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ABSTRACT
Motivation: Data Mining Prediction (DMP) is a novel
approach to predicting protein functional class from se-
quence. DMP works even in the absence of a homologous
protein of known function. We investigate the utility of
different ways of representing protein sequence in DMP
(residue frequencies, phylogeny, predicted structure)
using the Escherichia coli genome as a model.
Results: Using the different representations DMP learnt
prediction rules that were more accurate than default at
every level of function using every type of representation.
The most effective way to represent sequence was us-
ing phylogeny (75% accuracy and 13% coverage of unas-
signed ORFs at the most general level of function: 69% ac-
curacy and 7% coverage at the most detailed). We tested
different methods for combining predictions from the differ-
ent types of representation. These improved both the ac-
curacy and coverage of predictions, e.g. 40% of all unas-
signed ORFs could be predicted at an estimated accuracy
of 60% and 5% of unassigned ORFs could be predicted at
an estimated accuracy of 86%.
Availability: The rules and data are freely available.
Warmr is free to academics.
Contact: rdk@aber.ac.uk
Supplementary information: http://www.aber.ac.uk/
∼dcswww/Research/bio/ProteinFunction

INTRODUCTION
The first step in determining the function of a newly se-
quenced protein is to attempt to predict its function us-
ing bioinformatic techniques. This is conventionally done
using statistically based sequence similarity (SIM) meth-
ods which predict function based on inferred orthologous
homology, e.g. FASTA (Pearson and Lipman, 1988) and
PSI-BLAST (Altschul et al., 1997). Such bioinformatic
predictions make experimental determination of function
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simpler as it is clearly more efficient to test an accurate
prediction than to randomly test for possible functions.

To predict protein function directly from sequence
what is abstractly required is a discrimination function
(Mitchell, 1997) which maps sequence to biological
function. The existing sequence homology recognition
methods can be considered as examples of nearest neigh-
bour discrimination functions (Duda and Hart, 1973) in
sequence space. Recognising that the problem of predic-
tion function from sequence is a discrimination problem
makes it clear that many other data analysis approaches
can be applied to the problem.

We have recently developed a novel method of predict-
ing function based on using data mining/machine learning
to induce rules which map from sequence to functional
class (King et al., 2000a,b). We call this method Data Min-
ing Prediction (DMP). The DMP approach has several ad-
vantages over conventional SIM methods:

• Function can be predicted in the absence of homology
to a sequence of known function.

• More general types of SIM can be utilised allowing
more remote homologies to be detected.

• Explicit comprehensible rules can be produced which
may provide biological insight.

The disadvantages of DMP are:

• It requires standard SIM functional assignments to
bootstrap from.

• It can only identify the functional class of a protein,
not its specific function.

Suprisingly little work has been done on the prediction
of function from sequence using methods other than direct
SIM. The closest previous work to DMP was carried out
by des Jardins et al. (1997), who used sequence based
descriptors and machine learning to predict if a protein
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was an enzyme, and EC classification if it was known to
be an enzyme. However, the authors did not demonstrate
any advantages over conventional SIM based classification
methods. Work on protein fold prediction (e.g. Jones et al.,
1992; Kelly et al., 2000) is related to predicting function
from sequence—especially where analogous folds are
predicted. If a fold family is predicted for a sequence
which has a member of known function, then this function
could be inferred for the sequence (a nearest-neighbour
approach). In the case of novel folds it still may be possible
to infer function (Stawiski et al., 2000).

Functional hierarchies
The recognition of the value of organising the functions
in proteins into classes (Riley and Labedan, 1996) is one
of the most important conceptual advances in functional
genomics (Rison et al., 2000). Functional hierarchies are
essential for DMP as they enable the learning (inducing)
of general rules which discriminate between different
classes. Once learnt such rules can be used to predict the
class of proteins of unknown functional class.

We selected for study the functional hierarchy of Es-
cherichia coli from the Riley group http://genprotec.mbl.
edu/start. E.coli has arguably the best characterised ex-
tant genome, and the Riley functional classification is in
our opinion the most researched and thorough of all func-
tional hierarchies. A further advantage is that the E.coli
functional hierarchy has probably a higher percentage of
functions known from direct experimentation of any or-
ganism. A typical example of the classification of a pro-
tein in this hierarchy is that of pyruvate formate lyase ac-
tivating enzyme (B4379, yjjW). This has a level 1 (most
general) class of ‘Metabolism of small molecules’, a level
2 class of ‘Energy metabolism, carbon’ and level 3 (most
specific) class of ‘Anaerobic respiration’.

Data mining prediction (DMP)
The basic approach of DMP is as follows (see also
Figure 1):

(1) Retrieve the identified open reading frames (ORFs)
(putative proteins) and their known functional as-
signments (note, that some ORFs will be shown not
to code for proteins, and there are errors in annota-
tion of function, Brenner, 1999)—both of which add
‘noise’ to the data mining process (Mitchell, 1997).

(2) Describe each ORF in the genome using a defined
language—the descriptions are based solely on
information which can be computed from the
sequence.

(3) Use data mining (Piatetsky-Shapiro and Frawley,
1991; Fayyad et al., 1996; Munakata, 1999) to
identify frequent patterns in the descriptions of the
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Fig. 1. Flow chart of the experimental methodology. Warmr is an
Inductive Logic Programming (ILP) data mining algorithm. It used
2/3 of the data to learn frequent patterns. The remaining third was
set aside as a final test set. The machine learning algorithm C5
was used to learn rules that predict function from the descriptional
attributes using 4/9 of the data (2/3 of 2/3). Good rules were
selected on the validation data—the remaining 2/9 of the dataset.
The unbiased accuracy of these rules estimated on the 1/3 test set.
The selection criteria for good rules was that on the validation data
they covered at least two correct examples, had an accuracy of at
least 50%, and an estimated deviation of � 1.64. This process was
only carried out once because of computational resource limitations.

ORFs. The Inductive Logic Programming (ILP)
algorithm Warmr was used (Dehaspe et al., 1998).
The frequent patterns were then converted into
binary attributes which describe the ORFs.

(4) Use machine learning (Mitchell, 1997) to learn
rules which map from the attributes describing the
sequences to their function.

(5) Use the learnt rules to (inductively) infer the func-
tional classes of ORFs of unknown function.

We have previously validated the DMP approach on
both the Mycobacterium tuberculosis, and the E.coli
genomes (King et al., 2000a,b). On the M.tuberculosis
genome the learnt rules predicted the functional class
of 65% of the ORFs with no assigned function, and on
the E.coli genome rules were learnt that predicted 24%
of those with no assigned function. The rules had an
estimated accuracy of 60–80% (depending on the level
of functional assignment), and many of the rules were
demonstrated to be not based on homology. The poorer
result on E.coli than M.tuberculosis was due to the existing
better knowledge of the E.coli genome and to it being less
conservatively annotated.

In these previous experiments a wide variety of ways
of describing protein sequences were used: residue
frequency, phylogeny of identified homologues, predicted
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Table 1. The sequence based attributes used to describe the ORFs. R is an
amino-acid residue

Attributes Description No. Type

amino acids R The number of residues of type R
in the sequence

21 int

amino acid ratio R The percentage composition of
residues of type R

21 real

amino acid pairs RS The number of residue pairs of
type R, S in the sequence

441 int

amino acid pair ratio RS The percentage composition of
residue pairs of type R, S

441 real

sequence length The number of residues in the
sequence

1 int

molecular weight The computed molecular weight 1 int
aliphatic index The computed aliphatic index 1 real
hydro The Grand average of

hydropathicity (GRAVY), the
value was discritised; 1 for low
values, increasing up to 5 for high
values

1 int

pI The theoretical isoelectric point
(pI) for this ORF

1 real

atomic comp E The ORFs atomic composition of
element E;
where E is one of the following:
carbon (C), hydrogen(H),
nitrogen(N), oxygen(O), or
sulfur(S)

5 int

There are considered to be 21 residues, the standard 20 plus x (for repetitive
sequences, according to pseg; Wootton and Federhen (1993)). The last four
attributes (aliphatic index, hydro, pI, and atomic comp E) were generated
using the ProtParam program
(http://www.expasy.cbr.nrc.ca/tools/protparam.html).

secondary structure, etc.; and the rules generated were
often a combination of these different descriptor types.
It was therefore unclear what the relative importance of
the different types of descriptor was. In this paper we
focus on the question of the best way to describe protein
sequences to infer function in DMP.

METHODOLOGY
Describing the ORFs
For E.coli we used the 4289 ORFs identified by Blattner
et al. (1997) and took the functional assignments from the
Riley group http://genprotec.mbl.edu/start. We considered
the Riley classes ‘Open Reading Frames’ and ‘Miscella-
neous’ to be ‘unassigned’.

Three basic types of information were computed to
describe protein sequences (ORFs):

• sequence based attributes (see Table 1);

• SIM (phylogeny) based Datalog descriptors (see Ta-
ble 2),

Table 2. The phylogenic descriptors used

Database argument Description

hom(P) P is a homologous protein found by
PSI-BLAST

e val rule(P, E) P is a homologous protein found by
PSI-BLAST with SIM measure E

e val lteq(P, X) P is a homologous protein found by
PSI-BLAST with SIM measure less than X

e val gt(P, X) P is a homologous protein found by
PSI-BLAST with SIM measure greater than X

psi val rule(P, It) P is a homologous protein found by
PSI-BLAST on iteration It

psi iter lteq(P, X) P is a homologous protein found by
PSI-BLAST on iteration less than X

psi iter gt(P, X) P is a homologous protein found by
PSI-BLAST on iteration greater than X

species(P, Species) The protein P comes from species Species
classification(P, Class) The protein P comes from a species with

SwissProt phylogenic classification Class
mol wt rule(P, X) The protein P has discretised molecular weight

X
mol wt lteq(P, X) The molecular weight of P is less than X
mol wt gt(P, X) The molecular weight of P is greater than X
keyword(P, Word) The SwissProt keyword Word describes

protein P

These descriptors describe the result of PSI-BLAST sequence searches. The
NRProt (05/10/99) database was used for maximum sensitivity, and the
predicted homologous SwissProt (Bairoch and Apweiler, 1999) proteins
extracted from it. The values described in the table by ‘X’ are discretised
into 5 classes (1 very low, 2 low, 3 medium, 4 high, and 5 very high). The e
value of a PSI-BLAST search is a measure of the probability of a sequence
match being homologous (note that a low value means a high SIM). It can
also be considered as a measure of evolutionary relatedness of the
homologous protein. PSI-BLAST is an iterative search process which uses
results from initial searches to guide later searches. The iteration in the
search that a homologous protein is found is informative about the
evolutionary relatedness of the homologous protein. To describe each
homologous protein found we used the species name it was taken from and
its complete phylogenic classification (Phylum–species). The keywords:
membrane, transmembrane, inner membrane, outer membrane, repeat,
plasmid, and alternative splicing were also added to the database if they
were present in the SwissProt description.

• predicted secondary structure based Datalog descrip-
tors (see Table 3).

The sequence attributes (SEQ descriptors) are essen-
tially based on the sequence’s composition of singlets and
pairs of residues (Table 1). The sequence-based attributes
were directly calculated as attributes and were only used
at the machine learning stage see Figure 1. Describing
protein sequences using just the sequence composition
of singlet and pairs of residues loses all information
about the order of residues. However, previous results had
suggested that this approach was surprisingly effective
in deriving useful discriminatory sequence ‘fingerprints’
(King et al., 2000a,b). There were 933 sequence based
attributes.
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Table 3. Database facts and their description

Database argument Description

ss(S, T) Position S is predicted to be a secondary
structure element of type T

nss(S1, S2, T) Given the secondary structure at position S1,
the neighbouring position S2, with
S2 = S1 + 1, has a secondary structure
prediction of type T

ss alpha(S, gt, X) Position S is predicted to be an alpha-helix
of length greater than X (similarly lteq
instead of gt)

ss beta(S, gt, X) Position S is predicted to be a beta-strand of
length greater than X (similarly lteq instead
of gt)

ss coil(S, gt, X) Position S is predicted to be a coil of length
greater than X (similarly lteq instead of gt)

nss alpha(S1, S2, gt, B) Positions S1 and S2 (where S2 = S1 + 2) are
predicted to be alpha-helices, S2 has length
greater than X (similarly lteq instead of gt)

nss beta(S1, S2, gt, X) Positions S1 and S2 (where S2 = S1 + 2) are
predicted to be beta-strands, S2 has length
greater than X (similarly lteq instead of gt)

nss coil(S1, S2, gt, X) Positions S1 and S2 (where S2 = S1 + 2)
are predicted to be coils, S2 has length
greater than X (similarly lteq instead of gt)

These facts are generated for each of the genes. Positions in the text refer to
the order in the predicted secondary structure. If for example an ORF has
the following predicted secondary structure:
ααααccccccαααααcccccccβββ would translate into: the 1st alpha-helix
secondary structure prediction is of length 4; the 1st coil secondary
structure prediction is of length 6; the 2nd alpha-helix secondary structure
prediction is of length 5; the 2nd coil secondary structure prediction is of
length 7; and the 1st beta-strand structure prediction is of length 3. The
values described in the table by ‘X’ are discretised into 5 classes (1 very
low, 2 low, 3 medium, 4 high, and 5 very high).

For each ORF in the E.coli genome we carried out a
PSI-BLAST (Altschul et al., 1997) SIM search (with
parameters: e = 10, h = 0.0005, j = 20 with the
NRProt 05/10/99 database). The result of these searches
was used to calculate the SIM and predicted secondary
structure based (STR) descriptors. (Note that PSI-BLAST
can be confused by multidomain proteins and this will
add noise to the data.) The SIM descriptors capture in
the computer (logic) programming language Datalog
(Ullman, 1988) the essential information in a PSI-BLAST
result (Table 2). The use of a rich (first order) language
such as Datalog allows the description to capture the
distribution of the predicted homologous proteins to
the ORF, their evolutionary distance from the target,
the phylogenic relationship between the proteins, their
relative sizes, and keywords describing the homologous
sequences. The keywords are based on properties that can
be predicted from sequence—especially the presence of
membrane/trans-membrane binding sequences. Such a

rich description would not be possible using conventional
attribute vector descriptors. It is intuitively clear that SIM
information can provide powerful clues to the function of
a sequence even when the known function of homologous
proteins is disregarded. For example, if a set of homol-
ogous proteins is found across the Eubacteria, Archaea,
and Eukaryotes, then this increases the probability that
they have an essential house-keeping role. The Datalog
description of a PSI-BLAST run resembles the ‘phylo-
genic profile’ approach of the Eisenberg group (Marcotte
et al., 1999).

The ILP (Muggleton, 1991; Lavrac and Dzeroski, 1994)
data mining method Warmr (Dehaspe et al., 1998) was
used to find frequent patterns in the Datalog descriptions
of the PSI-BLAST runs. Warmr found 13 799 frequent
patterns (see http://www.aber.ac.uk/∼dcswww/Research/
bio/ProteinFunction/ecoli.hom.out for the complete list).
These frequent patterns were then converted into binary
attributes (1 if the patterns was present in an ORF and 0 if
the patterns was absent) for use by machine learning.

The descriptors based on the predicted secondary
structure (STR) were also coded into Datalog (Ta-
ble 3). The program Prof (Ouali and King, 2000) was
used to make secondary structure predictions of all
the E.coli ORFs. Prof uses as input the homologous
sequences detected by PSI-BLAST, and employs cas-
caded neural networks to make the predictions. Prof
has an estimated accuracy of 77%. Warmr found 18 342
frequent patterns in the secondary structure prediction
data (see http://www.aber.ac.uk/∼dcswww/Research/bio/
ProteinFunction/ecoli.struc.out for the complete list).
These, like the SIM frequent patterns, were converted
into binary attributes (1 if the patterns was present in an
ORF and 0 if the pattern was absent) for use in machine
learning.

Basic learning experiments
The basic methodology of the learning experiments is
shown in Figure 1. The experiments were designed to
find rules that: given an ORFs sequence description,
accurately predict its function. To minimise the danger
of ‘overfitting’ rules to the data (finding rules that make
accurate predictions on the data used to learn the rules,
but low accuracy on new data), the ORFs of assigned
function were split into three sets (training, validation, and
test). Rules were first learnt on the training data and their
performance examined on the validation set. Rules which
performed well on the validation set were then selected,
and their accuracy and coverage estimated on the test set
(Mitchell, 1997). This method allows an unbiased estimate
of accuracy and coverage.

This learning procedure was carried out for each of
the three types of information about the ORFs (se-
quence based attributes—SEQ, SIM based Datalog
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Table 4. The test set results for using the different types of sequence description (sequence based attributes—SEQ; sequence similarity based Datalog
descriptors—SIM; predicted secondary structure based Datalog descriptors—STR; combined all rule sets—WTD VOTE ALL; combined all rules sets with
prediction from � 2 rules—VOTE 2 ALL; combined SEQ, SIM, STR only—WTD VOTE SSS; combined SEQ, SIM, STR with prediction from � 2 rules—
VOTE 2 SSS)

Attributes Accuracy % Coverage % No. of Predictions
1 2 3 1 2 3 1 2 3

SEQ 64 63 41 20 18 4 359 (17) 245 (11) 63 (3)
SIM 75 74 69 29 26 16 290 (13) 288 (13) 152 (7)
STR 59 44 17 10 1 5 149 (7) 38 (2) 74 (3)
SEQ + SIM 84 71 60 23 28 16 231 (11) 272 (13) 115 (5)
SEQ + STR 69 64 50 20 22 3 317 (15) 401 (19) 37 (2)
SIM + STR 75 69 54 25 27 20 195 (9) 301 (14) 152 (7)
SEQ + SIM + STR 75 69 61 28 26 15 353 (16) 267 (12) 135 (6)
WTD VOTE ALL 60 54 42 52 48 36 863 (40) 818 (38) 475 (22)
VOTE 2 ALL 75 68 68 32 34 17 400 (18) 377 (17) 122 (6)
WTD VOTE SSS 64 66 52 41 34 22 626 (29) 462 (21) 296 (14)
VOTE 2 SSS 86 88 90 12 11 1 117 (5) 91 (4) 16 (1)

The numbers 1, 2, 3 correspond to the levels in E.coli functional hierarchy (level 1 the most general, level 3 the most specific). The test set accuracies are: (the
number of ORF predicted to have the correct function/number of predictions) * 100. The default accuracies for the data (i.e. just choose the largest class) are
for level one 40%, for level two 21%, and for level three 6%. The test coverages are: (the number of ORFs predicted to have a function/total number of ORFs)
* 100. There were 712 ORFs of known function in the test set. The number and percentage (in brackets) of ORFs of unknown function (total of 2167)
predicted by the rules from the different types of sequence description are given in the last three columns.

descriptors—SIM, predicted secondary structure based
Datalog descriptors—STR). For each type of information
we attempted to learn rules for every functional class in
the three hierarchical levels of assigned function in E.coli.

Combined learning experiments
We also examined a number of different ways of combin-
ing the different type of information. The simplest of these
was to combine the different types of attributes in the ma-
chine learning stage of the work. This produced four com-
binations: SEQ + SIM + STR, SEQ + SIM, SEQ + STR,
SIM + STR. For each combination we attempted to learn
rules for every functional class in the three hierarchical
levels of assigned function.

In addition we investigated other ways of combining
descriptional information based on ensemble learning
(Bauer and Kohavi, 1999)—such approaches are state-
of-the-art in machine learning. We found that the best
results (the results we report here) came from a simple
voting strategy—allowing each ruleset to vote for class of
an ORF. Two different voting strategies are reported here
VOTE 2 = only selecting predictions that are made by at
least two rulesets, and WTD VOTE = weighted voting,
where the accuracy on the validation set is used to weight
the vote of a rule. We first did this for the rulesets from
all the types of description (SEQ, SIM, STR, SEQ+SIM,
SEQ+STR, SIM+STR, SEQ+SIM+STR) which we term
VOTE 2 ALL and WTD VOTE ALL. We also used both
voting strategies with the just the basic descriptions
(SEQ, SIM, STR) which we term VOTE 2 SSS and
WTD VOTE SSS.

RESULTS
The test set accuracies and coverages of the rules are given
in Table 4 (complete details can be found at http://www.
aber.ac.uk/∼dcswww/Research/bio/ProteinFunction).
It was possible to find rules that were more accurate
than default at every level of function using every type
of sequence description. Of the three basic types of
description, SIM was the most effective. It gave both the
highest accuracy and coverage at each level of function.
This result agrees with intuition, as SIM is the richest
of the three sequence description methods; there is also
evidence that function can be predicted using ‘phylogenic
profiles’ (Marcotte et al., 1999) and these are related
to the information in SIM. The sequence description
methods SEQ and STR also perform creditably, with SEQ
outperforming STR. Although SEQ used quite a simplistic
way of representing sequences, based on the composition
of singlets and pairs of residues, it is surprising how
useful these compositional fingerprints were at predicting
function. The power of SEQ for predicting function is
one of the main results of this paper. STR also performed
well: at the top level of function, STR predicted 10% of
the test set with an estimated accuracy of 59%. We did not
expect that it would be possible to predict functional class
based solely on predicted secondary structure.

Using SIM it was possible to predict 15–30% of the
test set with ∼70% accuracy. We consider this to be
remarkable. SIM includes only information gleaned only
from the patterns of proteins found in SIM searches (of
course excluding any explicit functional information in
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such searches). SIM outperforms any other combination
of descriptors (SEQ, SIM, STR, SEQ + SIM, SEQ +
STR, SIM + STR, SEQ + SIM + STR), with the possible
exception of SEQ + SIM. This result was unexpected,
as SEQ and STR performed well on their own, and we
anticipated that adding this information to the learning
process should increase performance. It is possible that
SEQ and SIM really add no information not present
in SIM, but it is more likely that the result is due to
inefficiencies in the machine learning process (e.g. too
many attributes for C5 to deal with efficiently). The results
for SEQ + STR (i.e. SIM excluded) are good at levels 1
and 2 (∼65% accuracy with ∼20% coverage), at level 3
only a poor coverage (3%) is obtained. It seems that the
SEQ and STR descriptors are not rich enough to make fine
functional discriminations.

The ensemble learning approaches of WTD VOTE ALL
and WTD VOTE SSS had higher coverages than any
other prediction methods. WTD VOTE ALL predicts
the functional class of 40% of the ORFs at level 1 with
an estimated accuracy of 60 and 22% of the ORFs at
level 3 with and estimated accuracy of 42% (note default
accuracy here is 6%). VOTE 2 ALL and VOTE 2 SSS,
which only make predictions if rules agree from more
than one descriptor type, had higher accuracies than those
of WTD VOTE ALL and WTD VOTE SSS, again as
expected. The predictions from VOTE 2 SSS were more
accurate than those from VOTE 2 ALL as the descriptor
types (SEQ, SIM, STR) are more independent than
(SEQ, SIM, STR, SEQ + SIM, SEQ + STR, SIM + STR,
SEQ + SIM + STR). VOTE 2 SSS is the most accurate
prediction method developed with ∼90% accuracy at all
levels.

As in previous work (King et al., 2000a,b) we found
that the predictions at the higher levels were more accurate
and had higher coverage than low level predictions. This
is to some extent expected, as there are many more
functional classes to discriminate between at the lower
levels (i.e. the prior probabilities of these classes are
smaller). However, before we started work on DMP
we did not believe that it was likely that it would be
possible to discriminate between such broad classes as
‘Cell processes’ and ‘Macromolecule metabolism’, by
inspection of their sequences. We believe this result is
important biologically. The most valuable predictions are
those at the lower levels as these can be tested most
easily experimentally. At this level of detailed prediction
it is relatively easy to envisage experiments to confirm
the predictions. For example, the ORF B4082 (yjcR) is
predicted to be in the functional class ‘Chemotaxis and
mobility’. Therefore, if this gene was knocked out and
the cells displayed defects in chemotaxis and mobility,
the experimental result would be consistent with the
hypothesis.

Table 5. The number of selected rules from the different types of sequence
description, and the percentage of non-homology based rules from the
different types of sequence description

Attributes No. of rules % Non-homology based rules
1 2 3 1 2 3

M N M N M N

SEQ 6 6 5 83 100 67 50 40 40
SIM 12 13 15 83 75 62 46 40 33
STR 4 2 7 75 75 50 50 0 43
SEQ + SIM 9 11 13 89 78 64 64 31 31
SEQ + STR 5 5 4 60 60 60 80 50 60
SIM + STR 11 13 15 82 64 69 46 27 20
SEQ + SIM + STR 13 13 13 70 70 77 38 23 23

M is the number of rules predicting more than one homology class. A rule
predicts more than one homology class if there is more than one sequence
similarity cluster in the correct test predictions. N is the number of rules
predicting new homology classes. A rule predicts a new homology class if
there is a sequence similarity cluster in the test predictions that has no
members in the training data.

The number of rules found for each level and sequence
description type are given in Table 5. At the top level (1)
the order of frequency of rules found for the different
classes was as follows: ‘Cell processes’, ‘Macromolecule
metabolism’, ‘Structural elements’, ‘Extrachromosomal’,
and ‘Global functions’. This is the same order as the
frequency of these classes. However, it is interesting
that no rules were found for the class ‘Metabolism of
small molecules’ which is the most frequent level 1
class (40% of all classified ORFs belong to it). This
may be caused by the heterogeneity of the class or a
machine learning artefact of its high frequency—rules
were found for the class ‘small-molecule metabolism’ in
M.tuberculosis (King et al., 2000a). At level 2 the most
common classes for rules were the following: ‘Trans-
port/binding proteins’, ‘Laterally acquired elements’,
‘Energy metabolism carbon’, ‘Ribosome constituents’,
‘Degradation of small molecules’, ‘Cell envelope’, and
‘Amino acid biosynthesis’. The frequent occurrence of
rules for the class ‘Transport/binding proteins’ can be
explained by it being the most common level 2 class for
ORFs, and by transport proteins having relatively easily
identified patterns of hydrophobicity. However, note
that there exist many sequences covered by these rules
that have not been predicted using SIM. The frequency
of rules for the class ‘Laterally acquired elements’ can
be explained by the typically different distribution of
residues in these proteins; this class has only ∼5% of all
classified ORFs. A similar explanation probably applies to
‘Ribosome constituents’ (see also King et al., 2000b) and
the class ‘Cell envelope’. ‘Energy metabolism carbon’
is the third most common level 2 class. It is interesting
that many rules were found for this class, but not for
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SEQ Level 2 Rule 56 

IF    

 the estimated pI of the ORF is > 9.11   AND 

 the amino_acid_pairs_qp <= 1   AND 

 the amino_acid_pairs_vg > 2   AND 

THEN  the class is “Transport/binding proteins' “

Fig. 2. This rule had an accuracy of 64.5% on the test set
(20/31), the default accuracy was (21%). The estimated probability
of this test accuracy occurring by chance is ∼ 2.4 × 10−7.
Examination of the 11 test set ‘errors’ shows that 8 of them
(b3633, b2288, b1590, b2056, b2484, b3140, b4315, b2610) are
membrane proteins with arguable transport/binding functions which
illustrates the ambiguity involved in assigning proteins to functional
classes. Applying the rule to the ORFs of unknown function gives
49 predictions (2% of unassigned ORFs). It is unclear why the
dipeptide qp should disfavour ‘Transport/binding proteins’ and the
dipeptide vg should favour them. The correctly predicted proteins
in the test set are [(b2771, MFS family of transport protein,
3rd module, function unknown), (b3093, exuT, MFS family of
transport protein transport of hexuronates, 2nd module), (b2182,
bcr, MFS family of transport protein bicyclomycin resistance
protein, transmembrane protein, 2nd module), (b2587, kgtP, MFS
family of transport protein α-ketoglutarate permease, 1st module),
(b1528, ydeA, ABC superfamily, membrane, putative membrane
component of ABC transport system appears to facilitate arabinose
export contributes to control of arabinose regulon), (b3270, yhdY,
ABC superfamily, membrane, paral putative membrane component
of transport system), (b0198, yaeE, ABC superfamily, membrane,
paral putative membrane component of transport system), (b2546,
ABC superfamily, membrane, paral putative membrane component
of ABC transport system, 2nd module), (b1496, yddA, ABC
superfamily, atp bind, paral putative ATP-binding module, 2nd
module), (b4067, yjcG, SSS family transport protein), (b3258,
panF, SSS family transport protein sodium/pantothenate symporter,
1st module), (b1336, ydaH, ArAAP family p-aminobenzoyl-
glutamate utilization paral putative pump protein, transport, 1st
module), (b1907, tyrP, ArAAP family tyrosine-specific transport
system), (b0770, DASS family of transport protein), (b0341,
cynX, cyanate transport), (b2987, pitB, PiT family low-affinity
phosphate transport, 1st module), (b0591, ybdA, paral putative POT
family of transport protein, 1st module), (b1663, ydhE, MATE
family of transport protein, 2nd module), (b0336, codB, NCS1
family transport protein cytosine permease/transport, 2nd module),
(b3907, rhaT, GntP family rhamnose permease, L-rhamnose-H+
symporter membrane protein, 1st module)]. The classification er-
rors were [(b3633, kdtA, 3-deoxy-D-manno-octulosonic-acid trans-
ferase, KDO transferase), (b2288, nuoA, NADH dehydrogenase
I chain A), (b1590, putative DMSO reductase anchor subunit),
(b2056, putative colanic acid polymerase), (b2484, hydrogenase
four membrane subunit (1st module), (b3140, agaD, PTS system N-
acetylglucosamine enzyme IID component 1), (b4315, fimI, fimbrial
protein internal segment), (b2610, ffh 4.5S-RNP protein, 1st module
GTPase activity), (b3320, rplC, 50S ribosomal subunit protein
L3), (b3984, plA, 50S ribosomal subunit protein L1 regulates
synthesis of L1 and L11), (b3681, glvG, probable 6-phospho-beta-
glucosidase)].

SIM level 2 Rule 23 

IF 

a homologous protein was found in an Arthopda sp. AND 

a homologous protein was not found in Helicobacter pylori with 

molecular weight > 55,220 Daltons AND 

a homologous protein was found in a Helicobacter group sp. with  

molecular weight > 55,220 Daltons AND 

a homologous protein was not found in a Embryophyta sp. with the  

keyword “repeat”. 

THEN  the class is “Energy metabolism carbon” 

Fig. 3. This rule had an accuracy of 75% on the test set (3/4),
the default accuracy was 9.8%. The probability of this happening
by chance is estimated at ∼ 3.5 × 10−3). The correctly predicted
proteins in the test set are (b1468, narZ ’nitrate reductase 2
alpha subunit, 1st module), (b2283, nuoG, NADH dehydrogenase I
chain G), (b2206, napA, periplasmic nitrate reductase in complex
with NapB, 1st module). The ‘error’ is (b1872, bisZ, biotin
sulfoxide reductase 2, 1st module) which is classed as ‘Central
intermediary metabolism’. We would argue that this protein is as
much part of ‘Energy metabolism carbon’ as the other proteins
correctly classified as such. The rule predicts the function of four
ORFs of unassigned function. The Embryophyta include almost all
multicellular land plants. The causative mechanism of this rule is
obscure.

‘Macromolecule synthesis, modification’—the second
most frequent class. This implies that the proteins involved
in ‘Energy metabolism carbon’ are more homogeneous
than those in ‘Macromolecule synthesis, modification’. At
level 3, the most specific level, the most common classes
for rules were: ‘Transposon-related functions’, ‘Riboso-
mal proteins’, ‘MFS family’, ‘Surface structures’, ‘Global
regulatory functions’, ‘ABC superfamily (membrane)’,
‘ABC superfamily (atp bind)’, and ‘Chemotaxis and
mobility’. These results are similar to the results at level
2. Few rules are found for classes involving enzymes.
This may be because most such classes have very few
ORFs, making it difficult to generalise.

Four typical rules are selected to illustrate the forms
of rule formed (Figures 2–5), one rule each from the
descriptor types (SEQ, SIM, STR, and SEQ + SIM +
STR). To allow direct comparison between the descriptor
types, all the rules except that from SEQ are for the
class ‘Energy metabolism carbon’ (no rule was found
for this class with SEQ). Each of the four rules is not
exclusively based on sequence homology (see below). The
rules perform well on the test data and predict a number
of ORFs of unknown function. Analysis of the errors
made by the prediction rules makes it clear that many
of them are not really errors and are instead artefacts of
the annotation process—they are biologically justifiable.
The main cause of these annotation errors is that existing
functional hierarchies often give only one function per
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STR Level 2 Rule 50 

IF 

two α-helices are not predicted i, i+2, the first ≤1, and the second >1   

AND 

three β-strand predictions are predicted j, j+2, j+4, the first ≤6, the  

second  ≤830, and the third ≤6 AND 

three coil predictions are not predicted k,   k+2, k+4, the first >5, the  

second >3, and the third >10 AND 

three coil predictions are predicted l, l+2, l+4, the first >10, the second  

≤6, and the third ≤6  AND 

three coil predictions are predicted m, m+2, m+4,   the first >11, the second  

≤830, and the third ≤10 

THEN  the class is “Energy metabolism carbon” 

Fig. 4. This rule had an accuracy of 50% on the test set (3/6),
the default accuracy was (9.8%). The probability of this happening
by chance is estimated at ∼ 1.5 × 10−2). The correctly predicted
proteins in the test set are [(b4071, nrfB, formate-dependent nitrite
reductase, a penta-haeme cytochrome c), (b2720, hycF, probable
iron–sulfur protein of hydrogenase 3, part of formate hydrogenlyase
complex), (b2724, hycB, probable small subunit of hydrogenase-
3 iron–sulfur protein, part of formate hydrogenlyase complex)].
The errors are [(b3721, bglB, phospho-β-glucosidase B, cryptic),
(b1412, acpD, acyl carrier protein phosphodiesterase’), (b2587,
kgtP, MFS family of transport protein α-ketoglutarate permease, 1st
module)], all of which are related to ‘Energy metabolism carbon’.
The structural meaning of the rule is unclear. The rule predicts the
function of 18 ORFs of unassigned function.

gene (Kell and King, 2000). This means that the error
rates of the DMP rules on the test data are pessimistically
biased, i.e. their true accuracy is probably higher than
estimated in the tables.

The number of ORFs of unknown functions predicted by
the rules from the different types of sequence description
are given in Table 4. The sequence description method
with the highest coverage WTD VOTE ALL predicts 40%
of the unassigned ORFs. Given that E.coli is a very
well studied organism, this is a notable extension of its
annotation. A lower percentage of unknown ORFs are
predicted compared to the test set of known function. This
is expected as the distribution of sequences of ORFs of
unknown function is likely to be different from those of
assigned function.

For those proteins correctly predicted by each rule we
carried out all-against-all PSI-BLAST searches. If all the
proteins could be linked together by PSI-BLAST scores
<10 then the proteins were considered homologous (note
that this is a very liberal definition). It was found that
many of the predictive rules were more general than
possible using sequence homology. This was shown in
two ways: the rules correctly predict the function of sets
of proteins that are not homologous to each other, and
they correctly predict the function of proteins that are

SEQ + SIM + STR Level 2 Rule 20 

IF 

two β-strands are predicted at i, i+2, the first >3, and the second >1 

AND 

a homologous protein was found in a Kinetoplastida sp. with the  

keyword “transmembrane”  AND 

a homologous protein was not found in a Epsilon subdivision   

sp. with the keyword “inner_membrane”  

THEN  the class is “Energy metabolism carbon” 

Fig. 5. This rule had an accuracy of 50% on the test set (6/12),
the default accuracy was (9.8%). The probability of this happening
by chance is estimated at ∼ 5 × 10−4). The correctly predicted
proteins in the test set are [(b2283, nuoG, NADH dehydrogenase I
chain G), (b2484, hydrogenase 4 membrane subunit, 1st module),
(b2243, glpC, sn-glycerol-3-phosphate dehydrogenase, anaerobic,
K-small subunit, 2nd module), (b4379, yjjW, pyruvate formate lyase
activating enzyme), (b2720, hycF, probable iron–sulfur protein of
hydrogenase 3, part of formate hydrogenlyase complex), (b2724,
hycB, probable small subunit of hydrogenase-3 iron–sulfur protein,
part of formate hydrogenlyase complex)]. The errors are [(b4359,
mdoB, phosphoglycerol transferase I, add phosphoglycerols to OPG
backbone), (b3385, gph, phosphoglycolate phosphatase), (b2316,
accD, acetylCoA carboxylase carboxytransferase component β

subunit), (b2056, putative colanic acid polymerase), (b3653, gltS,
GltS family glutamate transport, 2nd module), (b3469, P-type
ATPase family zinc-transporting ATPase, 2nd module)]. Half of
these ‘errors’ (mdoB, gph, and accD) are clearly related to the
functional class ‘Energy metabolism carbon’. The rule predicts the
function of 40 ORFs of unassigned function (∼2%).

not homologous to any in the training data (Table 5). A
larger percentage of non-homology rules were identified
at level 1 (60–90%) compared with level 3 (30–60%).
Level 2 was intermediate. This was expected as the
lower level functional classes are more homogeneous and
homologous sets of proteins within these classes make
a larger percentage of them. The three basic types of
descriptor (SEQ SIM STR) all seem about equal in their
ability to describe non-homology based rules.

DISCUSSION AND CONCLUSION
DMP rules provide a novel and powerful way of predicting
an ORFs function from its sequence. Although they cannot
provide the specificity of the predictions provided by
standard SIM searches, the DMP approach has the ability
to make correct predictions when standard methods fail,
and to provide independent conformation of a prediction
made by standard methods. As such they are an effective
new technique in the bioinformatician’s tool-box.

Perhaps the most interesting biological feature of DMP
rules is that many of them can predict function in the
absence of detectable sequence homology. The existence
of such rules was unforeseen—given the notoriously com-
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plicated mappings between function and structure, and
structure and sequence. Possible causative mechanisms
of such DMP rules are: detection of remote homologous
sequences too distant as to be undetectable by sequence
analysis (Henikoff et al., 1997; Tatusov et al., 1997); con-
vergent evolution forcing proteins with similar function to
resemble each other; and horizontal evolution transferring
functional related groups of protein into the organisms.

The DMP rules based on homology are also interesting
as they provide a novel way of detecting homology.
We have demonstrated in this paper, and in King et
al. (2000a,b) that the DMP rules correctly predict the
function of proteins missed in the original annotations.
Now it could be argued that these functions could have
been detected using a less conservative setting of the
probability of SIM match (i.e. higher e value threshold).
It is hard to disprove this claim, as the original annotation
lacks the required information, and the current absence of
a cross-species functional hierarchies and ontologies (see
below) makes automated annotation difficult. However, it
is likely that combined with standard homology detection
programs the DMP rules could accurately predict more
distant homologies than existing methods alone. This is
because the DMP rules use a different bias (in machine
learning terms: Mitchell, 1997) from standard approaches.
Combining prediction methods with different biases is
a standard method of improving prediction method
accuracies (Dietterich, 1997).

The inference of homology based on SIM is generally
based on a threshold approach: homology is inferred if a
SIM search detects a match over a threshold probability; if
the match is below this threshold, no matter by how little,
no homology is inferred. This is a mistake. In decision
theory this approach is equivalent to assigning a particular
loss function to the errors: when assigning homology there
are two types of error possible: errors of commission
(where an ORF is predicted to have a function that it does
not have), and errors of omission (where an ORF is not
predicted to have a function that it does have). The costs
of making these two types of error are not necessarily
equal, and depend on the relative cost of investigating an
erroneous prediction compared to missing a biologically
interesting correct prediction. Generally we wish to make
the decision which minimises the expected loss, and this
is achieved if:

(probability(homologous|sequence,background data)/
probability(not homologous|sequence, background data))
> (loss(error of commission)/loss(error of omission)).

This equation makes explicit why annotators generally
use high thresholds of probability to assign homology—
i.e. they are very conservative. They intuitively assume
that cost of making errors of commission are more
costly than errors of omission. In this they are generally

correct, as assignments of function are generally given
without probability values, and so errors may propagate
without control through the databases. However, we do
not all share the same loss function as the annotators.
In particular, if your loss function has a lower cost
on errors of commission than the annotators, then the
annotation is useless, as the annotators have thrown away
the information in the SIM search. If you have a higher
cost on errors of commission then the assignment is non-
optimal as you will make more errors of commission than
you could afford. DMP rules can be tuned to find rules
with different loss functions. This can be done both by
changing the selection criteria in the validation set, and
by choosing different sequence descriptor types to give
different coverages and averages (Tables 4). It is possible
to show that certain prediction methods ‘dominate’ others
over a large range of reasonable loss functions (Provost
and Fawcett, 1997).

The three basic types of description (SEQ, SIM and
STR) can be improved upon. Although SEQ is surpris-
ingly effective, it fails to include all the explicit sequential
information in a protein sequence. The following residue
sequences would have exactly the same SEQ description:
[aacaacaa], [acaaaaca]. This is clearly not ideal. Possible
avenues for improvement are to use wavelets (Mallat,
1989), the Santa Cruz approach (Jaakkola et al., 1999),
and the direct use of ILP data mining. Sequences are
inherently relational and poorly described using attribute
vectors, and Warmr could directly include relational
information on sequence and be used to find frequent
sub-sequences that characterise sequences. The most
obvious way to improve SIM would be to include multiple
sequence alignment information. In STR information
could be included about: the relation between predicted
secondary structure elements, the distribution of sec-
ondary structure types (mostly α, mostly β), probabilities,
etc. Another approach to improving would be to involve
fold prediction, this would allow direct linkage of existing
knowledge of structure to function. For this to work fold
prediction does not necessarily need to be very accurate,
only informative.

Our approach to DMP has so far been organism specific.
This has been because of the widely different biology
in the species studied (M.tuberculosis, E.coli Kell and
King, 2000), and by the lack of a consistent cross-species
functional hierarchy. The only existing hierarchy that
extends across species is the EC enzyme classification
system. However this is far from ideal, as it is restricted to
enzymes and is more chemically based than biologically.
Despite this we would expect from our results that DMP
would be capable of predicting enzyme classifications.
Work has started on developing cross-species functional
hierarchies with the formation of controlled vocabularies
and ontologies (The Gene Ontology Consortium, 2000;
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http://www.geneontology.org/ Rison et al., 2000). When
such ontological work has annotated a sufficient number
of species it will be possible to search for pan-specific
rules relating sequence to function.
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