
Evolutionary Search Techniques for the Lyndon Factorization of
Biosequences

Amanda Clare

Aberystwyth University

Aberystwyth, UK

afc@aber.ac.uk

Jacqueline W. Daykin
∗†

Aberystwyth University

Aberystwyth, UK

jwd6@aber.ac.uk

Thomas Mills

Aberystwyth University

Aberystwyth, UK

Thomasandrewmills@outlook.com

Christine Zarges

Aberystwyth University

Aberystwyth, UK

c.zarges@aber.ac.uk

ABSTRACT
A non-empty string x over an ordered alphabet is said to be a

Lyndon word if it is alphabetically smaller than all of its cyclic

rotations. Any string can be uniquely factored into Lyndon words

and efficient algorithms exist to perform the factorization process

in linear time and constant space. Lyndon words find wide-ranging

applications including string matching and pattern inference in

bioinformatics. Here we investigate the impact of permuting the

alphabet ordering on the resulting factorization and demonstrate

significant variations in the numbers of factors obtained. We also

propose an evolutionary algorithm to find optimal orderings of the

alphabet to enhance this factorization process and illustrate the

impact of different operators. The flexibility of such an approach

is illustrated by our use of five fitness functions which produce

different factorizations suitable for different downstream tasks.

CCS CONCEPTS
•Mathematics of computing→Discretemathematics; •The-
ory of computation → Theory and algorithms for applica-
tion domains;

KEYWORDS
algorithm, alphabet, artificial intelligence, Burrows-Wheeler trans-

form, factorization, evolutionary search, genome, Lyndon word,

pattern matching, string, word

∗
Also with King’s College London.

†
Also with Stellenbosch University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00

https://doi.org/10.1145/3319619.3326872

ACM Reference Format:
Amanda Clare, Jacqueline W. Daykin, Thomas Mills, and Christine Zarges.

2019. Evolutionary Search Techniques for the Lyndon Factorization of Biose-

quences. In Genetic and Evolutionary Computation Conference Companion
(GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM,

New York, NY, USA, 8 pages. https://doi.org/10.1145/3319619.3326872

1 INTRODUCTION
A string or word is a finite sequence of symbols over an alpha-

bet which is typically ordered. This paper addresses structures in

strings and permutations of the string alphabet with application

to factoring genomes for sequence alignment. Useful structures in

strings include borders (such as in the English word eraser), repeti-
tions (for instance in the DNA strandGGAATGGAATGGAAT) and
palindromes (English examples include kayak, racecar). The struc-
ture of interest here is known as Lyndon - a word is said to have the

Lyndon property if it is least alphabetically amongst all cyclic rota-

tions of the letters, common English examples: amazinд, chicken
andmoon.

Novel techniques are presented for manipulating or permuting

the order of an alphabet so as to enhance the Lyndon factoriza-

tion of a string, that is its decomposition into Lyndon words. Wide

ranging applications of Lyndon words arise in digital geometry

[4], musicology [5], string matching [9], and bioinformatics. For

instance, Lyndon words have been applied in STAR [10], an algo-

rithm to search for tandem approximate repeats, to exclude motifs

(significant nucleotide or amino-acid patterns) that form necklace

rotations. Motifs of tandem repeats are known to account for large

portions of eukaryotic genomes and other life kingdoms.

Bioinformatics applications have very specific finite alphabets,

namely cardinality 4 for DNA & RNA and cardinality 20 for protein.

Furthermore, bioinformatics often involves huge volumes of data –

the human genome contains around 3 billion base pairs residing in

23 pairs of chromosomes (structures of nucleic acids and protein)

within the nucleus of cells. Sequence factorization facilitates useful

approaches such as parallelism and block compression. Hence, we

are interested in considering factorization techniques for specific

application domains pertinent to biology while noting that the

results are not restricted to this domain.

The focus of this paper is on how themanipulation of an alphabet

ordering can have a considerable impact on the resulting Lyndon

https://doi.org/10.1145/3319619.3326872
https://doi.org/10.1145/3319619.3326872

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic A. Clare et al.

factorization of a string, specifically the number of factors. Towards

the goal of computing optimal alphabet orderings, we propose an

evolutionary search technique to search for such alphabet orderings

to enhance this factorization process. We explore different fitness

functions to maximize, minimize, parameterize, and balance the

length of the factors.

Experimental results given in Section 4 indicate that this is a

promising line of enquiry and approach, while future research

directions are proposed in Section 5.

1.1 Related Work
A permutation of length n is an ordering of the set [1,n] =
{1, 2, . . . ,n} of integers, a permutation pattern is a sub-permutation

of a longer permutation, and a permutation class is a set C of per-

mutations such that every pattern within a permutation in C is

also in C. For clarification, given the permutation π = 642351 then

312 is a pattern as there are subsequences of π , such as 423, 625,

635, with the same relative ordering. An interval of a permutation

is a consecutive substring consisting of consecutive symbols - for

instance, 8628 is an interval in the permutation 886283418. Such

intervals have real significance in genomic sequencing problems

namely the matching of DNA sequences, reads, produced by high

throughput sequencing to a reference sequence with the goal of

variation calling. Also, genomes can be modelled as a permutation

of genes, a common interval is then a set of orthologous genes that

appear consecutively, possibly in different orders, in two genomes.

Common intervals thus provide a measure of genes associated by

function [8].

A notable permutation is the Burrows-Wheeler transform (BWT)

which rearranges an input string in such a way that tends to cluster

the data while also being invertible allowing recovery of the data -

both the transformation and inverse can be computed efficiently

in linear time. Formally, the BWT of x is defined as the pair (L,h)
where L is the last column of the matrix Mx formed by all the

lexicographically sorted cyclic rotations of x and h is the index

of x in this matrix. The lexicographic nature and data clustering

properties render the transform applicable to indexing techniques

and numerous compression scenarios: lossless, test data, suffix trees

& arrays, and image compression [1]. Indeed, the BWT is at the

core of bzip2, a standard tool for lossless compression.

Furthermore, the BWT string permutation has been applied

in bioinformatics applications including the highly successful (in

terms of both implementations and citations) Bowtie sequence

alignment program [14]. Exact pattern matching is insufficient for

short read alignment because alignments may contain mismatches –

these mismatches may be due to errors arising during the molecular

sequencing process, genuine differences between the reference

genome and query organisms, or both. Bowtie addresses this issue

by conducting a backtracking search to find candidate alignments

that satisfy a quality-based value, which for multiple candidates

follows a greedy approach. In order to limit excessive backtracking

Bowtie introduces the technique of double indexing of the reference

genome – the BWT (forward index) and co-BWT (mirror index).

Alignment attempts are restricted to the left and right half of the

query along with the appropriate index.

For many string-based applications, it is useful to capture prop-

erties of a string to facilitate an algorithm. One example used in

this work is the Parikh vector (also known as a permuted string

or permuted pattern), p(v), of a finite word v which enumerates

the occurrences of each letter of the alphabet inv . Two strings are

considered Abelian equivalent if one can be turned into the other

by permuting its letters; in other words, if the two strings have the

same Parikh vector.

Applications of permutations are far reaching and include jum-

bled patternmatchingwhich is a special case of approximate pattern

matching: searching for an occurrence of a jumbled version of a

query string p in a text t , i.e. searching for a substring p0 which

has the same Parikh vector as p. Our application of Parikh vectors

is in order-based string factoring methods.

2 PRELIMINARIES
2.1 Notation
Given an integer n ≥ 1 and a nonempty set of symbols Σ (bounded

or unbounded), a string of length n, equivalently word, over Σ
takes the form x = x1...xn with each xi ∈ Σ. For brevity, we
write x = x[1..n] with x[i] = xi . The length n of a string x is

denoted by |x |. The set Σ is called an alphabet whose members

are letters or characters, and Σ+ denotes the set of all nonempty

finite strings over Σ. The empty string of length zero is denoted

ε ; we write Σ∗ = Σ+ ∪ {ε} and let |Σ| = σ . We use exponents

to denote repetition, for instance if α ∈ Σ then α3 means ααα .
If x = uwv for strings u,w,v ∈ Σ∗, then u is a prefix, w is a

substring or factor, and v is a suffix of x ; we say u , x is a

proper prefix and similarly for the other terms. If x = uv , then
vu is said to be a rotation (cyclic shift or conjugate) of x ; for
example, the anti-clockwise single letter rotations of the string abca
are abca, aabc, caab, bcaa. A string x is said to be a repetition if

and only if it has a factorization x = uk for some integer k > 1;

otherwise, x is said to be primitive. Observe that every rotation of

a repetition is also a repetition. For a string x , the reversed string

x is defined as x = x[n]x[n−1] · · ·x[1]. A string which is both a

proper prefix and a proper suffix of a string x , ε is called a border
of x ; a string is border-free if the only border it has is the empty

string ε . We write strings in mathbold such asw .

The Parikh vector p(x) of a string x over a finite ordered alpha-

bet Σ = {λ1, . . . , λσ } is defined as the vector of multiplicities of the

characters, p(x) = (p1, . . . ,pσ), where pi = |{j | x j = λi }|.
If Σ is a totally ordered alphabet then lexicographic ordering

(lexorder) u < v with u,v ∈ Σ+ means that either u is a proper

prefix of v , or u = ras , v = rbt for some a,b ∈ Σ such that a < b
and for some r , s, t ∈ Σ∗. Using the Roman alphabet: ant < bee <
horse < horses < zoo < zooloдy - and we see it is the alphabetical

order used in the English dictionary.

A fundamental application of lexorder in the fields of algebra,

combinatorics on words, and stringology yields the concept of

Lyndon words: a string/word is Lyndon if and only if it is the

strictly least in lexorder amongst all its cyclic rotations, that is

conjugacy class. For example, consider the lexordered conjugacy

class of the string abac : abac < acab < baca < caba, then abac is a
Lyndon word as it is strictly least while no other rotation can be a

Evolutionary Search Techniques for Lyndon Factorization GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Lyndon word. Lyndon words are necessarily primitive and border-

free. Remarkably, any string x exhibits a Lyndon factorization LFx :

Theorem 2.1. [6] Any word x can be written uniquely as a non-
increasing product LFx = x = u1u2 · · ·uk of Lyndon words.

Theorem 2.1 shows that there is a unique decomposition of any

word into non-increasing Lyndon words (u1 ≥ u2 ≥ · · · ≥ uk)
which allows for divide & conquer type applications. Thus we feel

that the resulting number of factors in the factorization is significant.

Since a string factorization over a specified alphabet Σ is unique

and maximal, in the sense that no factor f can be extended to the

left or right without losing the Lyndon criteria of f , it follows that
the number of factors in the factorization will be fixed – this point is

relevant to the termination of search in Algorithm 1 – accordingly

we seek enhancement of the number of factors via permutation of

Σ. Note therefore that our solutions will be depicted as permuted

vectors over the Roman alphabet.

2.2 Alphabet ordering
To motivate our interest in alphabet ordering (in the case of an

unordered alphabet) or permuting an (ordered) alphabet, consider

the following example of a Lyndon factorization of a string x of

lengthn on a binary alphabet {0, 1}. Let x = 01
j
0
2
1
j−1 · · · 0j1, j > 1.

Then the number of factors varies from O(1) to O(j); specifically,
for {1 < 0} the number of factors in the factorization is 3, whereas

if {0 < 1} the number of factors is j.
In recent research, Clare and Daykin [7] proposed a greedy al-

phabet ordering algorithm for enhancing a Lyndon factorization.

They mainly considered minimizing the number of factors while

observing that the algorithm could be modified to maximize. For

the heuristic they introduced a variant of the Parikh vector, the

Exponent Parikh vector which, for each distinct letter in a string

records its individual RLE (run length encoding) exponent pattern

(left-to-right sequence of exponents for a letter) - so the sum of

these exponents is the Parikh entry for that letter. The Exponent

Parikh vector was then used to start the alphabet ordering with a se-

lection of a least letter; subsequently, if a cycle order was generated

the algorithm would backtrack using the Exponent Parikh vector to

start again. Experimentation using prokaryotic reference genomes

over the biological DNA alphabet {A,C,G,T } demonstrated en-

couraging, though not optimal, performance of the algorithm.

In a quest to improve the factorization process, methods from

evolutionary computation were introduced.

3 EVOLUTIONARY ALGORITHM
With different sized alphabets and no general pattern of characters

running in a sequence, the problem of reordering (permuting) the

alphabet to enhance a Lyndon factorization can be hard to solve.

While for DNA and RNA alphabets it is computationally feasible to

perform a brute force search to find the optimal ordering, this is not

possible for larger alphabets such as the 20 amino acids that form

protein strings or the 26 letters of the English alphabet – compare

4! = 24 to 26! = 4.0329146e + 26.
Evolutionary algorithms have been successfully used in bioinfor-

matics [13] and for permutation-based search problems [17]. They

also bring an advantage in that they can be stopped at any time,

therefore can be adapted to the complexities of the different ways

• Maximal Factorization (a < b < c < d):

(b)(acdbd)(abbcdbbddbdbd)(abbacb)(abacbc)

• Minimal Factorization (a < c < d < b):

(b)(acdbdabbcdbbddbdbdabbacbabacbc)

• Balanced Factorization (b < a < c < d):

(bacdbda)(bbcdbbddbdbda)(bbacbabacbc)

Figure 1: Example bacdbdabbcdbbddbdbdabbacbabacbc: Lyn-
don factorizations for different alphabet orderings with
Σ = {a, b, c, d}

we can optimize the alphabet orderings. We therefore propose an

evolutionary algorithm to find optimal orderings of the alphabet

to further enhance a Lyndon factorization. We explore different

fitness functions to

• maximize the number of factors,

• minimize the number of factors,

• find a specific number of factors, and

• balance the length of the factors.

Figure 1 shows the effect of maximization, minimization and bal-

ancing the Lyndon factorization of an example string using the

alphabet Σ = {a,b, c,d}.
Our algorithm (Algorithm 1) starts by initializing a population

from random permutations of the original alphabet ordering. In

addition, one individual in the initial population is created using a

simple heuristic: We order the alphabet by first appearance in the

input string.

The algorithm then enters the main loop for a specified number

of generations unless an additional exit criterion is met. In the case

of minimization the exit criterion is met if the input string forms

a Lyndon word (a single factor). In the event of optimizing to a

specific number of factors, the exit criterion is met when one of

the solutions in the population has the required number of factors.

For maximizing the number of factors and balancing the lengths

of the factors there is no exit criterion and the algorithm escapes

once the main loop has been executed for the specified number of

generations.

The main loop consists of firstly evaluating every solution in

the population using one of the proposed fitness functions (Sec-

tion 3.1). Half of the population is then discarded during the semi-

proportional selection method (Section 3.2). Finally, the population

is repopulated by means of crossover (Section 3.3.2) and mutation

(Section 3.3.1).

Algorithm 1: Evolutionary Search

1. Initialization of the Population;

while Exit Criteria Not Met do
2. Evaluate Alphabet Orderings;

3. Semi-Proportional Selection;

4. Create offspring using crossover and mutation;

end

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic A. Clare et al.

3.1 Fitness Functions
An alphabet Σ = {λ1, . . . , λσ } is given. The objective is to find a

permutation π∗
of the alphabet that optimizes the given fitness

function.

We consider four types of optimization problems and five differ-

ent fitness functions f : Sσ → Rwhere Sσ denotes the permutation

space over the alphabet Σ. All fitness functions use Duval’s [11]
linear time and constant space algorithm to compute the number

of factors. However, an extension has been made in which the lexi-

cographical ordering of strings over a given ordered alphabet can

be modified by reordering the alphabet.

Let iw ,π denote the number of Lyndon factors for a wordw ∈ Σ∗

given an alphabet ordering π .

(1) For minimizing the number of factors the fitness score of the

fitness function is simply minimizing the number of factors,

i. e., we minimize f (π) = iw ,π .

(2) The fitness function is ‘reversed’ for maximization, where a

higher number of factors is more favourable, i. e., we maxi-

mize f (π) = iw ,π .

(3) To calculate the fitness value when balancing the lengths of

factors, Duval’s algorithm is computed on the input string

and the length of every factor is recorded. Let ℓj denote the

length of the j-th factor. We then define two different fitness

functions:

(a) The fitness value is the standard deviation of the factor

lengths, i. e.,

f (π) =

√√√∑iw ,π
j=1 (µ − ℓj)2

iw ,π
,

where µ denotes the mean length.

(b) The fitness value is the difference between the maximum

and the minimum length, i. e.,

f (π) = max

1≤j≤iw ,π
ℓj − min

1≤j≤iw ,π
ℓj

(4) When searching for a specific number of factors k , that is
a parameterized form of the problem, the fitness function

simply minimizes the absolute difference between the actual

number of factors and the desired number of factors, i. e., we

minimize f (π) = |k − iw ,π |. Note that it might not be possi-

ble to achieve the number of factors specified. For instance,

given the input string x = λi
n
, then the desired parameter

n/2 is generally unobtainable as the factorization of x has

n factors over any alphabet ordering. Thus, we define an

optimal solution as the closest number of factors possible.

3.2 Semi-Proportional Selection
At every generation, solutions need to be selected as parents in order

to create the next generation of offspring. Accordingly, to allow for

exploration and exploitation, it is important to both balance the

selection pressure and preserve a sufficient degree of diversity in

the population: Too high selection pressure (i. e., selection of only

the best solutions) will likely result in loss of diversity while too

low selection pressure (i. e., not biasing the selection towards better

solutions) will lead to stagnation of the search as we are more likely

to lose the current best solutions.

Preliminary tests with a ranking-based fitness-proportional se-

lection method also led to a loss of diversity. We therefore decided

to select parents uniformly at random, but only from the top-ranked

half of the current population. Moreover, the lower ranked half of

the population is discarded and replaced by the offspring created

in the next step.

3.3 Creation of Offspring
As discussed above in Section 3.2, two parents are selected at ran-

dom from the top 50% of the population and are then used to create

an offspring. The selected parents are assured to be unique to allow

more variation into the population. Once a child has been created

using crossover (see Section 3.3.2), it is passed to the mutation oper-

ator. Depending on the mutation rate, the generated child may then

be mutated by the mutation operator explained in Section 3.3.1.

The child is added to the population and the process is repeated

until the population is back to its original size. The algorithm will

repeat the evaluation process until either the maximum number

of generations is met, or an optimal solution is found (in case of

minimization and specific).

3.3.1 Mutation Operators. Our evolutionary approach for the

Lyndon factorization problem extends two generic permutation-

based mutation operators: Swap Mutation and Insert Mutation [12].

Both mutation operators select two random elements. Swap Muta-

tion then swaps the two elements. Similarly, Insert Mutation inserts

one of the selected elements in the position next to the other and

then shifts the other elements accordingly.

We observe that changes in some positions have more impact

than others. Consider the alphabet Σ = {a,b, c,d, e} with the order-

ing a < b < c < d < e . The lowest ordered characters are the ones

that are situated at the beginning of the permutation, for example

the characters a and b are considered low ordered characters. Simi-

larly, the highest ordered characters are the ones that are situated

at the end of the permutation. After analyzing the output from

computing the factorization on a series of strings, we observed that

changes to the first ordered character made a dramatic impact on

minimizing or maximizing the number of factors.

To apply these generic operators to the Lyndon factorization

problem, both of these generic operators have been extended as

discussed below. Pseudocode for the complete mutation operator is

shown in Algorithm 2.

As discussed above, frequently selecting the lower ordered char-

acters allows the algorithm to jump to different areas of the search

space and escape a local optima. Thus, we bias the selection of

the two elements to increase the probability that lower ordered

elements are selected. To be more precise, with probability of at

least 0.3 one of the two elements will be selected from the three

lowest ordered elements in the alphabet.

Moreover, we randomly select one of the two mutation operators

for each offspring. Using the heuristic that mutating the order of

two elements (Swap Mutation) in the alphabet ordering is more

likely to make a dramatic change on the resulting factors compared

to only changing the order of a single element (Insert Mutation), the

selection is biased towards the Insert Mutation operator, which is

selected with probability 0.9. This allows us to mutate the orderings

Evolutionary Search Techniques for Lyndon Factorization GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

enough to move out of local optima, but not so much that it takes

us away from a good solution.

Algorithm 2:Mutation Operator

Select positions i, j ∈ [1,n] uniformly at random;

With probability 0.3 do
Choose i from {1, 2, 3} uniformly at random

With probability 0.1 do
swap elements at positions i and j

else
move element at position j to position i + 1
and shift accordingly

3.3.2 Crossover Operator. As the problem is permutation-based,

it limits us to generic crossover operators for this kind of search

space [12]. Furthermore, the observation made about dramatic

changes due to lower ordered characters also prevents us from

using crossover methods that do not aim at preserving large parts

of the order of the elements in the two parents.

Partially Mapped Crossover (PMX) has proven to work well on

permutation-based problems such as the Traveling Salesperson

Problem [18] and has been selected as the crossover operator. The

main idea is to select two random elements as split points and

transfer the contents between the split points from the first parent

directly to the child. Remaining characters are then inserted in the

best order with respect to the second parent.

To be more precise: The elements between the two split points

are called the ‘swath’. All elements within the swath are directly

copied from the first parent to the child. A look-up is performed

in the second parent to see which elements within the swath were

not copied to the child – these characters are denoted as i , and the

elements in the child that took the position of i are denoted as j . An
attempt is then carried out to place each element i in the position

occupied by j in the second parent. If there is an element present

in the child at the same index of j in the second parent, we denote

this element as k and attempt to place i in the position occupied by

k in the second parent. The remaining elements are then entered

in the same order of appearance in the second parent. By reversing

the roles of the parents, we can create another child.

4 EXPERIMENTS
The algorithm was implemented using Java

1
and tested on two

different types of sequences: random sequences (Section 4.1) and

protein sequences from a bacterial genome (Section 4.2). Based on

preliminary experiments, the parameters shown in Table 1 are used.

4.1 Results for Random Sequences
We created 10 random sequences of length 300 over an alphabet of

size 20. We executed 100 independent runs of our algorithm on all

sequences using the five fitness functions described in Section 3.1.

Due to space restrictions we report the average fitness (over the 100

runs) of the best individual in the population (plus the standard de-

viation) against the number of generations for three representative

sequences.

1
Code can be found at: https://github.com/thomasamills/LyndonEvolve

Parameter Value

Generations 1000

Population Size 16

Mutation Rate 100%

Crossover PMX

Table 1: Parameters

Recall that the best possible fitness value for minimization is

1 and for specific is 0. However, in both cases these values are

not necessarily possible for a given sequence and in general the

optimal fitness value is unknown and may be different for different

sequences.

4.1.1 Minimization. Figure 2 plots the fitness against the num-

ber of generations for the minimization fitness function. We see

that in all three cases the best fitness value in the initial population

is already quite good. We conjecture that this is due to our approach

to create an initial ordering which seems to be a good heuristic

for the minimization problem. It is worth noting that the fitness

converged to 2 for all 10 random sequences and that at most 300

generations were needed to find a solution with two factors.

4.1.2 Maximization. Figure 2 plots the fitness against the num-

ber of generations for the maximization fitness function. We see

that the maximization problems appears to be more difficult than

the minimization problem as more generations are needed to yield

considerable improvements. It is interesting to see that the maxi-

mum fitness reached during our 1000 generations is very similar

across different sequences.
2

4.1.3 Balanced. Figures 4 and 5 plot the fitness against the num-

ber of generations for the two balance fitness functions. Similarly

to the maximization fitness function more generations are needed

to yield considerable improvements. While the differences after

1000 generations still seem relatively large, it is unclear if better

solutions could be obtained.

4.1.4 Specific=12. Finally, Figure 6 plots the fitness against the
number of generations for the fitness functions trying to reach a

specific number of factors. We see that this problem seems again

easy: Less than 25 generations are needed to reach an optimal

solution for all 10 sequences considered. Investigating how the

difficulty depends on the chosen target number is subject to future

research.

4.2 Results for Biosequences
The algorithm has also been tested on the 573 proteins from a bac-

terial genome (Buchnera aphidicola3), from the RefSeq Prokaryote

Genomes reference collection [16].

We first factored each protein in the genome using lexicograph-

ical ordering, resulting in a total of 4,043 factors for the set of

proteins, with a mean number of factors of 7.0 and standard devia-

tion of 2.25. We then re-factored the data set using the evolutionary

algorithm with each of the fitness functions discussed in Section 3.1.

2
In fact it is very similar for all 10 random sequences.

3
GCF_000009605.1_ASM960v1_protein.faa

https://github.com/thomasamills/LyndonEvolve

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic A. Clare et al.

1.5

2.0

2.5

3.0

3.5

0 100 200 300

Generation

F
itn

e
s
s
 V

a
lu

e

1.5

2.0

2.5

3.0

3.5

0 100 200 300

Generation

F
itn

e
s
s
 V

a
lu

e

1.5

2.0

2.5

3.0

3.5

0 100 200 300

Generation

F
itn

e
s
s
 V

a
lu

e

Figure 2: Minimization – Average fitness and standard devia-
tion over 100 independent runs for three random sequences
of length 300 over an alphabet of size 20.

The results are summarised in Figure 7. Interestingly, using the min-

imization operator, we can see that we can always find an alphabet

reordering that produces at most two Lyndon factors, and in most

cases, just one factor. This is potentially due to M (methionine)

being the first letter of each sequence. M appears at the start of

each sequence due to the AUG triplet of RNA bases used as the

initiation site for translation of mRNA into each protein. However,

methionine is also used throughout the proteins, not just at the

start, so a minimal factoring must still take into account the rest of

the sequence. The maximum number of factors appears to follow a

normal distribution, with mean of 22.7. A balanced factorization

gave a range of numbers of factors, from 2 to 31, depending on the

protein. The specific factorization into 12 factors was achievable

for every one of the 573 proteins.

5 CONCLUSION AND FUTUREWORK
Wehave presented an evolutionary approach for finding the optimal

alphabet reordering prior to factoring a string into Lyndon words.

This is a permutation problem where altering some positions has

10

15

20

25

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

10

15

20

25

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

10

15

20

25

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

Figure 3:Maximization –Average fitness and standard devia-
tion over 100 independent runs for three random sequences
of length 300 over an alphabet of size 20.

much more impact than others. As such we have discussed suitable

operators to provide an effective algorithm, provided an implemen-

tation of the algorithm, and evaluated it on random sequences and

proteins from a bacterial genome.

Proposed future research directions include the following:

• The output of the greedy alphabet ordering algorithm [7]

may be a useful starting point from which to create one

or more of the populations at the start of the search, even

though this could be a local optimum.

• Investigate further mutation and crossover operators for this

permutation-based problem (such as the best-order crossover

and other permutation crossover operators [2, 3]). After ob-

serving that changes to the first few elements of the per-

mutation can cause drastic changes to the fitness we would

like to learn more about the landscape of solutions and the

operators that can be effective in this landscape.

• The relationship between Lyndon factors and the suffix array

data structure used in the BWT (and many other algorithms)

has previously been highlighted [15]. The authors of that

Evolutionary Search Techniques for Lyndon Factorization GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

10

20

30

40

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

10

20

30

40

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

10

20

30

40

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

Figure 4: Balanced (standard deviation) –Average fitness and
standard deviation over 100 independent runs for three ran-
dom sequences of length 300 over an alphabet of size 20.

work suggest that a suitable Lyndon factorization can help

to partition the work of generation of the suffix array. We

would therefore like to explore the optimal and near-optimal

factorizations produced by this work for the construction of

the suffix array and for partitioning a string prior to applica-

tion of the BWT.

• Investigate further the alphabet orderings produced by a

minimization of the number of factors, because they cap-

ture information about the protein sequences themselves.

We would like to further understand whether the orderings

themselves can be used as fingerprints for proteins, and

whether there are orderings suitable for application to all

proteins in a genome or even to all genomes in a genus.

REFERENCES
[1] D. Adjeroh, T. Bell, and A. Mukherjee. 2008. The Burrows–Wheeler Transform:

Data Compression, Suffix Arrays, and Pattern Matching. Springer Publishing

Company. 352 pages.

[2] A. Andreica and C. Chira. 2015. Best-order crossover for permutation-based

evolutionary algorithms. Appl. Intell. 42, 4 (2015), 751–776.

25

50

75

100

125

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

25

50

75

100

125

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

25

50

75

100

125

0 250 500 750 1000

Generation

F
itn

e
s
s
 V

a
lu

e

Figure 5: Balanced (difference) – Average fitness and stan-
dard deviation over 100 independent runs for three random
sequences of length 300 over an alphabet of size 20.

[3] Marco Baioletti, Alfredo Milani, and Valentino Santucci. 2018. Algebraic

Crossover Operators for Permutations. In Proceedings of the 2018 IEEE Congress
on Evolutionary Computation. IEEE, 1–8.

[4] S. Brlek, J.-O. Lachaud, X. Provençal, and C. Reutenauer. 2009. Lyndon + Christof-

fel = digitally convex. Pattern Recognition 42(10) (2009), 2239–2246.

[5] M. Chemillier. 2004. Periodic musical sequences and Lyndon words. Soft Comput.
8(9) (2004), 611–616.

[6] K. T. Chen, R. H. Fox, and R. C. Lyndon. 1958. Free differential calculus, IV – the

quotient groups of the lower central series. Ann. Math. 68 (1958), 81–95.
[7] A. Clare and J. W. Daykin. 2019. Enhanced string factoring from alphabet order-

ings. Inf. Process. Lett. 143 (2019), 4–7.
[8] S. Corteel, G. Louchard, and R. Pemantle. 2006. Common intervals in permuta-

tions. Discrete Mathematics & Theoretical Computer Science 8, 1 (2006), 189–214.
[9] M. Crochemore and D. Perrin. 1991. Two-way string matching. J. ACM 38(3)

(1991), 651–675.

[10] O. Delgrange and E. Rivals. 2004. STAR: an algorithm to search for tandem

approximate repeats. Bioinformatics 20, 16 (2004), 2812–2820.
[11] J.-P. Duval. 1983. Factorizing words over an ordered alphabet. J. Algorithms 4, 4

(1983), 363–381.

[12] A. E. Eiben and J. E. Smith. 2003. Introduction to Evolutionary Computing. Springer.
[13] G. Fogel and D. Corne. 2002. Evolutionary Computation in Bioinformatics. Morgan

Kaufmann.

[14] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. 2009. Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol.
10, 3 (2009), R25.

[15] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. 2014. Suffix array and Lyndon

factorization of a text. J. Discrete Algorithms 28 (2014), 2–8.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic A. Clare et al.

0

1

2

3

4

0 5 10 15 20 25

Generation

F
itn

e
s
s
 V

a
lu

e

0

1

2

3

4

0 5 10 15 20 25

Generation

F
itn

e
s
s
 V

a
lu

e

0

1

2

3

4

0 5 10 15 20 25

Generation

F
itn

e
s
s
 V

a
lu

e

Figure 6: Specific = 12 – Average fitness and standard devia-
tion over 100 independent runs for three random sequences
of length 300 over an alphabet of size 20.

[16] N. A O’Leary et al. 2016. Reference sequence (RefSeq) database at NCBI: current

status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44(D1)
(2016), D733–45.

[17] D. Whitley. 1997. Permutations. In Handbook of evolutionary computation,
Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz (Eds.). IOP Publishing

and Oxford University Press, C1.4.

[18] D. Whitley. 1997. Permutations. In Handbook of evolutionary computation,
Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz (Eds.). IOP Publishing

and Oxford University Press, C3.3.3.

ACKNOWLEDGMENTS
This research was part-funded by the European Regional Develop-

ment Fund through the Welsh Government, grant 80761-AU-137

(West):

Figure 7: Distributions of the number of Lyndon factors
per protein for lexicographic ordering and then using each
of the fitness functions (from top to bottom: lexicographic,
minimization, maximization, balanced, specific=12)

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Alphabet ordering

	3 Evolutionary Algorithm
	3.1 Fitness Functions
	3.2 Semi-Proportional Selection
	3.3 Creation of Offspring

	4 Experiments
	4.1 Results for Random Sequences
	4.2 Results for Biosequences

	5 Conclusion and future work
	References

