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Abstract 


The ability to predict protein function from amino acid sequence is a central 


research goal of molecular biology.  Such a capability would greatly aid the 


biological interpretation of the genomic data and accelerate its medical 


exploitation.  For the existing sequenced genomes function can be assigned to 


typically only between 40-60% of the genes1-4. The new science of functional 


genomics is dedicated to discovering the function of these genes, and to further 


detailing gene function5-8.  Here we present a novel data-mining9-10 approach to 


predicting protein functional class from sequence.  We demonstrate the 


effectiveness of this approach on the tubercle bacillus2 genome.  Biologically 


interpretable rules are identified that can predict protein function even in the 


absence of identifiable sequence homology.  These rules predict 65% of the genes 


with no assigned function in tubercle bacillus with an estimated accuracy of 60-


80% (depending on the level of functional assignment).  The rules give insight 


into the evolutionary history of the tubercle bacillus. 


 


1. Introduction 


The formation of a theory to explain a set of observations is central to science.  


Computer based methods to assist in this process are becoming increasingly 


important11.  Such methods are especially needed in molecular biology, where there is 


an overwhelming flood of new data.  Here we demonstrate the effectiveness of 


automatic scientific discovery on an important scientific problem.  We successfully 


apply a novel data mining approach to the problem of predicting protein functional 


class from sequence. 







 To predict the biological functional class of proteins directly from amino acid 


sequence, what is abstractly required is a discrimination function10 that maps 


sequence to biological function. The existing sequence homology recognition 


methods can be viewed as examples of such functions: methods based on direct 


sequence similarity12-13 can be considered as nearest neighbour type functions14 (in 


sequence space), and the more complicated homology recognition methods based on 


motifs/profiles15 resemble case-based learning functions16.  The creation of annotated 


databases of protein function has now opened up the possibility of automatically 


identifying more general forms of discrimination function using data mining17.  


 


2. Data 


For analysis, we selected the tubercle bacillus (Mycobacterium tuberculosis) genome, 


probably the prokaryote genome of greatest medical importance.  According to the 


World Health Organization (WHO), tuberculosis kills 2 million people each year. 


Their concern about the growing epidemic has led the WHO to declare tuberculosis a 


global emergency18. We used 3,924 genes* 2 (over 4 million base pairs) with 


functional class assignments from the Sanger Centre19.  (Note that there are errors in 


annotation of function20, and this adds “noise” to the data mining process10).  The 


assignments of function are organised in a strict hierarchy (tree), where each higher 


level in the tree is more general than the level below it, and the leaf nodes are the 


individual functions of proteins.  A subsection of the function hierarchy is shown in 


figure 1. 


 


                                                           
* For readability reasons we used “gene” throughout the paper, knowing that “potential gene” or “open 


reading frame” (ORF) should be used. 
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  For example, a typical protein in the tubercle bacillus is L-fuculose 


phosphate aldolase (Rv0727c fucA), its top-level class assignment is “Small-molecule 


metabolism”, its second-level class is “Degradation”, and its third-level class is 


“Carbon compounds”. We attempted to learn discriminatory functions for every level 


of the functional hierarchy.  Success on these different levels would demonstrate the 


generality of the approach.  


 To generate the database to mine we formed a single deductive database of 


genes and their known functional assignments.  We then processed this data to form 


sequence descriptions of the genes.  Therefore, these descriptions are solely based on 


features that can be computed from sequence alone.  The most commonly used 


technique to gain information about a sequence is to run a sequence similarity search, 


and this was used as the starting point in forming descriptions.  The basic data 


structure in the deductive database is the result of a PSI-BLAST search13 (we used the 


parameters: e = 10, h = 0.0005, j = 20, NRProt 16/11/98). NRProt is a large protein 


sequence database collecting together protein sequences a variety of multi-genome 


protein databases. Using each gene, and each protein identified as having sequence 


similarity to it, we formed an expressive description based on: the frequency of 
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singlets and pairs of residues in the gene; the phylogeny of the organism from which 


each protein was obtained - from SWISS-PROT21; SWISS-PROT protein keywords 


(membrane, transmembrane, inner_membrane, outer_membrane, repeat, plasmid, and 


alternative_splicing); and the length and molecular weight of the gene. This 


description resembles a “phylogenic profile”7, but is more general and expressive.  In 


total 5,895,649 facts were generated. Table 1 shows the available types of data and 


their descriptions. 


 


Type of data Description 


hom(A) refers to a homologous protein (A) found by PSI-


BLAST. 


keyword(A, Word) refers to a SwissProt keyword found in A. 


classification(A, Class) refers to the phylogenic classification of the 


organism A came from, taken from SwissProt. 


species(A, Species) refers to the species of A, taken from SwissProt. 


mol_wt_rule(A, Weight) refers to the molecular weight of A: 1 very low, 2 


low, 3 medium, 4 high, and 5 very high. 


amino_acid_ratio_rule(Residue, Weight) refers to the percentage composition of the residue in 


the sequence. 


e_val_rule(A, Weight) refers to the PSI-Blast sequence similarity measure 


(note that a low value means a high sequence 


similarity). 


e_val_gt 


e_val_lteq 


refers to the PSI-Blast sequence similarity 


measure,greater than or less than/equal to a certain 


value 


mol_wt_lteq(A, Weight) 


mol_wt_gt(A, Weight) 


refers to the molecular weight of A being greater 


than or less than/equal to some value 


amino_acid_pairs_wg and others similar, refers to the number of pairs of 


these two amino acids, in this case tryptophan and 


glycine 







 


amino_acid_pair_ratio_qh and others similar, refers to the ratio of one amino 


acid to another in the gene, in this case the ratio of 


glutamine(q) to histidine(h). This ratio is not a 


percentage, not out of a hundred, instead it’s a ratio 


out of a thousand. So for example 2.8 means 0.28%. 


amino_acid_ratio_g and others similar, refers to the percentage 


composition of the residue in the sequence of the 


gene, in this case the percentage of glycine 


psi_iter_gt 


psi_iter_lteq 


refers to the number of iterations of the PSI_BLAST 


search (greater than or less than/equal to some 


number) 


�
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3. Data Mining method 


We then mined this database to generate rules that predict protein functional class 


from sequence description.  This was done using a combination of clustering and rule 


learning (see Figure 2).  
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 This hybrid approach has proved successful in the past on other scientific discovery 


tasks22. It is powerful because clustering improves the representation for learning 


(using the expressive power of inductive logic programming - ILP23), and 


discrimination efficiently exploits the pre-labeled examples.  WARMR22 is an ILP 


data mining algorithm that is used to identify frequent patterns (conjunctive queries) 


in the sequence descriptions.  In this experiment roughly 18,000 frequent queries are 


discovered. These are converted into 18,000 Boolean attributes for rule learning, 


where an attribute gets value 1 for a specific gene if the corresponding query succeeds 


for that gene.  Conversely, if the query fails, the corresponding attribute is assigned 


value 0. 


  The machine learning algorithms C4.5 and C524 were used to induce rules that 


predict function from the attributes.  Good rules were selected on a validation set, and 


the unbiased accuracy of these rules estimated on a test set.  Rules were selected to 


balance accuracy with unidentified gene coverage.  In general the correct balance of 


accuracy and coverage for any particular application depends on the relative cost of 


making errors of commission and omission25 (making incorrect predictions v missing 


genes).  The system can be tuned to select different balances.  The prediction rules 


were then applied to genes that have not been assigned a function. 







 


4. Results 


It was possible to find good rules that predict function from sequence at all levels of 


the functional hierarchies, as shown in Table 2. The number of rules found are those 


selected on the validation set.  A rule predicts more than one homology class if there 


is more than one sequence similarity cluster in the correct test predictions.  A rule 


predicts a new homology class if there is a sequence similarity cluster in the test 


predictions that has no members in the training data.  Average test accuracy is the 


accuracy of the predictions on the test proteins of assigned function (if conflicts occur, 


the prediction with the highest a priori probability is chosen).  Default test accuracy is 


the accuracy that could be achieved by always selecting the most populous class.  


“New functions assigned” is the number of genes of unassigned function predicted. 







 


 Level 


1 


Level 


2 


Level 


3 


Level 


4 


Number of rules found 25 30 20 3 


Rules predicting more than 


one homology class  


19 18 8 1 


Rules predicting a new 


homology class 


14 15 1 0 


Average test accuracy 62% 65% 62% 76% 


Default test accuracy 48% 14% 6% 2% 


New functions assigned 886 


(58%) 


507 


(33%) 


60 


(4%) 


19 


(1%) 
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 The test accuracy of these rules is far higher than possible by chance.  Of the genes 


originally in the “Conserved Hypothetical” or “Unknown” function classes, 985 


(65%) were predicted to have a function at one or more levels of the hierarchy. The 


rule learning data, the rules, and the predictions, are given at: 


http://www.aber.ac.uk/~dcswww/Research/bio/ProteinFunction/.   


We illustrate the value of the rules by describing rule TB_C50_1_26 shown in figure 


3. 
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This top-level rule is 85% (11/13) accurate on the test set (the probability of this result 


occurring by chance is estimated at 1.2x10-5 as the class Macromolecule metabolism 


covers ~25% of examples).  The rule correctly predicts the following proteins (rpsG 


(S7), rpsI (S9), rpsL (S12), rpsT (S20), rplJ (L10), rplP (L16), rplS (L19), rplX (L24), 


rpmE (L31), rpmJ (L36), infC (IF-3)).  These proteins are all involved in protein 


   If   the percentage composition of lysine in the gene is > 6.6% 


  Then  its functional class is “Macromolecule metabolism” 


 







translation.  When the training data are included the rule covers 46 out of the 58 


proteins known to be involved in ribosomal protein synthesis and modification.  The 


two errors (of commission) made in the test data were groEL2 a “60 kD Chaperonin 2 


gene” and Rv3583c a “putative transcriptional regulator”.  The rule predicts the 


function of five genes classed as “Conserved Hypotheticals” (Rv566, Rv854, Rv910, 


Rv2185, Rv2708) and ten genes classed as “Unknowns” (Rv123, Rv810, Rv909, 


Rv1893, Rv1955, Rv2061, Rv2517, Rv2819, Rv2822, Rv3718).  The prediction rule 


is consistent with protein chemistry, as lysine is positively charged which is desirable 


for interaction with negatively charged RNA.  The choice of lysine over arginine for 


the positively charged residue may be connected with the high GC content of the M. 


tuberculosis genome2  - lysine is coded by the codons AAA and AAG while arg is 


coded by CGU, CGC, CGA, and CGG. 
 


Not all rules are as simple as the example in figure 3, a more complex rule is 


shown in figure 4. This rule predicts the level two functional class “Degradation of 


macromolecules “. The rule is 62.5% accurate (5/8) on the test set. It predicts 3 genes 


which are currently classified as “Unknown” or “Conserved Hypothetical”. The errors 


of commission are rplV (synthesis and modification of macromolecules), Rv1566 


(Virulence) and ponA2 (peneillin binding protein). 
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If 
there exists a homologous protein in SwissProt with the keyword "membrane" AND 
there exists a homologous protein in Bacillus subtilis AND 
there does not exist a homologous protein with very low molecular weight, a large percentage 
of glutamic acid, and medium sequence similarity AND 
there does not exist a homologous protein in SwissProt with good sequence similarity, low 
percentage of cysteine, the keyword "transmembrane" and a fairly high molecular weight AND 
there does not exist a firmicutes sp. protein in SwissProt with the keyword "transmembrane", 
with medium molecular weight, and a very high amount of low entropy sequence AND 
there exists a homologous mammalian protein in SwissProt with the keyword  "repeat" with 
very high molecular weight 
Then  its functional class is "Degradation of Macromolecules".   
 







 


 For those proteins correctly predicted by each rule we carried out all-against-


all PSI-BLAST searches.  If all the proteins could be linked together by PSI-BLAST 


scores < 10 then the proteins were considered homologous.  It was found that many of 


the predictive rules were more general than possible using sequence homology.  This 


was shown in two ways: the rules correctly predict the function of sets of proteins that 


are not homologous to each other, and they correctly predict the function of proteins 


that are not homologous to any in the training data (Table 2).  Such rules provide a 


way of predicting function in the absence of recognisable sequence homology.  The 


other rules, those of equal power to sequence homology, are also valuable as they 


provide a novel way of detecting homology. 


 


5. Discussion 


The discovered rules are important in two ways: they make predictions that are 


useful in determining the functions of genes of currently unknown function, and they 


provide evolutionary insight.  The actual function of a gene can only be determined 


by “wet” experiment.  However, bioinformatic techniques such as sequence homology 


detection, and the prediction rules presented here, can make such experimental 


determination simpler.  It is clearly more efficient to test a high probability hypothesis 


than to randomly test for possible functions.  We look forward to the testing of our 


predictions by other workers, and we are designing automatic methods to test the rules 


ourselves. 


 The existence of general rules for predicting biological function raises 


the question of their evolutionary causation.  How are such rules possible, given the 


notoriously complicated mappings between function and structure, and structure and 







sequence?  Several possibilities exist: the rules are paralogous26 with homology so 


distant as to be undetectable by sequence analysis; convergent evolution has occurred, 


forcing proteins with similar function to resemble each other; or horizontal evolution 


has transferred functional related groups of protein into the organisms.  Evidence in 


favour of a role for distant homology is that it is possible to predict function better 


than random based on predicted secondary structure alone, and secondary structure is 


better conserved over evolution than sequence27.  Evidence against this is that we 


have found little evidence for common SCOP database28 “superfamily” and “fold” 


classifications for proteins predicted by the same rule.  Convergent evolution seems to 


be the dominant factor in rules such as TB_C50_1_26 (Figure 3).  Evidence for 


horizontal transfer of genes into M. tuberculosis is the importance of phylogeny in 


many rules where a paralogous explanation seems to be ruled out. 


 


6. Conclusion  


We have demonstrated the utility of automatic knowledge discovery 


techniques by showing that they can discover prediction rules that are effective and of 


biological interest in functional genomics.   The data mining approach described is 


extendable to analysis of other forms of bioinformatic data, such as expression 


profiles, pathway analysis, structural studies, etc.5-8 Information from all these diverse 


approaches will be able to be combined together to produce more powerful 


predictions than any single one in isolation. 
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