort by the animal in 

eating and ruminating. A positive correlation between populations of rumen anaerobic fungi and 

rumination efficiency in sheep fed a wheat straw diet has been reported by Weston et al. (1988). 

Therefore, anaerobic fungi apparently facilitate the physical disruption during rumination of the 

fibrous particles of poor-quality feed leading to a lower residence of such particles in the rumen. 

The intake of forage by early weaned calves was 35% higher in calves dosed with Neocallimastix 

sp. (Theodorou et al. 1990), and the dosing of fungus-free sheep with Neocallimastix sp. resulted in 

a 40% increased intake of a straw-based diet (Gordon and Phillips, 1993). 
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These fungi also supply protein to the host through the action of proteolytic enzymes and 

also as a proportion of the microbial protein synthesized in the rumen that passes to abomasum 

and intestines for digestion and absorption (Gordon and Phillips, 1998). Kemp et al. (1985), Gulati 

et al. (1989) and Onoda et al. (1993) reported that fungal cells are composed of proteins with a well

balanced combination of amino acids which were highly accessible to and digestible by the 

ruminant; and a high proportion of fungal protein is digested and absorbed in the intestines of 

sheep with higher digestibility compared to ruminal bacteria (Gulati et al. 1990). Moreover, the 

advent of dependable measurements of fungal biomass in ruminant digesta has shown that in 

sheep fed with either hay or grain diets, anaerobic fungi averaged 2.4% of the microbial nitrogen 

in ruminant digesta (Faichney et al. 1997). However, the contribution of anaerobic fungi towards 

supply of microbial proteins to the animal was minor as these averaged 1.6% of the microbial 

nitrogen in digesta flowing to duodenum. Yet, this microbial protein was of high quality and 

voluntarily available to animal. Therefore, if the biomass of anaerobic fungi in the rumen is 

enhanced, it is likely that the supply of high-quality microbial protein to host ruminant would be 

possible (Gordon and Phillips, 1998).    

13. ISOLATION, CHARACTERIZATION AND PERSISTENCE

To culture the rumen anaerobic fungi, one of the methods involves overlaying the partially 

molten agar with filtered rumen fluid and incubation at 39°C (48 hrs) as by this time, zoospores 

settle and produce individual thalli to yield pure cultures (Orpin, 1975). Lowe et al. (1985) 

suggested a plate culture technique to isolate rumen fungi from rumen digesta of sheep and cattle. 

The roll-bottle method of Joblin (1981) involves inoculating a dilution series of molten agar 

medium with filtered rumen fluid. After a period of incubation, axenic cultures could be obtained 

from the individual colonies produced. Antibiotics penicillin, streptomycin, neomycin and 

chloramphenicol can be added to the isolation media to suppress bacterial growth (Wubah et al. 

1991a). It is difficult to maintain these fungi as they require an oxygen-free atmosphere. Hence, 

the cultures are to be maintained under CO  atmosphere during growth. 2

The paucity of morphological features presents a problem regarding the taxonomy of 

anaerobic fungi. While examining plant material from the digestive tract, fungi often appear as 

the complex cluster and this makes the classification even up to genus level difficult.  At a time 

when there is little disagreement as to the status of the six genera, subgeneric classification is 

problematic since difficulties associated with exchange and long-term maintenance of cultures 

impeded direct morphological and physiological comparisons among isolates. With the advent of 

molecular taxonomy, it is hoped that DNA sequence comparisons and phylogenetic 

reconstruction will elucidate the relatedness of the various taxa. Indeed, a number of molecular 

phylogenetic papers are on record (Brookman et al. 2000a; Fliegerova et al. 2004; Tuckwell et al. 

2 0 0 5 ) ,  a n d  o v e r  1 0 0  n u c l e o t i d e  s e q u e n c e s  d e p o s i t e d  w i t h  G e n e b a n k  

(http://www.ncbi.nlm.nih.gov).

Majority of the sequences deposited relate to the ribosomal RNA genes widely used in 

phylogenetic reconstruction. The small ribosomal (18S) subunit is highly conserved in different 

taxa and thus contains little phylogenetically useful information for subgeneric classification (Li 

and Heath, 1992).  In contrast, the internal transcribed spacer (ITS) regions, widely used for study 

of closely related fungal taxa, show a high level of variability (Li and Heath, 1992; Brookman et al. 

2000a; Fliegerova et al. 2004), and has been used to differentiate the morphologically similar 

monocentric (Neocallimastix, Piromyces) and polycentric (Anaeromyces, Orpinomyces) genera. 

Brookman et al. (2000a) also reported that the two multiflagellated taxa (Neocallimastix, 

-
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Orpinomyces) were closely related based on the ultrastructure of the zoospores. Unfortunately, 

various problems including the presence of divergent ITS sequences within individual isolates 

has hampered widespread use of this locus for taxonomic studies (Ozkose, 2001), though PCR 

amplification of DNA from environmental samples (rumen fluid, digesta etc.) using ITS primers 

may prove valuable for ecological studies (Tuckwell et al. 2005).

Counts of individual zoospores and zoosporangia have been used to estimate fungal 

populations in vitro (Joblin, 1981) and in vivo (Ushida et al. 1989). Breton et al. (1991) used colony-

forming units per gram dry weight of faeces as the basis for quantifying species of Piromyces. An 

endpoint dilution practice, based on the technique of most probable numbers, was developed to 

enumerate rumen fungi as thallus-forming units (Theodorou et al. 1990). The procedure involves 

a 10-fold dilution series of sample in an antibiotic-containing basal anaerobic medium. Defined 

medium plus 10% clarified rumen fluid was used for dilution series, and fungal population 

represented as thallus-forming units per gram of dry weight.

An indirect method based on zoospore concentration and life cycle parameters has been used 

to quantify fungi in the rumen. Exploiting the life history parameters and growth kinetics of these 

fungi, France et al. (1990) proposed a mathematical model of the life cycle in a steady state so that 

the population of the particle-attached fungal thalli could be calculated from the concentration of 

free-swimming zoospores in rumen fluid. The values obtained were reliable for samples from 

rumen and faeces. However, the inadequate knowledge of the life cycle of anaerobic fungi makes 

it complicated to evaluate the consistency of this technique.

For long-term maintenance of these fungi, cultures are usually stored in liquid nitrogen using 

anaerobic glycerol as the cryoprotectant. Pure cultures of anaerobic fungi can also be maintained 

in a defined medium consisting of cell-free rumen fluid, tryptone, yeast extract, a carbon source, 

buffer, L-cysteine as the reducing agent, and vitamins (Wubah et al. 1991a). Neocallimastix frontalis 

has been maintained in a similar medium but without the yeast extract and rumen fluid (Lowe et 

al. 1985). For prolonged maintenance in the laboratory, pure cultures of anaerobic fungi are 

transferred into fresh basal anaerobic medium every 3-4 days. Joblin (1981), however, reported 

that cultures could be maintained for several months on plant tissues stored at 39°C without sub-

culturing. Yarlett et al. (1986) reported cryopreservation of the anaerobic fungus Neocallimastix 

patriciarum at -80°C with dimethyl sulphoxide as the cryoprotectant, but the survival rate was 

only 40% after one year.  However, in a similar study by Sakurada et al. (1995), the survival 

reached 80% after one year of storage at -84°C with ethylene glycol and cell-free rumen fluid.      

14. FUTURE PROSPECTS

Rumen microbiologists have constantly shown curiosity in manipulation of the rumen 

microbial ecosystem to boost feedstuff utilization and improved milk production. It is now a well-

established fact that anaerobic fungi participate in hydrolysis of plant biomass in ruminants, 

based on superior penetration of plant tissues over bacteria or protozoa, and thus leading to an 

enhanced degradation of forage in the rumen. These fungi are well equipped with enzymes 

important for rumen fermentation, and represent group of dynamic cellulolytic organisms that 

explicitly colonize fibrous plant fragments. The properties taken together with perceptible extent 

of rumen populations in animals on high-fibre diets indicates a significant role of such 

heterotrophs in fibre digestion. In addition, fungi may bring special changes to plant materials in 

the rumen with the resultant improved feed intake, body weight gain, enhanced milk output, and 

improved animal productivity. As efforts are still in its early stages regarding stimulation of 

rumen fermentation by anaerobic fungi, more studies are imperative to assess the extent of their 
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contribution to the ruminal digestive event. However, the development of direct-fed microbials 

for improved rumen performance is a pre-requisite for sustainable animal production. Therefore, 

a substantial potential exists for the manipulation of fungal population and activity in the rumen 

to benefit even from poor quality herbages. 

CONCLUSION

In the lack of efficient feed materials, utilization of high fibrous crop-residues and 

agricultural by-products along with the tested animal probiotic could be a better alternative over 

the existing feeding practices. With the onset of technology for production and administration of 

direct-fed microbials, it seems feasible to effectively utilize the poor quality fibrous feeds for 

higher productivity of animals. Since, there is considerable disparity among the fungal isolates 

from domestic as well as wild animals in their fibre degrading potential; there is immense scope to 

isolate efficient fibrolytic fungal strains with elevated levels of fibrolytic enzymes so that they can 

be posted in the rumen for optimum feed utilization. Therefore, more work is needed to study the 

diversity of these fungi among domestic and wild ruminants, and to isolate/ select the elite 

strains with high fibrolytic activity which can get established in the rumen to facilitate digestion of 

low grade roughages for enhanced meat/ milk production, as the case may be.
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