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1. Introduction. In this paper, we address the problem of determining a weight
function in a domain representing a bimaterial strip containing a semi-infinite interfacial
crack. Where the crack is not present, the interface is considered imperfect, modeling a
thin layer of adhesive between the materials.

Weight functions are mainly used to evaluate stress intensity factors for asymptotic
representations near nonregular boundaries such as crack tips. Classically, symmetric
weight functions for interfacial cracks in two-dimensional elasticity were studied byHutch-
inson, Mear, and Rice [11] and Bueckner [8]. In these classical works, weight functions were
defined as the stress intensity factors corresponding to the point force loads applied
to the faces of the crack. More recently, Willis and Movchan [22] defined general weight
functions as nontrivial singular solutions of a boundary value problem with zero tractions
on the faces of the crack and unbounded elastic energy. Recently, weight functions have
been used to perform perturbation analysis of the crack front in [20] and to evaluate
Lazarus–Leblond constants in [19]. These works contain perfect interfaces that lead to
the well-known square root singularity phenomenon [13], [21], [22]. In the imperfect inter-
face problem considered in the present paper, there is no square root singularity in stress
components, and so the weight function instead takes the role of aiding in the evaluation of
important asymptotic constants that take the place of stress intensity factors.

The imperfect interface is a crucial feature of the problem discussed. Accurate
asymptotic derivations with various interfaces in composite materials (of imperfect type
among others) for antiplane shear without the presence of cracks have been analyzed in
[7], [10], [14]. Such interfaces have been used to model a thin layer consisting of small
cracks in such a way that the cracks do not appear in the analysis in [5], [6], [9] using the
phenomenological approach. Cracks in the static regime with imperfect interfaces
have been studied in [2], [15], where it is proved that the imperfect interface leads to
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a different type of singularity near the crack tip than in the ideal interface case. Analysis
of the perfect interface with cracks under harmonic load can be found in [1], [17] and
recently for a layered composite with cracks in [9]. The manuscript [17] considers wave
propagation in a thin bimaterial strip and discusses the singular behavior near the crack
tip, while [1] considers a bimaterial plane with waves propagating perpendicular to the
cracks.

We consider in this paper mode III deformation and describe the extent of the inter-
face’s imperfection by a positive parameter denoted κ. The problem we study here is a
singular perturbation problem; taking very small values for κ gives a qualitatively sig-
nificantly different weight function from that derived for the perfect interface case in
[17], which corresponds to the formulation with κ ¼ 0. Moreover, large values of κ
can lead to interesting effects, where the boundary layers surrounding different crack
tips decay slowly so they can no longer be considered as having no influence on the
Bloch–Floquet conditions. This effect is discussed in [4]; in the analysis presented in
the present paper, we assume that κ is not large enough for these effects to come into
play and later find a condition for this to be the case. Problems regarding cracks in
domains including imperfect interfaces have been studied in [2] and [16], but no corre-
sponding weight function has previously been constructed.

Another critical characteristic of the problem is that the strip considered is very
thin. In addition to the strip itself being very thin, imperfect interfaces are typically
replaced with an extremely thin layer of a softer bonding material in finite-element
computations (justified, for example, in [7], [10], [16]). Moreover, singular behavior ex-
ists at the crack tips. These points make finite element method (FEM) modeling for
particularly thin strips extremely difficult or even impossible and motivate the need
for the asymptotic approach. In this paper, we compare the asymptotic model with
finite-element simulations only in cases when the strip is not too thin, but stress that
the finite-element methods are unsuitable for the limiting case, whereas the asymptotics
remain valid. The asymptotic method also obtains crucial constants that describe the
solution’s behavior at the crack tips which are vital for determining whether fracture
may occur. These important constants would not be attained by finite-element methods.

The plan of the work is as follows. We first formulate the weight function problem
and use Fourier transform and Wiener–Hopf techniques [18] to obtain the solution.
Asymptotic analysis enables us to find analytic expressions for all important constants.
We then present an application of the weight function to the analysis of Bloch–Floquet
waves in a structure containing a periodic array of cracks and imperfect interfaces. This
application involves the derivation of junction conditions. Asymptotic theories for struc-
tures such as rods and plates have received much attention throughout the history of
elasticity theory. For multistructures, however, conditions in engineering practice are
often formulated on the basis of intuitive physical assumptions [3]. For example, the zero
order junction conditions for the problem addressed fit with physical intuition. It is
important to give these conditions a rigorous mathematical footing; moreover, higher
order junction conditions do not follow such intuition [12].

We conclude by presenting a comparison between the perfect interface case studied
in [17] and the imperfect interface case presented here.

2. Weight function.

2.1. Formulation of the problem. The geometry of the strip in which we con-
struct the weight function is shown in Figure 2.1. We define our domain ΠB to be the
union of Πð1Þ

B and Πð2Þ
B , where
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ΠðjÞ
B ¼ fðX;Y Þ∶X ∈ R; ð−1Þjþ1Y ∈ ð0; HjÞg; j ¼ 1; 2:

Πð1Þ
B corresponds to the material above the cut with shear modulus μ1, while Πð2Þ

B cor-
responds to the material below the cut with shear modulus μ2. The materials have
respective thicknesses H 1 and H 2. A semi-infinite crack with its tip placed at the origin
occupies X < 0, while the rest of the interface is assumed to be imperfect (see (2.5) in the
text below).

The functionsw1 andw2 are defined in domainsΠ1 andΠ2, respectively, as solutions
to the Laplace equation

∇2wjðX;Y Þ ¼ 0:ð2:1Þ

We impose boundary conditions along the horizontal parts of the boundary ofΠB and on
the crack face itself. We denote the components of stress in the out-of-plane direction by

σ
ðjÞ
nz ðX;Y Þ ≔ μj

∂uðjÞ

∂n
; j ¼ 1; 2:ð2:2Þ

We assume a zero stress component in the out-of-plane direction along the top and
bottom of the strip, as well as along the face of the crack itself:

σ
ð1Þ
YZ ðX;H 1Þ ¼ 0; σ

ð2Þ
YZ ðX;−H 2Þ ¼ 0; X ∈ R;ð2:3Þ

σ
ð1Þ
YZ ðX; 0þÞ ¼ 0; σ

ð2Þ
YZ ðX; 0−Þ ¼ 0; X < 0:ð2:4Þ

Ahead of the cut we impose the imperfect transmission conditions

w1jY¼0þ −w2jY¼0−
¼ κσð1Þ

YZ ðX; 0þÞ; X > 0;ð2:5Þ

where κ > 0 is a parameter describing the extent of imperfection of the interface. We
further assume continuity of tractions across the interface between the materials

σ
ð1Þ
YZ ðX; 0þÞ ¼ σ

ð2Þ
YZ ðX; 0−Þ; X > 0:ð2:6Þ

We seek solutions in the class of functions that decay exponentially asX → þ∞ and
are bounded as X → −∞:

wj ¼ Oðe−γþXÞ; X → þ∞; wj ¼ Cj þOðeγ−XÞ; X → −∞;ð2:7Þ

H2

H1

X

Y

FIG. 2.1. Geometry for the weight function.
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where γ� > 0 and Cj are constants to be sought from the analysis. At the vertex of the
crack, the solution wj is assumed to be weakly singular, with

w1; w2 ¼ Oðln jX jÞ; X → 0:ð2:8Þ

Formally, conditions (2.1)–(2.7) are similar to those in [17] if we take κ ¼ 0. However,
with κ > 0 the problem is a singular perturbation problem and the behavior described in
(2.8) is entirely different.

2.2. An auxiliary problem. We now introduce an auxiliary solution Y that
satisfies the Laplace equation (2.1) along with the boundary and transmission conditions
(2.3)–(2.6), but the conditions at infinity and at the vertex of the crack are modified as
follows:

Yj ¼ Oðe−γþXÞ; X → þ∞;ð2:9Þ
Yj ¼ CjX þ Dj þOðeγ−XÞ; X → −∞;ð2:10Þ
Yj ¼ Yjð0þ; 0Þ þOðX ln jX jÞ; X → 0:ð2:11Þ

The functions w and Y are related via the formula

wðX;Y Þ ¼ ∂
∂X

YðX;Y Þ:ð2:12Þ

Bearing this relationship in mind, we often later refer to Y as a “weight function” as well
as w. It is also shown in [15] that as R → 0,

Y� ¼ ð−1ÞjaðYÞ0

πμj

�
μ1κπ

1þ μ1

μ2

þ
�
1− ln

�
R

b
ðYÞ
0

��
R cos θ � ðπ∓θÞR sin θ

�
;ð2:13Þ

where Yþ and Y− represent Y1ðR; θÞ and Y2ðR; θÞ, respectively, and ðR; θÞ describes the
usual polar coordinate system with θ ∈ ½0;π� for Y1 and θ ∈ ½−π; 0� for Y2.

2.2.1. Derivation of Wiener–Hopf equation. We define the Fourier trans-
forms of Yj as

Ȳjðξ; Y Þ ¼
Z

∞

−∞
eiξXYjðX;Y ÞdX:ð2:14Þ

The functions Ȳj are analytic in the strip S ¼ fξ ∈ C∶ − γþ < ImðξÞ < 0g; and have a
double pole only at the point ξ ¼ 0, so

Ȳjðξ; Y Þ∼ 1

ξ2
Cj − i

Dj

ξ
þOð1Þ; ξ → 0:ð2:15Þ

Note that the functions Ȳjðξ; Y Þ can be analytically extended to the strip

~S ¼ fξ ∈ C∶ − γþ < ImðξÞ < γ−g:

Let us now introduce ½Y�, the jump in Y, defined by

½Y� ¼ Y1jY¼0þ − Y2jY¼0−:ð2:16Þ
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We see from (2.15) that the Fourier transform of the jump ½Y�ðXÞ generally speaking has
a double pole at the point ξ ¼ 0.

We introduce the following notation:

Φ−ðξÞ ¼ ½Y�− μ1κ
∂Y1

∂Y

����
Y¼0þ

¼
Z

0

−∞

�
½Y�ðXÞ− μ1κ

∂Y1

∂Y

����
Y¼0þ

�
eiξXdX;ð2:17Þ

where we have taken into account (2.5) or, equivalently, the fact that ½Y�−
μ1κ

∂Y1

∂Y jY¼0þ ¼ 0 for X > 0. The function Φ−ðξÞ is analytic in the half-plane
ImðξÞ < 0 and has a double pole at ξ ¼ 0. Thus it can be analytically extended into
the half-plane C− ¼ fξ ∈ C∶ImðξÞ < γ−g. We further define the function

ΦþðξÞ ¼ μ1

Z
∞

0

∂Y1

∂Y

����
Y¼0þ

eiξXdX;ð2:18Þ

and so according to (2.4), ΦþðξÞ is analytic in the half-plane Cþ ¼ fξ ∈ C∶
ImðξÞ > −γþg.

We expect that

Φ�ðξÞ ¼ E�
1

ξ
þ E�

2 lnð∓iξÞ
ξ

þO

�
1

ξ2

�
; ξ → ∞;ð2:19Þ

in the respective domain according to (2.11); we later confirm this to be true.
The Fourier transforms of the functions Yj are of the form

Ȳjðξ; Y Þ ¼ AjðξÞ coshðξY Þ þ BjðξÞ sinhðξY Þ:ð2:20Þ

Upon the application of boundary and transmission conditions, expressions relating
AjðξÞ and BjðξÞ are found:

BjðξÞ ¼ ð−1ÞjAjðξÞ tanhðξHjÞ; j ¼ 1; 2; μ1B1ðξÞ− μ2B2ðξÞ ¼ 0:ð2:21Þ

Moreover, Φ�ðξÞ can be expressed in terms of AjðξÞ, BjðξÞ.
Φ−ðξÞ ¼ A1ðξÞ−A2ðξÞ− μ1κξB1ðξÞ; ΦþðξÞ ¼ μ1ξB1ðξÞ:ð2:22Þ

By applying boundary and transmission conditions, we conclude that the functions
ΦþðξÞ and Φ−ðξÞ satisfy the functional equation of the Wiener–Hopf type

Φ−ðξÞ ¼ −ΞðξÞΦþðξÞð2:23Þ

in the strip −γþ < ImðξÞ < 0, where

ΞðξÞ ¼ 1

ξ

�
1

μ1

cothðξH 1Þ þ
1

μ2

cothðξH 2Þ þ κξ

�
;ð2:24Þ

and−γþ is equal to the size of the imaginary part of the first zero of ΞðξÞ lying below the
real axis. We would like to stress that the form of the Wiener–Hopf kernel ΞðξÞ demon-
strates that the weight function problem is a singular perturbation problem as κ → 0;
the presence of the term involving κ fundamentally alters the asymptotic behavior of
ΞðξÞ as ξ → ∞.
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2.2.2. Factorization of the Wiener–Hopf kernel. We note that the kernel
function ΞðξÞ as defined in (2.24) can be written in the form

ΞðξÞ ¼ κ
ðλþ iξÞðλ− iξÞ

ξ2
Ξ�ðξÞ;ð2:25Þ

where

Ξ�ðξÞ ¼
ξðμ1 cothðξH 2Þ þ μ2 cothðξH 1Þ þμ1μ2κξÞ

μ1μ2κðλ2 þ ξ2Þð2:26Þ

and

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1H 1 þ μ2H 2

μ1μ2H 1H 2κ

s
:ð2:27Þ

Now, Ξ�ðξÞ is analytic in a strip containing the real axis, clearly positive, even and
smooth for all ξ ∈ R and has been chosen in such a way so that Ξ�ðξÞ tends toward 1 as
ξ → �∞ and as ξ → 0. Furthermore, the function Ξ�ðξÞ can be factorized in the form

Ξ�ðξÞ ¼ Ξþ� ðξÞΞ−� ðξÞ;ð2:28Þ

where

Ξ�� ðξÞ ¼ exp

��1

2πi

Z
∞∓iβ

−∞∓iβ

ln Ξ�ðtÞ
t− ξ

dt

�
;ð2:29Þ

and β > 0 is chosen to be sufficiently small so the contours of integration lie within the
strip of analyticity of Ξ�ðξÞ. The functions Ξ�� are analytic in their respective half-planes.
To conclude this subsection, we have factorized ΞðξÞ in the form given in (2.25) and
(2.28), where Ξ�� are analytic in the half-planes denoted by their superscripts. Note that
in the case H 1 ¼ H 2, other factorization has been obtained in [2].

2.2.3. Asymptotic behavior of Ξ�� . We now seek asymptotic estimates of Ξþ� ðξÞ.
We first note that for ξ within the strip of analyticity,

ΞðξÞ ¼ η

ξ2
þOð1Þ; Ξ�ðξÞ ¼ 1þOðjξj2Þ; ξ → 0; η ¼ 1

μ1H 1

þ 1

μ2H 2

:ð2:30Þ

Let us now consider more accurately the behavior of Ξ�ðξÞ for ξ ∈ R as ξ → ∞. Noting
that Ξ�ðξÞ is an even function, it follows from (2.24) that

Ξ�ðξÞ ¼ 1þ μ1 þ μ2

μ1μ2κjξj
−

λ2

ξ2
þO

�
1

jξj3
�
; ξ → �∞:ð2:31Þ

The same estimate is true for any ξ lying in the strip of analyticity. We further find that

Ξþ� ðξÞ ¼ 1þ αξ

πi
þOðjξj2Þ; ξ → 0;ð2:32Þ
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Ξþ� ðξÞ ¼ 1þ 1

πi

ðμ1 þ μ2Þ
μ1μ2κ

lnð−iξÞ
ξ

þO

�
1

jξj
�
; ImðξÞ → þ∞;ð2:33Þ

the derivation of these expressions is given in Appendix A. Here we have defined the
asymptotic constant

α ¼
Z

∞

0

ln Ξ�ðtÞ
t2

dt:ð2:34Þ

The important expression (2.33) describing logarithmic asymptotics at infinity is needed
later for (2.43).

2.2.4. Solution of the Wiener–Hopf equation. The factorized equation (2.23)
is of the form

−κðλ− iξÞΦþðξÞΞþ� ðξÞ ¼
1

λþ iξ
ξ2Φ−ðξÞ 1

Ξ−� ðξÞ
:ð2:35Þ

Both sides of (2.35) represent analytic functions in the strip −γþ < ImðξÞ < γ−. More-
over, we now have asymptotic estimates for Ξ�� ðξÞ at the zero point in (2.32) and for
ξ → �∞ in (2.33). We deduce that since both sides of (2.35) exhibit the same behavior
at infinity in their respective domains according to (2.19), both sides must be equal to a
constant, which we denoteA. We can therefore obtain explicit expressions forΦ�, which
are as follows:

ΦþðξÞ ¼ −
A

κðλ− iξÞΞþ� ðξÞ
; Φ−ðξÞ ¼ Aðλþ iξÞΞ−� ðξÞ

ξ2
.ð2:36Þ

We deduce that

Ȳjðξ; Y Þ ¼ −
AΦþðξÞ
μjξ

�
coshðξðY þ ð−1ÞjHjÞÞ

sinhðξð−1Þjþ1HjÞ
�
; j ¼ 1; 2:ð2:37Þ

This allows us to investigate the behavior of Ȳj as ξ → �∞ and at the zero point. It also
enables us to find the hitherto unknown real constants Cj and Dj.

2.2.5. Evaluation of constants Cj, Dj, a
�Y�
0 , γ�. In this subsection, we evaluate

the constants γþ (defined in (2.9)), γ−, Cj, Dj (defined in (2.10)), and a
ðYÞ
0 (defined in

(2.13)). We see from our expressions for Ȳj and Φþ ((2.36) and (2.37)), along with our
asymptotic estimate for Ξþ� ðξÞ as ξ → 0, that

ȲjðξÞ ¼
ð−1Þjþ1A
κλμjHj

�
1

ξ2
−

i

ξ

�
−
α

π
−

1

λ

��
þOð1Þ; ξ → 0;ð2:38Þ

where α is the constant defined in (2.34). It follows from our definition of Cj and Dj in
(2.15) that

Cj ¼
ð−1Þjþ1A
κλμjHj

; Dj ¼
ð−1ÞjA
κλμjHj

�
α

π
þ 1

λ

�
:ð2:39Þ

For normalization, we choose A ¼ κλ, giving
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Cj ¼
ð−1Þjþ1

μjHj

; Dj ¼
ð−1Þj
μjHj

�
α

π
þ 1

λ

�
:ð2:40Þ

The chosen normalization leaves the expression for Cj in (2.40) in the same form as in
[17], but it is clearly seen that the expression for Dj (which depends upon κ) is different.
Mishuris (2001) [15] demonstrates that near the crack tip (i.e., as R → 0), YjðR; θÞ has
behavior described by (2.13). From this we see that

½Y�∼−κaðYÞ0 ; R → 0:ð2:41Þ

The imperfect transmission conditions (2.5) therefore give that

μ1

∂Y1

∂Y

����
Y¼0þ

∼−a
ðYÞ
0 ; X → 0:ð2:42Þ

We earlier made an assumption in (2.19) regarding the behavior of Φþ at infinity
and now verify that this was correct. It follows from the expression for ΦþðξÞ given in
(2.36) and the asymptotic estimate for Ξþ� ðξÞ given in (2.33) that

ΦþðξÞ ¼ λ

iξ
þ ðμ1 þ μ2Þλ

μ1μ2πκξ
2

lnð−iξÞ þO

�
1

jξj2
�
; ImðξÞ → þ∞;ð2:43Þ

which justifies our previous claim. Theorem B.1 (using μ1
∂Y
∂Y in place of “f ” in the state-

ment of the theorem) then yields that

lim
X→0þ

μ1

∂Y
∂Y

¼ −λ;ð2:44Þ

where λ has been defined in (2.27) and so it follows that

a
ðYÞ
0 ¼ λ:ð2:45Þ

The constant γþ is the distance of the first zero of ΞðξÞ below the real axis. Manipulation
of (2.24) indicates that zeros of ΞðξÞ satisfy

1

μ1

cotðγþH 1Þ þ
1

μ2

cotðγþH 2Þ− κγþ ¼ 0.ð2:46Þ

For the first zero below the axis, for large κ, γþ should be small, and so it can be shown
that

γþðκÞ ¼ λðκÞð1þOðκ−1ÞÞ; κ → ∞;ð2:47Þ

indicating that γþðκÞ ¼ Oðκ−1∕ 2Þ, κ → ∞. We also see that

γþð0Þ ∈
�

π

2H 1

;
π

2H 2

�
:ð2:48Þ

The constant γ− is given by

γ− ¼ π min

�
1

H 1

;
1

H 2

�
:ð2:49Þ
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In conjunction with (2.40), we have now found all constants describing the asymptotic
behavior of the weight function Y.

3. Application to analysis of Bloch–Floquet waves. In this section, we pre-
sent an application of the weight function derived in the previous section by addressing
the problem of out-of-plane shear Bloch–Floquet waves within a thin bimaterial strip
containing a periodic array of longitudinal cracks and imperfect interfaces. The problem
addressed is an imperfect interface analogue to that studied in [17].

3.1. Geometry. The geometry of an elementary cell of the thin periodic structure
considered is shown in Figure 3.1. The elementary cell is of length a and contains two
materials of thicknesses εH 1 and εH 2, where ε is a small dimensionless parameter. These
materials occupy respective domains ΠðjÞ, j ¼ 1, 2, and the elementary cell is further split
into smaller domains ΩðmÞ

ε , m ¼ 1, 2, 3, 4, as shown in Figure 3.1. Along the interface of
the two materials and centered on the origin sits a crack of length l. Outside the crack, the
interface is assumed to be imperfect, which models a thin layer of adhesive joining the
materials together. The extent of this imperfection is represented by the parameter κ.

The functions uðjÞðx; yÞ are defined in ΠðjÞ
ε , j ¼ 1, 2, as solutions of the Helmholtz

equations

∇2uðjÞðx; yÞ þ ω2

c2j
uðjÞðx; yÞ ¼ 0; ðx; yÞ ∈ ΠðjÞ

ε ; j ¼ 1; 2:ð3:1Þ

Here, cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μj ∕ ρj

p
are the shear speeds in their respective domains j ¼ 1, 2. The func-

tions uðjÞ are regarded as out-of-plane displacements,μj denotes the shear modulus, and
ρj denotes the mass density of the material occupying ΠðjÞ

ε . The quantity ω represents
the radian frequency of the time-harmonic vibrations with amplitude u.

3.2. Boundary conditions. We impose boundary conditions along the horizontal
parts of the boundary of Πε and on the crack face itself. We use similar notation to that
in the previous section to denote the components of stress (see (2.2)).

We assume a zero stress component in the out-of-plane direction along the top and
bottom of the strip, as well as along the face of the crack itself:

σ
ð1Þ
yz ðx; εH 1Þ ¼ 0; σ

ð2Þ
yz ðx;−εH 2Þ ¼ 0; x ∈ ð−a∕ 2; a∕ 2Þ;ð3:2Þ

σ
ð1Þ
yz ðx; 0þÞ ¼ 0; σ

ð2Þ
yz ðx; 0−Þ ¼ 0; x ∈ ð−l∕ 2; l∕ 2Þ:ð3:3Þ

FIG. 3.1. Geometry of the elementary cell.
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Outside the crack, along the boundary between Πð1Þ
ε and Πð2Þ

ε , there is an imperfect
interface described by the condition

uð1Þðx; 0þÞ− uð2Þðx; 0−Þ ¼ εκσð1Þ
yz ðx; 0þÞ; x ∈ ð−a∕ 2;−l∕ 2Þ ∪ ðl∕ 2; a∕ 2Þ:ð3:4Þ

We also assume continuity of stress across the interface

σ
ð1Þ
yz ðx; 0þÞ ¼ σ

ð2Þ
yz ðx; 0−Þ; x ∈ ð−a∕ 2;−l∕ 2Þ ∪ ðl∕ 2; a ∕ 2Þ:ð3:5Þ

We seek the solutions uðjÞ that represent the Bloch–Floquet waves, so that at the ends of
our elementary cell x ¼ �a∕ 2, we have for j ¼ 1, 2 the Bloch–Floquet conditions

uðjÞð−a∕ 2; yÞ ¼ e−iKauðjÞða∕ 2; yÞ; y ∈ ð−εH 2; εH 1Þ;ð3:6Þ

σ
ðjÞ
xz ð−a∕ 2; yÞ ¼ e−iKaσ

ðjÞ
xz ða∕ 2; yÞ; y ∈ ð−εH 2; εH 1Þ:ð3:7Þ

For a fixed value of the Bloch parameter K , we seek the eigenvalues ω and the
corresponding eigenfunctions uðjÞ with finite norm in W 1

2ðΠðjÞ
ε Þ, j ¼ 1, 2.

In (3.4), the case in which κ ¼ 0 corresponds to an ideal/perfect interface between
the different materials; such a problem was considered in [17]. Where possible, we will
follow the same line as in that paper. To summarize the approach, we approximate u in a
certain form, derive a lower-dimensional model together with boundary layers in the
vicinity of the vertices of the crack, and then use our weight function to assist in
the derivation of junction conditions for a skeleton model.

3.3. Asymptotic ansatz. The eigenfunctions uðx; yÞ are approximated in the
form

uðx; y; εÞ ¼
XN
k¼0

εk
�X4

m¼1

χmðvðkÞm ðxÞ þ ε2V
ðkÞ
m ðx;Y ÞÞ

þ ðW ðkÞ
A ðXA;Y Þ þW

ðkÞ
B ðXB;Y ÞÞ

�
þ RN ðx; y; εÞð3:8Þ

with scaled coordinates XA, XB , and Y introduced in the vicinity of the left and right
vertices of the crack defined as

XA ¼ x− xA
ε

; XB ¼ x− xB
ε

; Y ¼ y

ε
:ð3:9Þ

Here, vðkÞm represent solutions of lower-dimensional problems within limit sets ΩðmÞ
0 ,

m ¼ 1, 2, 3, 4. χm ¼ χmðx; y; εÞ are cut-off functions defined so that χmðx; y; εÞ≡ 1
in ΩðmÞ

ε and decay rapidly to zero outside ΩðmÞ
ε . They vanish near the so-called junction

points A and B (the vertices of the crack). The terms W
ðkÞ
A and W

ðkÞ
B represent the

boundary layers near A and B, and V
ðkÞ
m is the “fast” change of eigenfunctions in the

transverse direction in the domain ΩðjÞ
ε . RN is the remainder term in the asymptotic

approximation. We would like to indicate to the reader that the uppercase scaled co-
ordinateXB defined in (3.9) corresponds toX from the derivation of the weight function
in section 2.

We note that this form of ansatz relies upon the vital assumption that the boundary
layers surrounding the crack vertices A and B are independent. That is, we assume that
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the exponential decay of both boundary layers is sufficiently rapid so that it is negligible
in the vicinity of the other crack tip.

In this paper, we will consider the form of approximation given in (3.8) with N ¼ 1
and will comment on the effect of taking higher order approximations.

3.4. One-dimensional model problems. Outside the vicinity of A and B, the
boundary layersW ðjÞ

A andW
ðjÞ
B decay (we later verify this to be the case) and so seek u in

the form

uðx; y; εÞ∼
X1
k¼0

εkðvðkÞm ðxÞ þ ε2V
ðkÞ
m ðx;Y ÞÞ;ð3:10Þ

where V ðkÞ
m have zero average over the cross-section of ΩðmÞ

ε for allm ¼ 1, 2, 3, 4. That is,Z
H 1

0
V

ðkÞ
m ðx; Y ÞdY ¼ 0;

Z
0

−H 2

V
ðkÞ
m ðx;Y ÞdY ¼ 0:ð3:11Þ

Since the low-dimensional model problem studied in [17] was the same above and below
the crack (in Ωð2Þ

ε and Ωð3Þ
ε ), we refer the reader to that paper. The problem is, however,

differently formulated in Ωð1Þ
ε and Ωð4Þ

ε due to the imperfect transmission conditions in
these domains. We focus our attention on the layered structure Ωð1Þ

ε ; analogous argu-
ments will apply to Ωð4Þ

ε . We use the notation v
ðkÞ
1j to denote the function v

ðkÞ
1 in ΠðjÞ

ε . The
key observation is then to note that the transmission condition across the imperfect
interface as given in (3.4) implies that

v
ðkÞ
11 − v

ðkÞ
12 ¼ 0; k ¼ 0; 1;ð3:12Þ

and so it follows that for k ¼ 0, 1, the solution to this low-dimensional model is not
impacted by the presence of the imperfect interface.

To conclude this section, we have found that our case with the imperfect interface
has the same equations for the low-dimensional model up to terms in ε as the case with
the perfect interface studied in [17]. The equations for vðkÞ4 and V

ðkÞ
4 are of course similar

to the case examined here, where m ¼ 1. We would like to stress that the imperfect
interface impacts on the low-dimensional model equations for terms in εk, k ≥ 2.
The equations gained in this section need to be complemented with the boundary con-
ditions and junction conditions at the points xA and xB . In order to derive these junction
conditions that depend on the imperfect parameter κ, we construct boundary layers in
the vicinity of the vertices of the crack.

4. Junction conditions. We introduce four smooth cut-off functions χm ∈
C∞ðRÞ in the spirit of [17]. These are functions defined so that χmðx; y; εÞ≡ 1 in
ΩðmÞ

ε and decay rapidly to zero outside ΩðmÞ
ε . These allow us to extend the function

(3.10) outside ΩðmÞ
ε , m ¼ 1, 2, 3, 4, giving

uðx; y; εÞ∼
X1
k¼0

εk
X4
m¼1

χmðx; y; εÞðvðkÞm ðxÞ þ ε2V
ðkÞ
m ðx; Y ÞÞ;ð4:1Þ

however, this gives an error near the junction points xA and xB . We therefore introduce
boundary layers WAðXA;Y Þ and WBðXB;Y Þ, and so seek uðx; y; εÞ in the form
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u∼
X1
k¼0

εk
�X4

m¼1

χmðvðkÞm ðxÞ þ ε2V
ðkÞ
m ðx; Y ÞÞ þW

ðkÞ
A ðXA;Y Þ þW

ðkÞ
B ðXB;Y Þ

�
:

Substituting this expression into the original equation and comparing terms of the same
degree of ε, we obtain

∇2
XαY

fW ðkÞ
α ðXα; Y Þ þ F ðkÞ

α ðXα; Y Þg ¼ 0; α ¼ A;B; k ¼ 0; 1;ð4:2Þ

with the functions F ðkÞ
α , k ¼ 0, 1, α ¼ A, B given by

F ð0Þ
A ¼

X3
m¼1

v
ð0Þ
m ðxAÞχmðx; y; εÞ; F ð0Þ

B ¼
X4
m¼2

v
ð0Þ
m ðxBÞχmðx; y; εÞ;

F ð1Þ
A ¼

X3
m¼1

fðvð0Þm Þ 0ðxAÞXA þ v
ð1Þ
m ðxAÞgχmðx; y; εÞ;ð4:3Þ

F ð1Þ
B ¼

X4
m¼2

fðvð0Þm Þ 0ðxBÞXB þ v
ð1Þ
m ðxBÞgχmðx; y; εÞ:ð4:4Þ

We now focus our attention near xB ; analogous arguments apply to xA. We will consider
in the following analysis four functions gi, i ¼ 1, 2, 3, 4, which are solutions of the
Laplace equation. These solutions also satisfy the boundary conditions corresponding
to zero stress on the top and bottom edges of the strip (2.3) as well as along the cut
itself (2.4). They also satisfy the transmission condition (2.5) across the imperfect inter-
face, along with continuity of stress (2.6). These solutions are given by

g1 ¼ 1; g2 ¼ XB; g3 ¼ Y; g4 ¼
∂Y
∂X

;ð4:5Þ

where Y is the weight function derived in section 2.
Since they are boundary layers, we expect that W ðkÞ

B decay exponentially as X →
þ∞ and behave as C ðkÞ

j X þD
ðkÞ
j as X → −∞. We first express C ðkÞ

j , DðkÞ
j , k ¼ 0, 1, in

terms of vðkÞm and their derivatives. We have from Green’s formula that

0 ¼
X2
j¼1

μj

Z
∂ΠðjÞ

B
ðLÞ

�
gi

∂
∂n

ðW ðkÞ
B þ F ðkÞ

B Þ− ðW ðkÞ
B þ F ðkÞ

B Þ ∂gi
∂n

�
dS:ð4:6Þ

The further analysis is quite similar to that in [17], although we would like to stress that
the weight function Y in the present paper is different, as are the transmission condi-
tions. We therefore need to prepare this analysis from the beginning, where it is different
for g3, g4.

4.1. The cases k � 0, 1, i � 1, 2, 3. We see from boundary conditions that in-
tegrals over the horizontal parts of the boundary l

ðjÞ
1 , lðjÞ3 , lðjÞ4 , j ¼ 1, 2, give zero con-

tribution to the integral. Moreover, the contribution from Sδ also disappears as δ → 0
(see Figure 4.1) for g1, g2, and g3, leaving contributions solely from l

ðjÞ
2 and l

ðjÞ
5 in these

cases.
From the definitions of F ðkÞ

B , we obtain the following limits at �∞ for k ¼ 0, 1:

F ð0Þ
B ¼ v

ð0Þ
4 ðxBÞ; XB → þ∞;ð4:7Þ
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F ð0Þ
B ¼ v

ð0Þ
2 ðxBÞHðY Þ þ v

ð0Þ
3 ðxBÞHð−Y Þ; XB → −∞;ð4:8Þ

F ð1Þ
B ¼ ðvð0Þ4 Þ 0ðxBÞXB þ v

ð1Þ
4 ðxBÞ; XB → þ∞;ð4:9Þ

F ð1Þ
B ¼

X3
j¼2

fðvð0Þj Þ 0ðxBÞXB þ v
ð1Þ
j ðxBÞgHðð−1ÞjY Þ; XB → −∞;ð4:10Þ

where HðY Þ is the Heaviside step function. Since W
ðkÞ
B → 0 as XB → þ∞, (4.6)

reduces to

0 ¼
X2
j¼1

μj

Z
l
ðjÞ
5

�
gi

∂
∂XB

F ðkÞ
B − F ðkÞ

B

∂gi
∂XB

�
dSð4:11Þ

−
X2
j¼1

μj

Z
l
ðjÞ
2

�
gi

∂
∂XB

ðF ðkÞ
B þW

ðkÞ
B Þ− ðF ðkÞ

B þW
ðkÞ
B Þ ∂gi

∂XB

�
dS .ð4:12Þ

Applying this procedure with each of g1, g2, g3, and F ð0Þ
B , F ð1Þ

B yields six equations, which
are presented in subsection 4.3.

4.2. The cases k � 0, 1, i � 4. To obtain a further two equations, we apply the
same procedure to the solution g4 ¼ ∂Y

∂XB
. Again, the contribution from the horizontal

parts of the contour of integration is zero, leaving nonzero contributions from the ver-

tical parts of the contour, lðjÞ2 and l
ðjÞ
5 . Unlike with g1, g2, and g3, however, the contribu-

tion from Sδ
ðjÞ is nonzero. We investigate the behavior of g4 near the crack tip.

We have that g
ðjÞ
4 ¼ ∂Yj

∂X ¼ ∂Yj

∂R cos θ − 1
R

∂Yj

∂θ sin θ, where ðR; θÞ is the usual polar

coordinate system, with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

B þY 2
p

, and so from our asymptotic estimate for
Yj near the crack tip, we deduce that near the crack tip,

FIG. 4.1. Contour of integration for (4.6).
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g
ðjÞ
4 ∼

ð−1Þj
πμj

fbðYÞ0 þ a
ðYÞ
0 ln Rþ ð−1Þðjþ1ÞaðYÞ0 sin 2θðπþ ð−1ÞjθÞg;ð4:13Þ

and so for small R,

∂gðjÞ4

∂R
∼

ð−1ÞjaðYÞ0

πμjR
:ð4:14Þ

Noting that the outward normal to S ðjÞ
δ is in the direction of −R, we have that as δ → 0,

μj

Z
Sδ

�
g4

�
−

∂
∂R

�
ðW ðkÞ

B þ F ðkÞ
B Þ− ðW ðkÞ

B þ F ðkÞ
B Þ

�
−
∂g4
∂R

��
dS

¼μj

Z
Sδ

�
ðW ðkÞ

B þ F ðkÞ
B Þ ∂g4

∂R

�
Rdθ ¼ μj

Z
Sδ

ð−1ÞjaðYÞ0

πμjR
ðW ðkÞ

B þ F ðkÞ
B ÞRdθ:ð4:15Þ

SinceWB satisfies the same model problem as Y, it too will possess asymptotic behavior
at the crack tip of the same form as g4 in (4.13), but with different constants, which we

denote a
ðW Þ
ðkÞ and b

ðW Þ
ðkÞ , for k ¼ 0, 1. The contribution to the integral from the circular

part of the contour is therefore given by

−
a
ðYÞ
0

π

Z
π

0
ðW ðkÞ

B ð0þ; θÞ þ F ðkÞ
B ð0þ; θÞÞdθ þ a

ðYÞ
0

π

Z
0

−π

ðW ðkÞ
B ð0þ; θÞ þ F ðkÞ

B ð0þ; θÞÞdθ

¼ −
a
ðYÞ
0

π

Z
π

0

−1

πμ1

μ1κπ

1þ μ1

μ2

a
ðW Þ
ðkÞ dθ þ a

ðYÞ
0

π

Z
0

−π

1

πμ2

μ1κπ

1þ μ1

μ2

a
ðW Þ
ðkÞ dθ ¼ κaðYÞ0 a

ðW Þ
ðkÞ :

With this information at hand, we are now able to apply (4.6) with g4 and F ð1Þ
B , F ð2Þ

B ,
yielding two further relationships.

4.3. Deriving the junction conditions. We define the column matrices

EðkÞ ¼ ½C ðkÞ
1 C

ðkÞ
2 D

ðkÞ
1 D

ðkÞ
2

�T ; k ¼ 0; 1:ð4:16Þ

The eight equations obtained in the previous two subsections can then be rewritten as
two matrix equations, the first of which is found to be

MEð0Þ ¼

2
6664

0
ðμ1H 1 þ μ2H 2Þvð0Þ4 ðxBÞ− μ1H 1v

ð0Þ
2 ðxBÞ−μ2H 2v

ð0Þ
3 ðxBÞ

μ1H 1C1v
ð0Þ
2 ðxBÞ þμ2H 2C 2v

ð0Þ
3 ðxBÞ

κaðYÞ0 a
ðW Þ
0

3
7775;ð4:17Þ

where M is the 4× 4 matrix2
666664

μ1H 1 μ2H 2 0 0
0 0 μ1H 1 μ2H 2

μ1H 1D1 μ2H 2D2 −μ1H 1C1 −μ2H 2C 2

μ1H 1C 1 μ2H 2C 2 0 0

3
777775;ð4:18Þ
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where Cj andDj are the asymptotic constants from the weight function defined in (2.40).
The determinant ofM is given by detðMÞ ¼ −μ2

1μ
2
2H

2
1H

2
2ðC 1 − C 2Þ2 < 0. Therefore, for

C
ð0Þ
1 ¼ C

ð0Þ
2 ¼ D

ð0Þ
1 ¼ D

ð0Þ
2 ¼ 0 (that is, forW to vanish far away from the crack tip as we

would expect for such a boundary layer), we have that the matrix in the right-hand side of
(4.17) must be equal to zero. From this follow the junction conditions

v
ð0Þ
2 ðxBÞ ¼ v

ð0Þ
3 ðxBÞ ¼ v

ð0Þ
4 ðxBÞ;ð4:19Þ

a
ðW Þ
ð0Þ ¼ 0:ð4:20Þ

The latter condition (4.20) yields that W ð0Þ
B ≡ 0. The second matrix equation is

MEð1Þ ¼

2
6664

ðμ1H 1 þ μ2H 2Þðvð0Þ4 Þ 0ðxBÞ− μ1H 1ðvð0Þ2 Þ 0ðxBÞ− μ2H 2ðvð0Þ3 Þ 0ðxBÞ
ðμ1H 1 þ μ2H 2Þvð1Þ4 ðxBÞ− μ1H 1v

ð1Þ
2 ðxBÞ− μ2H 2v

ð1Þ
3 ðxBÞ

μ1H 1C1v
ð1Þ
2 ðxBÞþμ2H 2C 2v

ð1Þ
3 ðxBÞ−μ1H 1D1ðvð0Þ2 Þ 0ðxBÞ−μ2H 2D2ðvð0Þ3 Þ 0ðxBÞ

κaðYÞ0 a
ðW Þ
1 − μ1H 1C1ðvð0Þ2 Þ 0ðxBÞ− μ2H 2C 2ðvð0Þ3 Þ 0ðxBÞ

3
7775;

ð4:21Þ

whereM is the matrix given in (4.18). For C ð1Þ
1 ¼ C

ð1Þ
2 ¼ D

ð1Þ
1 ¼ D

ð1Þ
2 ¼ 0, the right-hand

matrix is again set to zero. Noting that a
ðYÞ
0 ¼ λ (see (2.45)) and that μ1H 1C 1þ

μ2H 2C 2 ¼ 0, setting the fourth row of the right-hand side (RHS) matrix to zero then
yields that

a
ðW Þ
ð1Þ ¼ 1

κλ
Δfðvð0ÞÞ 0g;ð4:22Þ

where

Δfðvð0ÞÞ 0gðxBÞ ¼ ðvð0Þ2 Þ 0ðxBÞ− ðvð0Þ3 Þ 0ðxBÞ:ð4:23Þ

The other conditions imply

v
ð1Þ
2 ðxBÞ ¼ v

ð1Þ
4 ðxBÞ−

μ2H 2

μ1H 1 þ μ2H 2

�
α

π
þ 1

λ

�
Δfðvð0ÞÞ 0gðxBÞ;ð4:24Þ

v
ð1Þ
3 ðxBÞ ¼ v

ð1Þ
4 ðxBÞ þ

μ1H 1

μ1H 1 þ μ2H 2

�
α

π
þ 1

λ

�
Δfðvð0ÞÞ 0gðxBÞð4:25Þ

along with the relationship

ðμ1H 1 þ μ2H 2Þðvð0Þ4 Þ 0ðxBÞ− μ1H 1ðvð0Þ2 Þ 0ðxBÞ− μ2H 2ðvð0Þ3 Þ 0ðxBÞ ¼ 0:ð4:26Þ

We stress that α and λ are functions of κ, and so expressions (4.24) and (4.25) describe how
the junction conditions depend upon the extent of imperfection of the interface. In parti-
cular, ðα ∕ πþ 1 ∕ λÞ is a constant that plays a crucial physical role since it defines the
proportionality between the displacement jump in the first order approximation and
the angle of opening in the zero order approximation. Equation (4.26) complements
conditions (4.19) and (4.20) to give full information for the zero order approximation.
We later present numerical results for the normalized constant αI ¼ ðα ∕ πþ
1 ∕ λÞ∕ ðH 1 þH 2Þ.
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The conditions regarding the first order approximation (4.22), (4.24), and (4.25) can
be complemented by a further equation in ðvð1Þm Þ 0ðxBÞ, which follows from the next level
of approximation, i.e., taking N ¼ 2 in (3.8),

μ1H 1ðvð1Þ2 Þ 0ðxBÞ þ μ2H 2ðvð1Þ3 Þ 0ðxBÞ− ðμ1H 1 þ μ2H 2Þðvð1Þ4 Þ 0ðxBÞ

¼
X2
j¼1

Z
ΠðjÞ

B

ω2

c2j
W

ð0Þ
B dΠðjÞ

B ;

and by our earlier comment that W ð0Þ
B ≡ 0, the right side of this expression is zero. At

this point we would like to comment that taking higher order approximations and eval-
uating higher order junction conditions is possible but much more advanced. For exam-
ple, integrals analogous to that on the RHS of the above expression would depend upon
W

ð1Þ
B and boundary layers from higher order approximations, and so would not in gen-

eral be zero. However, since we focus on thin strips, ε is small and so terms in ε2 would
give significantly less contribution than the lower order approximations. We later
comment on the accuracy of the zero order approximation on page 19 by comparing
computations against FEM results in a case where ε is not too small. We would like
to underline that the accuracy will increase for smaller ε, but for very small ε, it is
no longer possible to obtain finite-element computations.

5. Numerical simulations and discussions. To enable us to compare results
with the perfect interface case discussed in [17] effectively, we seek normalized constants.
We first seek a normalized representation of α. We introduce the notation

H ¼ H 1 þH 2; H � ¼
H 1 −H 2

H 1 þH 2

; μ� ¼
μ1 − μ2

μ1 þ μ2

; κ� ¼
κðμ1 þ μ2Þ

H
; λ� ¼ λH;

where H �, μ�, and κ� are nondimensional parameters that respectively describe the
geometrical, mechanical, and imperfect properties of the problem. λ is the constant
dependent on μj, Hj, and κ defined in (2.27). λ� can be expressed in terms of the other
dimensionless parameters as

λ2� ¼
8ð1þ μ�H �Þ

κ�ð1−μ2�Þð1−H 2�Þ
:ð5:1Þ

We also introduce the function

Ξ��ðtÞ ¼
t

λ2� þ t2

�
tþ 2

κ�ð1þ μ�Þ
coth

tð1þ H �Þ
2

þ 2

κ�ð1−μ�Þ
coth

tð1− H �Þ
2

�
;

which satisfies the relationship Ξ��ðtÞ ¼ Ξ�ð t
HÞ, and so we can write

α ¼
Z

∞

0

ln Ξ�ðξÞ
ξ2

dξ ¼
Z

∞

0

H 2 ln Ξ��ðtÞ
t2

dt

H
¼ H

Z
∞

0

ln Ξ��ðtÞ
t2

dt ¼ Hα�;ð5:2Þ

where we have defined the nondimensional quantity α�. We find through asymptotic
analysis that

ln Ξ��ðtÞ
t2

¼ 1

12

H 3�μ� − H 2� −μ�H � þ 1

1þ μ�H �
þOðt2Þ; t → 0:ð5:3Þ
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Mishuris, Movchan, and Bercial [17] showed that in the analogous problem to that
discussed in this paper with a perfect interface instead of an imperfect interface,

Dj ¼ αPðH 1 þH 2ÞCj;ð5:4Þ

where

αP ¼ 1

π
ln

��
1þ H �

2

�1þH�
2

�
1− H �

2

�1−H�
2

�
−

μ�
π

Z
∞

0

H � − tanhðtH �Þ cothðtÞ
ðsinhðtÞ þ μ� sinhðtH �ÞÞt

dt:

We have demonstrated (see the form of the constants Cj, Dj in (2.40)) that for the
imperfect interface problem,

Dj ¼ αI ðH 1 þH 2ÞCj;ð5:5Þ

where

αI ¼ −
�
1

π

Z
∞

0

ln Ξ��ðtÞ
t2

dtþ 1

λ�

�
;ð5:6Þ

and since small κ� correspond to an interface that is “almost perfect,” we would expect
αI → αP as κ� → 0. Figure 5.1 shows a plot of the ratio αI ∕ αP on axes of μ� against H �
for four different values of κ�. From this it is easily seen that as κ� → 0, αI ∕ αP gets close
to 1 as expected. The behavior of the weight functions near the crack tip are, however,
absolutely different, since the problem is singularly perturbed; that is,

FIG. 5.1. Contour plots of the ratio αI ∕ αP for four different values of κ�, a dimensionless parameter
describing the extent of imperfection of the interface between the two materials. The axes of each plot are
μ� and H �, dimensionless parameters respectively describing the mechanical and geometric properties of
the problem. The ratio αI ∕ αP gets closer to 1 as κ� decreases in value toward 0.
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½Y�∼ ffiffiffiffiffi
ηκ

p
; κ → 0;ð5:7Þ

μ1

∂Y
∂Y

����
Y¼0þ

∼−
ffiffiffi
η

κ

r
; X → 0; κ → 0;ð5:8Þ

where η is defined in (2.30). In the plots showing the ratio for small values of κ�, the
highest deviations from 1 occur near the corner of the plot. These correspond to
the cases where there is a high contrast between the shear moduli and thicknesses of
the twomaterials. We see that in the cases where the materials have similar shear moduli
and thicknesses (nearer the center of the plot), the ratio αI ∕ αP quickly approaches 1
as κ� → 0.

Figure 5.2 shows surface plots of αI on axes of μ� and H � for κ� ¼ 100, 1, and 0.01.
This constant describes the impact that the imperfect interface has upon the junction
conditions as described in (4.24) and (4.25). Also shown in the figure is a plot of αP . The
similarity between the plot of αI for κ� ¼ 0.01 and the plot of αP is evident here. For the
cases with larger κ� values, we see that αP is differently dependent upon the mechanical
and geometric parameters of the problem.

Figure 5.3 shows finite-element plots (COMSOL) of standing wave eigensolutions.
For these simulations we use the following geometrical parameters for the elementary
cell:

FIG. 5.2. Surface plots of αI for κ� ¼ 100, 1, and 0.01; also of αP , all plotted on axes of μ� and H �.
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l ¼ 0.8½m�; a ¼ 2.4½m�; H 1 ¼ 0.1½m�; H 2 ¼ 0.05½m�.

We also use the following material constants that correspond to iron (in Πð2Þ
ε ) and alu-

minum (in Πð1Þ
ε ):

μ2 ¼ 82 · 109½N ∕ m2�; μ1 ¼ 26 · 109½N ∕ m2�;
ρ2 ¼ 7860½kg ∕ m3�; ρ1 ¼ 2700½kg∕ m3�:

Presented in this figure are three plots corresponding to Al–Fe strips with different
materials bonding them together, with the vertical dotted lines indicating the location
of the crack tips. The imperfect interface is modeled in the COMSOL simulations by a
thin layer occupied by an adhesive material; this approach was justified in [15], [16],
among others. Provided that hresin ∕ H 2 is sufficiently small and μresin is small in com-
parison to μ1 and μ2, this gives κ ¼ hresin ∕ μresin.

The second of the three plots in Figure 5.3 uses epoxy resin as the bonding material
with parameters

μresin ¼ 2.5 · 109½N ∕ m2�; ρresin ¼ 1850½kg ∕ m3�; hresin ¼ 0.01½m�:

For comparison, the first plot shows a simulation with a gluing layer of shear modulus
1000 greater than that of epoxy resin. The third plot uses a material with shear modulus
10 times less than epoxy resin. Equivalently, these three cases in the top, middle, and
bottom parts of the figure correspond to κ� ¼ 2.88 · 10−3, κ� ¼ 2.88, and κ� ¼ 28:8, re-
spectively. The plots show that the standing wave is more localized and intense in the
locality of the crack when the bonding material is stiffer. Conversely, when the bonding
material is less stiff, the standing wave extends further beyond the locality of the crack
and is less intense. Closely packed contours indicate areas where stress is high; we see
that the highest stress is to be found in the vicinity of the crack tip in all three cases.
Moreover, as we would expect, the highest stress intensity is found in the case with the
stiffest bonding material.

We do not present dispersion diagrams here computed by the asymptotic analysis
and COMSOL, as they are similar to those given in [17]. As in that paper, the biggest

FIG. 5.3. Finite-element computation (COMSOL) contour plot of the eigensolution corresponding to the
standing Bloch–Floquet waves for three different values of κ. Top: Bonding material with shear modulus
1000μresin. Middle: Bonding material is epoxy resin. Bottom: Bonding material with shear modulus
μresin ∕ 10. Contours join points of integer values, and the dotted vertical lines indicate the location of the crack
tips.
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discrepancy between results obtained from asymptotic analysis and numerical simula-
tions appears for the case of the standing waves. In all other situations, the accuracy is
very good, with a typical discrepancy between finite-element and asymptotic results of
around 0.3% in the case where the strip has the same dimensions as used throughout this
section, which corresponds to ε ¼ 0.0625. We remind the reader that we use static
boundary layers in the analysis. The standing waves lie in the area of rather high
frequencies, which may provide one possible explanation for this phenomenon. This
discrepancy needs to be eliminated, and this will form part of a future work.

It is readily seen in the bottom plot of Figure 5.3 (which corresponds to a highly
imperfect interface) that the boundary layer support extends almost to the edge of the
elementary cell. This extension far away from the crack tips suggests that the boundary
layers decay slowly from the crack tips and so may not be assumed independent. In this
case, therefore, our analysis may become invalid due to the assumption in our asymp-
totic procedure that the exponentially decaying boundary layer does not influence the
Bloch–Floquet conditions. This assumption is satisfied if γþ is far from zero, so if κ is not
too large. More accurately, we assume γþ ≫ ε

a−l (see (2.47) for large κ). If the imperfect
interface is too weak and this condition is violated, then the junction conditions eval-
uated here will no longer be accurate and other analysis should be sought.

Appendix A. Derivation of asymptotics of Ξ�� �ξ�. We present here the deri-
vation of asymptotics for Ξþ� ðξÞ. The results of this derivation are used in expressions
(2.32) and (2.33). We introduce the auxiliary function

Θþ� ðξÞ ¼
Z

∞−iβ

−∞−iβ

ln Ξ�ðtÞ
t− ξ

dtðA:1Þ

so that Ξþ� ðξÞ ¼ expðð1 ∕ 2πiÞΘþ� ðξÞÞ (see (2.29)). We first note that Θþ� ð0Þ ¼ 0, since the
integrand is odd and the second estimate in (2.30) demonstrates integrability of Ξ� at
the zero point, allowing us to take β ¼ 0. Thus

Θþ� ðξÞ ¼
Z

∞−iβ

−∞−iβ

�
ln Ξ�ðtÞ
t− ξ

−
ln Ξ�ðtÞ

t

�
dt ¼ ξ

Z
∞−iβ

−∞−iβ

ln Ξ�ðtÞ
tðt− ξÞ dt → 0; ξ → 0;

since the integral is bounded. Also, we have thatZ
∞−iβ

−∞−iβ

ln Ξ�ðtÞ
t2

dt ¼
Z

∞

−∞

ln Ξ�ðtÞ
t2

dt ¼ 2

Z
∞

0

ln Ξ�ðtÞ
t2

dt ¼ 2α;ðA:2Þ

since the integrand is even and again by considering the second equality in (2.30), which
indicates that we have integrability at the zero point. Here we have found that

Θþ� ðξÞ ¼ 2αξþOðjξj2Þ; ξ → 0:ðA:3Þ
From this we obtain the following estimate for Ξþ� ðξÞ as ξ → 0:

Ξþ� ðξÞ ¼ 1þ αξ

πi
þOðjξj2Þ; ξ → 0:ðA:4Þ

We now seek estimates of Θþ� ðξÞ for ξ → ∞ within the domain. To avoid problems
caused by integrating along the real line, we consider ξ → ∞ in such a way that
ImðξÞ → þ∞. Integrating (A.1) by parts, splitting the integral in two and manipulating
the resulting expression gives
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Θþ� ðξÞ ¼
Z

∞

0
ln

�
1þ t ∕ ξ
1− t ∕ ξ

�
Ξ 0�ðtÞ
Ξ�ðtÞ

dt:ðA:5Þ

We introduce an arbitrary R > 0 and split this integral at R to give

Θþ� ðξÞ ¼
Z

R

0
ln

�
1þ t ∕ ξ
1− t ∕ ξ

�
Ξ 0�ðtÞ
Ξ�ðtÞ

dtþ
Z

∞

R
ln

�
1þ t ∕ ξ
1− t ∕ ξ

�
Ξ 0�ðtÞ
Ξ�ðtÞ

dt:ðA:6Þ

We then see that

ln

�
1þ t ∕ ξ
1− t ∕ ξ

�
¼ 2

t

ξ
þO

�
t3

jξj3
�
; ξ → ∞; 0 < t < R;ðA:7Þ

and from (2.31) we have

Ξ 0�ðtÞ
Ξ�ðtÞ

¼
�
−
μ1 þ μ2

κμ1μ2

�
1

t2
þO

�
1

t3

�
; t → ∞:ðA:8Þ

This allows us to estimate

Θþ� ðξÞ ¼
Z

∞

R

�
−
ðμ1 þ μ2Þ
μ1μ2κ

1

t2
þO

�
1

t3

��
ln

�
ξþ t

ξ− t

�
dtþO

�
1

jξj
�
; ξ → ∞:ðA:9Þ

After integrating by parts and performing a change of variables, we find thatZ
∞

R

1

t2
ln

�
ξþ t

ξ− t

�
dt ¼ −

1

ξ

�
ln

���� 1ξ2
����þ i arg

�
−

1

ξ2

��
þO

�
1

jξj
�
; ξ → ∞;ðA:10Þ

and so from (A.9), we deduce that

Θþ� ðξÞ ¼
2ðμ1 þ μ2Þ
μ1μ2κξ

lnð−iξÞ þO

�
1

jξj
�
; ImðξÞ → þ∞:ðA:11Þ

Recalling the relationship between our auxiliary function Θþ� and Ξþ� as we discussed
after (A.1), we see that

Ξþ� ðξÞ ¼ 1þ 1

πi

ðμ1 þ μ2Þ
μ1μ2κ

lnð−iξÞ
ξ

þO

�
1

jξj
�
; ImðξÞ → þ∞:ðA:12Þ

Appendix B. Theorem.
THEOREM B.1. Let f ðxÞ be the function

f ðxÞ ¼ 1

2π

Z
∞

−∞
ΦþðtÞe−ixtdt:ðB:1Þ

If ΦþðtÞ is analytic in Cþ and

ΦþðtÞ ¼ a1t
−1 þOðt−ð1þδÞÞ; t → ∞;ðB:2Þ

where δ > 0 is small, in the closed half-plane C̄þ ¼ Cþ ∪ R, then f ðxÞ ¼ 0 for all x < 0

and
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lim
x→0þ

f ðxÞ ¼ −ia1:ðB:3Þ

Proof. The fact that f ðxÞ ¼ 0 for all x < 0 is a direct consequence of the fact that
ΦþðtÞ is a “þ” function. Assume now that x > 0. From the assumptions on the behavior
of the function ΦþðtÞ, it follows that ΦþðtÞ ¼ a1t

−1 þ RðtÞ, where tRðtÞ → 0, as t → ∞,
t ∈ C̄þ (including t → �∞, t ∈ R).

We write

f ðxÞ ¼ 1

2π
lima→þ∞

�Z
∞

a
½Φþð−tÞeixt þΦþðtÞe−ixt�dtþ

Z
a

−a
ΦþðtÞe−ixtdt

�
:ðB:4Þ

The first integral is

f 1ðx; aÞ ¼
Z

∞

a
½Φþð−tÞeixt þΦþðtÞe−ixt�dt ¼ f 11ðx; aÞ þ f 12ðx; aÞ;ðB:5Þ

where

f 11ðx; aÞ ¼
Z

∞

a

�
−
a1
t
eixt þ a1

t
e−ixt

�
dt ¼ −2ia1

Z
∞

xa

sinðtÞ
t

dtðB:6Þ

and

f 12ðx; aÞ ¼
Z

∞

a
½Rð−tÞeixt þ RðtÞe−ixt�dt ¼

Z
∞

xa

�
1

x
R

�
−

t

x

�
eit þ 1

x
R

�
t

x

�
e−it

�
dt.

Taking a ¼ x−1 ∕ 2, we have that f 11ðx; x−1 ∕ 2Þ → −iπa1 and f 12ðx; x−1 ∕ 2Þ → 0 as x → 0þ.
Let us denote the second integral in (B.4) by f 2ðx; aÞ. Then using analyticity of ΦþðtÞ in
Cþ and defining

Γa ¼ ft ∈ Cjt ¼ aeiθ; 0 < θ < πg;ðB:7Þ
we deduce

f 2ðx; aÞ ¼ −
Z
Γa

ΦþðtÞe−ixtdt:ðB:8Þ

We write this in the form

f 2ðx; aÞ ¼ f 21ðx; aÞ þ f 22ðx; aÞ;ðB:9Þ

where

f 21ðx; aÞ ¼ −
Z
Γa

a1
t
e−ixtdt and f 22ðx; aÞ ¼ −

Z
Γa

RðtÞe−ixtdt:ðB:10Þ

Again taking a ¼ x−1∕ 2, we obtain

f 21ðx; x−1∕ 2Þ ¼ −
Z
Γ
x−1 ∕ 2

a1
t
e−ixtdt∼−a1

Z
Γ
x−1 ∕ 2

1

t
dt ¼ −iπa1; x → 0þ:ðB:11Þ

Now,

f 22ðx; aÞ ¼ −
Z
Γa

RðtÞe−ixtdt ¼ −
Z
Γxa

1

x
R

�
t

x

�
e−itdt;ðB:12Þ
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and so f 22ðx; x−1 ∕ 2Þ → 0 as x → 0þ. By collecting these observations and reconsidering
(B.4), we conclude that

fðxÞ → 1

2π
ð−iπa1 − iπa1Þ ¼ −ia1; x → 0þ;ðB:13Þ

which completes the proof. ▯
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