
Collaborative animation over the network

F. Faure
C. Faisstnauer

G. Hesina
Vienna University of Technology, Austria

francois, faisst, gerd @cg.tuwien.ac.at

A. Aubel
École Polytechnique Fédérale de Lausanne, Switzerland

aubel@lig.di.epfl.ch

M. Escher
MIRALab, Geneve, Switzerland

Marc.Escher@cui.unige.ch

F. Labrosse
University of Bath, United Kingdom

F.Labrosse@maths.bath.ac.uk

J.-C. Nebel
University of Glasgow, United Kingdom

jc@dcs.gla.ac.uk

J.-D. Gascuel
iMAGIS, Grenoble, France

Jean-Dominique.Gascuel@imag.fr

Abstract

The continuously increasing complexity of computer an-
imations makes it necessary to rely on the knowledge of var-
ious experts to cover the different areas of computer graph-
ics and animation. This fact, which can be noted in many
areas of scientific working, leads to increasing effort being
put into research concerning cooperative working over the
internet. However, it still requires substantialeffort and time
to combine different animation techniques in a common vir-
tual environment.

When trying to perform collaborative animation over a
network, we often face the problem of having to combine
animation systems and applications based on different soft-
ware and hardware and using incompatible data structures.
We present an approach, based on a client-server architec-
ture and employing a VRML-based language as common in-
terchange format, that allows inhomogeneous systems to be
easily incorporated into a collaborative animation. The ap-
plications can be freed from employing plug-ins or libraries
to link into a common animation platform; they keep a lo-
cal copy of the global scene and only need the ability to
export the internal data representation into the so called
”PaVRML” language, the language we use use to exchange
data and synchronize the clients.

This approach does not only allow a number of practi-
tioners to share their know-how within a common anima-

tion without requiring the huge amount of work necessary to
port their application to a common platform. It also makes
it often possible in the first place to combine the capabilities
of different animation systems into a single complex anima-
tion. Additionally, we investigate solutions to optimize the
network load for real-time applications. In this paper we
present preliminary results and discuss the future develop-
ments of this ongoing work.

1 Introduction

This work arisen from the desire of several research
teams to gather the computer graphics software they have
within a common animation platform. Unfortunately,
the code has been developed on different software plat-
forms (OpenInventor, Alias Wavefront, SoftImage, Per-
former, etc.), and using different data structures. In order to
link the different pieces of code within one application, it is
necessary to port them to a common platform. The question
of choosing such a platform appeared intractable, mostly
due to the huge work necessary to adapt the code, and also
because of incompatibilities between data structures.

We present an alternative solution based on the usage of
a network to let remote (and inhomogeneous) applications
communicate using a given protocol. All applications pro-
cess a common database they replicate locally using their



own data structures; updates are sent and received to ani-
mate the scene and maintain consistency. In contrast with
a traditional animation platform, our approach allows dif-
ferent animation tools to run on incompatible software and
hardware platforms. This makes it possible for a number of
practitioners to collaborate, each of them using their favorite
tools.

An animation can be concurrently or incrementally de-
signed using a variety of tools. Concurrent scene process-
ing allows the animation of virtual worlds. Incremental pro-
cessing allows the design of complex animations for movies.
Consider the animation of a walking character. A certain de-
gree of realism can be achieved by generating skeleton mo-
tion, facial animation and cloth simulation. Each of these is-
sues requires highly specialized software which may not be
available to a single user, unless he or she owns an expensive
animation platform, and he or she is sufficiently skilled to
exploit it. In our approach, such an animation is performed
by combining the power of different tools, which may run
either separately on a single machine, or remotely over the
net. We call this paradigm collaborative animation.

Running concurrent applications able to communicate
over the network is hardly a new idea. In the past years,
many distributed virtual environments have been created.
With respect to other platforms for virtual environment (e.g.
Dive [7], Simnet [10], NpsNet [15], Aviary [18]), which re-
quire to write dedicated applications for them and are ex-
plicitly encoded in the application, our approach is intended
to couple already existing applications to a virtual environ-
ment, with as less effort as possible. Thus the only interface
between our applications and the virtual environment con-
sists in sending and receiving messages.

The key point of our approach is the ability of sharing
data between applications. We chose to use VRML97 as
a data exchange language. Within a few years, it has be-
come the most widely accepted standard for publishing and
exchanging three-dimensional data. Its geometry modeling
capabilities meet our needs and its wide diffusion makes it
an attractive standard. Moreover, VRML97 has been cho-
sen as the basis of the three-dimensional capabilities of the
MPEG4 standard for broadcasting sound and images over
the Internet. Since our architecture allows us to address the
question of efficient streaming, the use of VRML97 opens
a wide range of potential applications. More precisely, we
have developed a new language, PaVRML1 that is a subset
of VRML97 augmented by commands allowing the creation
and modification of objects during the animation (see Ap-
pendix A).

The remainder of this paper is organized as follows: first
we summarize previous work on distributed virtual environ-

1The acronym PaVRML comes from the fusion of two acronyms:
PAVR and VRML. PAVR (Platform for Animation and Virtual Reality) is
a European project in the context of which this research is done.

ments. Section 3 introduces the principle of our approach,
followed by an investigation on applications for real-time
environments in Section 4. Applications to perform collab-
orative animation are examined in Section 5. The paper is
concluded with a discussion on future work. The Appendix
presents PaVRML, our data exchange language based on
VRML97, and briefly describes input/output processing as
well as our network library.

2 Previous work

A lot of research has been going on to build common
virtual places in which users can interact with each other
and also with responsive applications. It has resulted in
a number of environmental platforms such as DIVE [7],
VLNET [16], AVIARY [18], NPSNET [15], or DVS [3].
Years of research and experiments with or for these plat-
forms have led to the adoption of a few techniques as ground
rules for designing efficient networked virtual environments
which use the Internet as communication medium.

These platforms deal with different network topologies
(e.g. unicast, broadcast, multicast) and various optimiza-
tions (e.g. dead reckoning). It is important to choose a net-
work topology that fulfills quality of service requirements
like latency, and ensures scalability. Dead-reckoning (see
[15, 6]) is a powerful optimization technique that has gained
wide acceptance. It aims at reducing the number of mes-
sages being sent over the network. The basic idea behind it
is that some information can be inferred at each site from last
known information. As an example, the positionof an avatar
for frame n+1 can be easily inferred by all clients from its
position/velocity in the previous frames (n, n-1 etc.). Thus,
the client that actually controls the avatar may omit to trans-
mit its position as long as the extrapolated position does not
differ significantly from the actual one. This technique has
been applied successfully to various types of data ranging
from vehicles positions [15] to joint angle values used for
avatar representation [6].

The major limitation of these toolkits is that they are
available on few if not just one platform. One possible way
to overcome this limitation is to rely on a cross-platform
graphics library and produce a specific binary for each target
platform, as illustrated in DIVE [7] or more recently with the
Bamboo system [19]. Another usual limitation is that some
toolkits fail to enable concurrent access, which makes them
inherently inadequate for a real fruitful networked collabo-
ration.

Over the past years VRML has become widely accepted
as the file format for exchanging 3D data over the Internet.
Its second release added more interactive capabilities and
made it more suitable for multi-user collaboration. Since
then, many companies and individuals have started to use
VRML97 for electronic commerce. Applications allow-



ing users to perform collaborative work through the WEB
also appeared. Some of them are based on specific plug-
in/programs that include a VRML browser plus a set of func-
tionalities for dealing with the network, avatar animation or
shared object management. This has led to the emergence
of digital communities on the Internet [2, 1]. By means of a
proprietary browser, people all around the world can gather
in digital worlds, own digital spaces, build digital cities, etc.
However, a specific installation of the proprietary browser
is required to gain access to such virtual worlds. In addi-
tion, as each system has its own communication protocol,
interconnection between two worlds managed by two differ-
ent applications is not possible. Another way to construct
a shared world on the web is to establish a link between a
VRML plug-in and Java. A Java program handles the net-
work part and manages the world, while the world updates
are made inside the VRML plug-in. This solution does not
require any specific installation since the needed software
(Java class) is down-loaded at run-time with the VRML
world. To our knowledge, only the VNET system’s architec-
ture [5] was built in this fashion. Yet, this might change soon
since a standard way to define and manage such VRML-
based shared world is about to be specified [4], thus facil-
itating connections between different worlds. In our case
though, most applications we wanted to connect together are
C or C++ stand-alone programs. Since porting all the exist-
ing software to Java may not be such a trivial task, especially
for C programs, and the efficiency of Java programs is still
questionable, we investigate another solution.

Finally, the MPEG4 standard [9] which evolves towards
complete inter operability with VRML proposes a generic
way to encode/decode different kinds of media (audio/video
objects) for data transmission. As it also aims to integrate
coding of animated 2D/3D computer graphics, it could be-
come the new standard for data transmission within shared
world applications.

3 Principle

The structure of our system is composed of clients that
communicate using a server, as depicted in Figure 1; a sim-
ple interface module allows the clients to send messages to
and receive messages from the server. The task of the server
is not only to minimize network traffic, but also to relieve
the clients as much as possible from dealing with issues con-
cerning the communication in a distributed virtual environ-
ment. Therefore the server does not simply route the mes-
sages coming from one client to all other clients, but man-
ages a global database, containing all information about the
common scene.

This global database is replicated at each client; upon lo-
gin, the clients receive a model of the common scene to be
stored and rendered locally. From then on, the communica-

PaVRML

SERVERCLIENT

CLIENT

F
A
C
E (internal representation)

E
R

COMMANDS

global scene database

I

T
N

T
E
R
F
A
C
E

I
N
T
E
R

VRML97

A
C
E

N
I

=

+

F

replicated

representation)

database
(internal

representation)

replicated

(internal
database

Figure 1. System architecture. A VRML scene
is replicated within each client, which uses its
own data structures. Conversion is achieved
within the interface.

tion between server and clients can mostly be limited to up-
date messages. To contribute to the common scene, a client
sends update messages to the server. The server updates
its global database accordingly, and is then able to notify
all other clients of these changes (if they are of concern to
them). As this client-server architecture allows the clients
to locally store and render a model of scene, they can use
their own data structures and procedures; only the communi-
cation with the server must follow an agreed upon protocol.
This allows to easily incorporate existing applications into
the common scene; all that is required is the ability to send,
receive and interpret the messages containing the scene de-
scription and the updates to that scene. As VRML97 is used
to describe the geometry of the common scene, the commu-
nication with the server implies a translation from and into
VRML; this translation is provided by the interface module.
We also defined an additional set of commands to access the
database (see Appendix A).

As an additional way to limit the network load we de-
cided to give the clients the ability to control the flow of up-
date messages coming from the server. Whenever the server
receives update messages from a client to change the com-
mon scene, the other clients are not notified immediately, but
only on demand: the server keeps an update log for each
client and, as soon as the server receives a corresponding
request, all updates ready for that client are transmitted to
it. This approach has the disadvantage of making the incon-
sistency between the server’s and the client’s database also
depend on the speed with which the client requests updates
from the server, but on the other hand the client can choose
the optimal speed for receiving the updates from the server
and avoid to be overloaded with messages.

Although this project originated from the desire to
achieve “collaborative animation” in a virtual environment,
by having a number of research sites to cooperate on a com-



mon animation (each site contributing to that part of the an-
imation it is specialized for), from our discussions among
the different animation specialists we soon found out that
we have to distinguish between two different ways of how
to treat the notion of time in the animation. As an anima-
tion can be parameterized by time, it consists of an evolution
of the scene over time. In our client-server approach, the
clients specify the animation by determining the state of the
common scene database at determined moments in time by
sending update messages to the server. Depending on how
the server deals with time, we distinguish between an online
and an offline animation.

In an online animation, which is typical for virtual en-
vironments, the time (of the animation) is controlled by the
server and is continuouslyprogressing; the animation is pro-
gressing in real-time (as a virtual environment usually tries
to simulate a real or imaginary world). To modify the ani-
mation, clients send scene updates to the server, which are
processed upon receipt. The server notifies the other clients
of these changes as soon as they request it. Usually there is
no need to store a history of the environment, as only the ac-
tual state is of concern.

In an offline animation time is handled in a different way:
time is controlled by the clients, the server does no time
management. In fact, there is no progressing time at all.
An offline animation is similar to a multi-track movie (e.g.
recorded on a video recorder); the creation and “play back”
of the animation are completely independent and can hap-
pen at different times. To create the animation, clients send
scene updates to the server, specifying at which time they
should happen. Time is relative to the first event in the ani-
mation; typically, the creation of the first objects. To view
the animation, the clients ask the server to incrementally
send them the state of the scene at given times. Thus, the
whole animation must be stored by the server, which acts
just like a common database. Offline animations are of-
ten used, e.g. in keyframe animations, when the animation
must repeatedly be viewed and modified, played forward
and backward, etc., under the client’s control.

4 The online server

According to the differentiation between online and of-
fline animation, the server in our system can be operated
in an online (or real-time) and offline (or VCR) mode.
The online server is depicted in Figure 2. An online an-
imation is specified while it is running, the change of the
scene database and the viewing of the animation happen (al-
most) at the same time. When a client sends scene updates
to the server, they are by default processed immediately;
the clients can also specify a positive offset relative to the
server’s time (in the future) at which to process the updates.
Negative offsets are not allowed, as the past of the animation

INTERFACE

INTERFACE MANAGEMENT
TIME

C

DATABASE
SCENE

I
N
T
E
R
F
A

E

Client c2

Geometry
Server

Client c1

PaVRML

PaVRML

T

S

G S

T

G

Figure 2. Structure of the online server (com-
pare with Figure 4). The symbols T, S, and
G respectively denote Transform, Shape, and
Geometry nodes.

is not dealt with in a real-time animation. These changes to
the scene database are distributed to all other clients after an
explicit request; this allows the clients to perform a sort of
flow control, although it may increase the inconsistency be-
tween the server’s scene database and local databases of the
clients. On the other hand, it allows us to reduce the num-
ber of messages transmitted over the network by discarding
redundant updates. As the history of the scene is not of in-
terest, the server stores only the most recent values of each
object in the scene. Therefore, whenever a client requests in-
formation about the common scene, it receives only the up-
dates describing the most recent state.

In the following example we use the messages sent from
the clients to the server as trigger to get back all outstanding
updates. Figure 2 shows the structure of the server operated
in online mode, while a scene including a hierarchy of two
shapes is edited dynamically by the clients. The server up-
dates its graph according to the update messages received
from the clients. Updates are sent on-demand back to the
clients: each time the server receives a message, it replies
a message containing information necessary to update the
client’s scene graph.

Figure 3 shows an example of graph creation and edition,
following the structure of Figure 2. Starting from an empty
graph, each client adds a shape. The arrows denote the di-
rection of the messages.

Client c1 starts the session. It reads the current scene by
sending a message and receiving the answer (steps 1 and 2).
In this case, the scene is still empty. It then adds a sphere
to the scene (step 3). When client c2 logs in, (step 5), it is
notified the current state of the scene (step 6). It then adds a
cylinder as a child of the sphere (step 7). In step 8, the server
sends an empty message since the scene model of client c2 is
up to date. However, the scene model of client c1 is now ob-
solete. When client c1 modifies the translation of the sphere



Figure 3. Example of graph creation and edit-
ing with two participating clients.

(step 9), it is notified that an object has been added (step 10).
In step 11, client c2 requests updates to maintain its local
database.

Note that though geometric models are described using
VRML97, some commands have been added to the lan-
guage. In step 7, ADD specifies which grouping node a
model should be added to. By default, a model is added di-
rectly to the root of the scene such as in step 3. In step 9,
UPDATE is used to modify the value of a field. A more
complete description of the language is given in the Ap-
pendix. Recursively removing a subgraph can be achieved
using DELETE. These basic commands allow the edition of
the common graph. In this preliminary work, we have not
addressed the question of permission restrictions.

In order to build up a common virtual environment, e.g.
a networked community, the online server must run perma-
nently on a specific network address for the clients to be able
to connect. As such interactive applications happen in real
time (at least they should), the online server is subject to
heavy time constraints. Replicating the common scene lo-
cally in each client and limiting the subsequent communi-
cation between client and server to VRML updates is a first
step to comply with these requirements; future research con-
cerns the development of Levels of Detail (LODs), includ-

INTERFACE

INTERFACE NODE HISTORY

SCENE
DATABASE

I
N
T
E
R
F
A
C
E

S T

S

T

G

G

Client c2

Geometry
Server

Client c1

PaVRML

PaVRML

Figure 4. Structure of the offline server (com-
pare to Figure 2).

ing viewpoint dependency and priority management [17], in
order to optimize the distribution of updates to the clients.

5 The Offline server

Although the online mode of the server is suited for vir-
tual environments and networked communities, it is not ap-
propriate for the collaborative construction of an animation,
where frequent modifications and playbacks are necessary,
and thus the clients need to have full access to the server’s
database. These requirements led to the development of the
so called ”offline” mode, in which the server works compa-
rable to a multi-track video recorder.

In offline mode, the animation is not “running”; there is
no “actual” time of the animation. Thus the changes in the
common scene database can be specified independently of
the animation viewing; basically, the server acts as a com-
mon database, which can be modified and queried at any
time. To modify the animation, clients can send scene up-
dates to the server, specifying the point on the animation
time line at which these updates should occur. To get in-
formation about the scene (in order to view the animation),
a client has to explicitly query the server’s scene database,
specifying the time it is interested in. Then the client gets
back all scene updates concerning the interval between this
specified time and the time specified in its last query, allow-
ing it to update its database.

Therefore the server has to store the complete history of
the animation (see Figure 4); the offline mode of the server
is more memory consuming than the online mode, but has
the advantage of having less time constraints. While in on-
line mode the server is required to make an update to the
common scene available to all clients immediately and pos-
sibly contemporarily, the offline mode has an inherent in-
consistency between the client’s databases. As each client
can independently query a specific time interval from the



server database, the local databases of the clients are not
linked among each other by time constraints. Furthermore
the changes to the scene and the animation viewing can hap-
pen at different times, thus not all clients must be notified
immediately of a change to the scene database. The average
load on a server in offline mode is usually lower than in on-
line mode, as the number of participating clients is typically
smaller; often the server is run locally for just one client.

We now present an example of incremental animation
design including a server running in offline mode and two
clients, where a keyframe animation and a physically-based
motion combined.

The first client, produced at LIG (Lausanne), provides the
model of a pirate with a feathered hat, who shakes his head
as if he was saying “yes”. In order to increase realism, a sec-
ond client adds a physically-based motion of the feather; this
is achieved by a software of TU-Vienna. In this simple ex-
ample, the feather is loosely modeled as a rigid object bound
to the hat using a joint including damped angular elasticity.

The ”Lausanne”-client uploads the keyframe animation
on the server as a VRML97 model along with a number of
position updates, each of them associated with a given time.
Though interpolators would be a more conventional tool,
they are not yet handled by the server.

The ”Vienna”-client then logs in and receives the model,
which it converts into its own data structures (OpenInven-
tor) using the parser (see Figure 5). According to an agree-
ment between the designers, a transform node called Feather
is located at the junction between the hat and the feather.
This allows the ”Vienna”-client (being responsible for the
physically-based motion of the feather) to automatically find
this node and replace it with an appropriate object modeling
a damped elastic joint.

(b)(a)

Feather

Shape

Shape

Shape

HatHat

phys-FeatherShape

Shape

Head

Shape

Head

Figure 5. The graph of the pirate head, mod-
eled by LIG (a) and by TU-Wien (b)

This ”Vienna”-client then queries the state of the scene at
regularly spaced times. The position of the hat is deduced
from the updated graph. The motion of the feather is com-
puted accordingly, and replaces the original motion. The ve-
locity of the hat is not considered, though it could be nu-
merically derived. This physical simulation adds flexibility

to the feather, providing more realism as illustrated in Fig-
ures 6 and 7.

Figure 6. Two snapshots of the keyframe an-
imation. The feather is rigidly bound to the
hat.

(a) (b)

(c) (d)

Figure 7. Four snapshots of the physical ani-
mation, while the head is moving (a,b) and af-
ter (c,d). The feather is physically swinging.

6 Examples

This section explains two usage examples for our sys-
tem: the first one is about integrating in the same environ-
ment models from different sources and coming from differ-
ent clients, while in the second one the system is used as a
way of visualizing and sharing experimentation results over
the network.



6.1 The studio

This first example shows a virtual environment contain-
ing models coming from different applications, each using
its own internal representation. The clients participate in
this common session, which we call studio, by outputting
their models to the server.

(a) (b) (c)

Figure 8. Some views of the studio at a given
time

We will now briefly describe the different models present
in this example:

� The walls are simple VRML objects. They are deco-
rated with two different types of paints: first we have
images produced by a compositing software from the
University of Bath (UK), and rendered as textures ap-
plied to VRML objects. Examples are the landscape on
Figure 8(a), the left image of the pairs on Figures 8(a)
and 8(c). The second type of paints is produced by
the University of Bath (UK): the twin-images in Fig-
ure 8(a) and 8(c) are vectorial image representations
described in VRML from the internal NURBS format
of an image segmentation software.

� Our studio also includes models of actual objects cre-
ated by photogrammetry at the Turing Institute, Glas-
gow (UK). See the objects on the red cube in Fig-
ure 8(a) and the two outer faces on the wall in Fig-
ure 8(b).

� Between the two outer faces in Figure 8(b) there is an
example of facial animation produced at the University
of Geneva (Switzerland).

� The two yellow bodies (Figures 8(a) and 8(b)) are pro-
duced at the University of Glasgow (UK); the internal
format of the keyframe animation has been translated
into VRML.

� Finally, the pirate (Figure 8(c)) is the result of a body
reconstruction and animation done at École Polytech-
nique Fédérale de Lausanne (Switzerland).

In this example, all models are described in files contain-
ing the initial geometry as well as geometrical updates for
the animations. This is particularly suited for an offline an-
imation. Indeed, a client (or several clients) sends the files
to the server running in offline mode. Then, different clients
can look simultaneously at the same animation, possibly at
different times on the animation time line and from different
points of view. Each site can modify the part of the anima-
tion it is responsible for and send the changes to the server.
These modifications can concern any animation time and
can be sent at any time. This way, an animation can be built
collaboratively.

It is also possible to employ the studio in online mode.
However, then it is not anymore possible to modify what
was previously sent to the server; everything happens at the
specified time and the viewing time cannot be changed. As
a consequence, new updates can only concern current or fu-
ture time.

Figure 9 shows some images of an animation in the stu-
dio: the pirate says “yes”; one robot is walking, and the other
is waving.

6.2 The snake in the potential

The snake algorithm [13] is used at the Universityof Bath
to recover boundaries of homogeneous regions in blurred
images. Snakes are dynamic curves that minimize an en-
ergy associated to them. This energy is made of an internal
term (first and second order tension) and of an external term
coming from the image, which we call the potential. This
potential is made from the gradient of the image: it is min-
imum where a high image gradient occurs, i.e. where there
is a boundary between to regions.

We use the server in online mode to visualize the tempo-
ral evolution of the snake in the potential. The potential is
represented as a triangulated mesh while the snake is repre-
sented with diamonds for each of its control points. The po-
tential as well as the snake in its initial state are sent to the
server. Clients connected to the server can then ask for the
initial geometry. At each iteration, after computing the new
snake state, updates containing the new diamonds’ positions
are sent to the server. Clients can thus display the animation
in real time by regularly querying the server for the updates.

Figure 10 shows the time evolution of the snake during
the extraction of the boundary of a blurred shape in front of
a background. In the first column, the snake is at its initial
position. The last column shows the snake at equilibrium.
The two middle columns show intermediate positions.

In this example, we have used the server in online mode
but all messages sent to the server could have been saved
into a file and visualized later in offline mode. In both
modes, our system is used to visualize experiments and to
share the results over the network.



Figure 9. Some images of an animation in the
studio

7 Conclusion and future work

We have presented a new application to VRML-based
distributed environments. An external interface allows dif-
ferent, previously incompatible software to contribute to the
animation of a common scene. This flexibility allows a
group of researchers or practitioners to easily share their
competence. The only necessary modification of existing
code is the addition of a communication layer. The ap-
plications can run remotely over the net. This avoids all
problems of local installation and guarantees code privacy.
Preliminary results in two application domains, real-time
distributed environments and collaborative animation, have
been shown.

The centralized database included in the server allows us
to address the question of smart streaming in real-time envi-
ronments. Currently, on-demand data transmission allows
the server to send only the data which is relevant to a given
client at the time it queries the database. In the future, fur-
ther reduction of the network load should be obtained by ex-
ploiting the knowledge of the server about the scene and the
viewers. Knowing the camera position of a client will allow
the server to send only data relevant to what the client actu-
ally sees, and to use levels of detail for low priority items.

Collaborative animation has been performed and appears
a valuable approach. The ability of building on preexist-
ing animations generated by specialized software and prac-
titioners allows different users to incrementally design com-
plex animations, independently of what software and hard-
ware each uses. Further work should introduce physical data
such as mass and force to allow physical objects managed by
different clients to interact physically. Velocity should also
be modeled. The prototypingcapabilities of VRML97 allow
the creation of the desired new nodes.

Finally, we plan to increase compatibility with existing
or future standards. Using interpolators and switchingnodes
will allow the server to export an animation in true VRML97
language for web publishing. Conforming our additional
commands to the MPEG4 specifications will highly increase
the possible range of collaboration over the net.

Acknowledgements

We gratefully acknowledge the support of the European
Union’s Training and Mobility of Researchers (TMR) pro-
gramme in funding this work.

A The language

A subset of VRML97 is used to model geometry. The
following nodes are currently supported: Appearance,
Box, Color, Cone, Coordinate, Cylinder, DirectionalLight,



Group, ImageTexture, IndexedFaceSet, Material, Normal,
PixelTexture, Shape, Sphere, TextureCoordinate, Texture-
Transform, Transform, Viewpoint.

Additionally, a set of commands to access the database
are defined (see Table 1).

Table 1. The commands added to VRML to
form PaVRML

command syntax description

ADD name ADD graph Adds a VRML node or
graph to the specified node

GETTIME
GETTIME float Asks for the scene descrip-

tion at the time specified
(used in the offline mode
only)

INLINE INLINE ”url” Includes a remote scene or
animation

REMOVE parent REMOVE
child

remove the specified child
and subnodes

SETTIME SETTIME float Specifies the time updates
should occur at

UPDATE name UPDATE
field value

specifies numerical values

B The network library

Our system design is based on a client-server approach
similar to the approaches presented by Funkhouser [11] and
Das et al. [8]. The network implementation was intended to
function as a “middle-ware” layer that mediates between the
application and the underlying network infrastructure [12].

The network layer offers two types of basic message de-
livery services:

� Lightweight transport intended for fast, unreliable de-
livery of small messages of idempotent semantics.
Such messages are automatically discarded if newer
information becomes available as proposed by Kess-
ler [14].

� Heavyweight transport for reliable, stream-oriented
data delivery with the option of repeated acknowledge-
ment of the application layer when a user specified
amount of data has been received.

The selection of the appropriate mode of transport can either
be made by the system based on the message’s size, or it can
be chosen by the user.

Further functions of the network layer include intelligent
maintenance of the network connections, which is much
harder from the application layer. As an example, if no data

is received from a client for a specific period, it is assumed
dead. The client’s network connection is shut down and the
network layer notified the application layer and other clients.

C The interface

The only requirement for each partner of the network is
to be able to send and receive messages using the PaVRML
syntax:

� The production of VRML97 nodes from our own data
structures is quite an easy task: only a conversion pro-
gram of a few hundred lines has to be written by each
site involved in the project.

At the beginning of the animation a full description of
the objects added to the global scene has to be sent.
Then, after the generation of each new frame, only
modified values are sent.

� The task of receiving messages may be divided into
two subtasks:

– Parsing the received messages,

– Building a local copy of the modeled scene using
its own data structures.

Each partner does need a PaVRML parser. We use a
generic customizable parser. This parser is a C++ li-
brary which has been written using LEX for the lexi-
cal analysis and YACC for the grammar analysis. Each
time a VRML97 node is read by the parser, it calls a
virtual method from an abstract class. The task of each
partner is to derive this class and to write the methods
which will allow the building of the local copy of the
global scene. Similarly, our additional commands are
interpreted using procedure calls.

References

[1] Active worlds. http://www.digitalspace.com/avatars/aworld.html.
[2] Blaxxun. http://www.blaxxun.com.
[3] Building and interacting with universal virtual products.

http://support.division.com/5.tec/a papers/uvp.htm.
[4] Distributed interactive simulation dis-java-vrml working

group. http://www.vrml.org/.
[5] Vnet. http://ariadne.iz.net/ jeffs/vnet/FAQ.html.
[6] T. Capin, J. Esmerado, and D. Thalmann. Dead-reckoning

algorithms for streaming virtual human data. to appear in
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 1998.

[7] C. Carlsson and O. Hagsand. Dive - a multi-user virtual re-
ality system. In Proceedings of IEEE VRAIS ’93, Seattle,
Washington, 1993.



[8] T. K. Das, G. Singh, A. Mitchell, P. S. Kumar, and
K. McGhee. NetEffect: A Network Architecture for Large-
scale Multi-user Virtual Worlds. In D. Thalmann, edi-
tor, ACM Symposium on Virtual Reality Software and Tech-
nology, pages 157–163, New York, NY, Sept. 1997. ACM,
ACM Press.

[9] P. Doenges, T. Capin, F. Lavagetto, J. Ostermann, I. Pandzic,
and E. Petajan. Mpeg-4: Audio/video and synthetic graph-
ics/audio for real-time, interactive media delivery. Image
Communications Journal, 5(4):433–463, 1997.

[10] J. C. et al. The simnet virtual world architecture. Proceedings
of VRAIS’93, pages 450–455, 1993.

[11] T. Funkhouser. Network topologies for scalable multi-
user virtual environments. Proceedings of VRAIS’96, Santa
Clara CA, pages 222–229, 1996.

[12] G. Hesina. A network library for multi-user virtual envi-
ronments. Master’s thesis, Technical University of Vienna,
1997.

[13] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. International Journal of Computer Vision,
1(4):321–331, 1988.

[14] G. Kessler and L. Hodges. A network communication proto-
col for distributed virtual environment systems. Proceedings
of VRAIS’96, Santa Clara, CA, pages 214–221, 1996.

[15] M. Macedonia and M. Z. et al. Npsnet: A network software
architecture for large scale virtual environments. Presence,
3(4):265–287, 1994.

[16] I. Pandzic,N. M. Thalmann, T. Capin, and D. Thalmann. Vir-
tual life network: A body-centered networked virtual envi-
ronment. Presence, 6(6):676–686, 1997.

[17] D. Schmalstieg and M. Gervautz. Demand-driven geometry
transmission for distributed virtual environments. Proceed-
ings of EUROGRAPHICS’96, 15(3):421–432, 1996.

[18] D. Snowdon. Aviary: Design issues for future large-scale
virtual environments. Presence, 3(4):288–308, 1994.

[19] K. Watsen and M. Zyda. Bamboo - a portable system for
dynamically extensibe real-time, networked, virtual environ-
ments. In Proceedingsof IEEE VRAIS’98, Atlanta, Georgia,
1998.

Figure 10. The snake. The left column shows
the snake in the image while the column
shows the snake remotely visualized as a 3d
scene.


