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Abstract. Critics of lazy functional languages contend that the lan-
guages are only suitable for toy problems and are not used for real
systems. We present an application (PolyFARM) for distributed data
mining in relational bioinformatics data, written in the lazy functional
language Haskell. We describe the problem we wished to solve, the rea-
sons we chose Haskell and relate our experiences. Laziness did cause
many problems in controlling heap space usage, but these were solved
by a variety of methods. The many advantages of writing software in
Haskell outweighed these problems. These included clear expression of
algorithms, good support for data structures, abstraction, modularity
and generalisation leading to fast prototyping and code reuse, parsing
tools, profiling tools, language features such as strong typing and ref-
erential transparency, and the support of an enthusiastic Haskell com-
munity. PolyFARM is currently in use mining data from the Saccha-
romyces cerevisiae genome and is freely available for non-commercial use
at http://www.aber.ac.uk/compsci/Research/bio/dss/polyfarm/.

1 Declarative languages in data mining

Data mining may at first seem an unusual area for applications for declarative
languages. The requirements for data mining software used to be simply speed
and ability to cope with large volumes of data. This meant that most data
mining applications have been written in languages such as C and C++?. Java
has also become very popular recently with the success of the Weka toolkit [1].
However, as the volumes of data grow larger, we wish to be more selective and
mine only the interesting information, and so emphasis begins to fall on complex
data structures and algorithms in order to achieve good results [2].

The declarative community have in fact been involved in data mining right
from the start with Inductive Logic Programming (ILP) [3, 4]. ILP uses the
language of logic (and usually Prolog or Datalog) to express relationships in the
data. Machine learning is used to induce generalisations of these relationships,
? A selection of current data mining software can be found at http://www.kdnuggets.
com/software/



which can be later applied to future data to make classifications. The advantage
of ILP is that complex results can be extracted, but as the results are expressed
symbolically (in logic) the results are still more intelligible and informative than
traditional numerical learners such as neural networks.

Some of the earliest successful applications of ILP were to computational
biology. Perhaps the best known example was the mutagenesis problem [5]: the
task of learning whether a chemical is mutagenic or not, given the atoms, bonds
and structures within its molecules. Computational biology is a new and exciting
field. Recent advances in DNA sequencing, microarray technology and other
large-scale biological analysis techniques are now producing vast databases of
information. These databases await detailed analysis by biologists. Due to the
amount of data, automatic techniques such as data mining will be required for
this task. The explosion in computational biology data will revolutionise biology,
and new algorithms and solutions are needed to process this data.

For our work in computational biology, we needed to develop a data mining
algorithm that would find frequent patterns in large amounts of relational data.
Our data concerns the 6000 genes in the yeast genome (Saccharomyces cerevisiae)
and our aim is to use these patterns as the first stage in learning about the
biological functions of the genes. The data is both structured and relational. We
also wanted a solution that was capable of running in a distributed fashion on a
Beowulf cluster to make best use of the hardware resources we have available.

In the following sections of this paper we describe the problem we wish to
solve, the solution we produced, the reasons we chose to use Haskell for the
implementation and the problems and advantages we had using Haskell.

2 The requirements

2.1 The data

There are more than 6000 potential genes of the yeast S. cerevisiae. The yeast
genome was sequenced in 1996 [6] and has been well studied as a model organism
both before and after it was sequenced. However, despite its relatively small size
and intensive study, the biological function of 30% of its genes is still unknown.
We would like to apply machine learning to learn the relationship between prop-
erties of yeast genes and their biological functions, and hence make predictions
for the functions of the genes that currently have no known function.

For each gene we collect as much information as possible from public data
sources on the Internet. This includes data that is relational in nature, such as
predicted secondary structure and homologous proteins.

Predicted secondary structure is useful because the shape and structure of a
gene’s product can give clues to its function. Protein structure can be described
at various levels. The primary structure is the amino acid sequence itself. The
secondary structure and tertiary structure describe how the backbone of the
protein is arranged in 3-dimensional space. The backbone of the protein makes
hydrogen bonds with itself, causing it to fold up into arrangements known as



alpha helices, beta sheets and random coils. Alpha helices are formed when
the backbone twists into right-handed helices. Beta sheets are formed when the
backbone folds back on itself to make pleats. Random coils are neither random,
nor coils, but are connecting loops that join together the alpha and beta regions.
The alpha, beta and coil components are what is known as secondary structure.
The secondary structures then fold up to give a tertiary structure to the protein.
This makes the protein compact and globular. Our data is composed of predicted
secondary structure information, which has a sequential aspect - for example,
a gene might begin with a short alpha helix, followed by a long beta sheet and
then another alpha helix. This spatial relationship between the components is
important.

Data about homologous proteins is also informative. Homologous proteins are
proteins that have evolved from the same ancestor at some point in time, and
usually still share large percentages of their DNA composition. We can search
publicly available databases of known proteins to find such proteins that have
sequences similar to our yeast genes. These proteins are likely to be homologous,
and to share common functions, and so information about these is valuable. For
example, if we knew that the yeast genes that have homologs very rich in the
amino acid lysine tend to be involved in ribosomal work, then we could predict
that any of the genes of unknown function that have homologs rich in lysine
could also be producing ribosomal proteins.

Figures 1 and 2 demonstrate the contents of our databases.
The overall method we use is the same as the method used in our work on

predicting the functions of genes in the M. tuberculosis and E. coli genomes [7].
For this we use association mining to discover frequent patterns in the data.
Then we use these patterns as attributes into a machine learning algorithm in
order to predict gene function. The association mining stage is the concern of
this paper.

2.2 Association rule mining

Association rule mining is a common data mining technique that can be used to
produce interesting patterns or rules. Association rule mining programs count
frequent patterns (or “associations”) in large databases, reporting all that fall
above a minimum frequency threshold known as the “support”. The standard
example used to describe this problem is that of analysing supermarket basket
data, to see which products are frequently bought together. Such an association
might be “minced beef and pasta are bought by 30% of customers”. An associ-
ation rule might be “if a customer buys minced beef and pasta then they are
75% likely to also buy spaghetti sauce”.

The amount of time taken to count associations in large databases has led
to many clever algorithms for counting, and investigations into aspects such as
minimising candidate associations to count, minimising IO operations to read
the database, minimising memory requirements and parallelising the algorithms.
Certain properties of associations are useful when minimising the search space.
Frequency of associations is monotonic: if an association is not frequent, then



orf(yor034c).

hom(yor034c,p31947,b1.0e-8 4.0e-4).

sq len(p31947,b16 344).

mol wt(p31947,b1485 38502).

classification(p31947,homo).

db ref(p31947,prints).

db ref(p31947,embl).

db ref(p31947,interpro).

hom(yor034c,p29431,b4.5e-2 1.1).

sq len(p29431,b483 662).

mol wt(p29431,b53922 74079).

classification(p29431,buchnera).

keyword(p29431,transmembrane).

keyword(p29431,inner membrane).

db ref(p29431,pir).

db ref(p29431,pfam).

hom(yor034c,q28309,b4.5e-2 1.1).

sq len(q28309,b16 344).

mol wt(q28309,b1485 38502).

classification(q28309,canis).

keyword(q28309,transmembrane).

db ref(q28309,prints).

db ref(q28309,gcrdb).

db ref(q28309,interpro).

hom(yor034c,p14196,b0.0 1.0e-8).

sq len(p14196,b344 483).

mol wt(p14196,b38502 53922).

classification(p14196,dictyostelium).

keyword(p14196,repeat).

db ref(p14196,embl).

Fig. 1. A simplified portion of the homol-
ogy data for the yeast gene YOR034C. De-
tails are shown of four SWISSPROT proteins
(p31947, p29431, q28309, p14196) that are ho-
mologous to this gene. Each has facts such as
sequence length, molecular weight, keywords
and database references. The classification is
part of a hierarchical taxonomy.

orf(yil137c).

ss(yil137c,1,c).

coil len(1,gte10).

ss(yil137c,2,b).

beta len(2,gte7).

ss(yil137c,3,c).

coil len(3,b6 10).

ss(yil137c,4,b).

beta len(4,gte7).

ss(yil137c,5,c).

coil len(5,b3 4).

ss(yil137c,6,b).

beta len(6,b6 7).

ss(yil137c,7,c).

coil len(7,b3 4).

ss(yil137c,8,b).

beta len(8,gte7).

ss(yil137c,9,c).

coil len(9,b6 10).

ss(ytyil137c,10,b).

beta len(10,b3 4).

alpha dist(yil137c,b36.2 47.6).

beta dist(yil137c,b19.1 29.1).

coil dist(yil137c,b6.2 39.5).

neighbour(1,2,b).

neighbour(2,3,c).

neighbour(3,4,b).

neighbour(4,5,c).

neighbour(5,6,b).

neighbour(6,7,c).

neighbour(7,8,b).

neighbour(8,9,c).

neighbour(9,10,b).

Fig. 2. A portion of the structure
data for the yeast gene YIL137C.
The secondary structure elements
(a - alpha, b - beta, c - coil)
are numbered sequentially, their
lengths are given, and neighbours
are made explicit. Overall distribu-
tions are also given.



no specialisations of this association are frequent (if pasta is not frequent, then
pasta∧mince cannot be frequent). And if an association is frequent, then all of
its parts or subsets are also frequent.

Perhaps the best known association rule algorithm is APRIORI [8]. It works
on a levelwise basis, guaranteeing to take at most d + 1 passes through the
database, where d is the maximum size of a frequent association. First a pass is
made through the database where all singleton associations are discovered and
counted. All those falling below the minimum support threshold are discarded.
The remaining sets are “frontier sets”. Next, another pass through the database
is made, this time discovering and counting frequencies of possible 1-extensions
that can be made to these frontier sets by adding an item. For example, {pasta}
could be extended to give {pasta,mince}, {pasta, sauce}, {pasta, wine}. Whilst
the basic idea is a brute force search through the space of associations of ever
increasing length, APRIORI reduces the amount of associations that have to be
counted by an intelligent algorithm (APRIORI GEN) for generation of candidate
associations. APRIORI was one of the early association mining algorithms, but
its method of generating candidate associations to count is so efficient that it
has been popular ever since.

APRIORI, along with most other association rule mining algorithms, applies
to data represented in a single table, i.e non-relational data. For relational data
we need a different representation.

2.3 First order association mining

When mining relational data we need to extend ordinary association mining to
relational associations, expressed in the richer language of first order predicate
logic. The associations are existentially quantified conjunctions of literals.

Definition 1. A term is either a constant or a variable, or an expression of the
form f(t1, ..., tn) where f is an n-place function symbol and t1, ..., tn are terms.

Definition 2. An atom is an expression of the form p(t1, ..., tn) where p is an
n-place predicate symbol and t1, ..., tn are terms.

Definition 3. A literal is an atom or the negation of an atom.

Some examples of associations are:

∃X,Y : buys(X, pizza) ∧ friend(X,Y ) ∧ buys(Y, coke)
∃X,Y : gene(X) ∧ similar(X,Y ) ∧ classification(Y, virus) ∧mol weight(Y, heavy)

Dehaspe and DeRaedt [9] developed the WARMR algorithm for data mining
of first order associations. It works in a similar manner to APRIORI, extend-
ing associations in a levelwise fashion, but with other appropriate methods for
candidate generation, to eliminate counting unnecessary, infrequent or dupli-
cate associations. WARMR also introduces a language bias that allows the user



to specify modes, types and constraints for the predicates that will be used to
construct associations and hence restrict the search space. The language bias
of a learning algorithm is simply the set of factors which influence hypothesis
selection [10]. Language bias is used to restrict and direct the search.

2.4 Distributed association mining

As the size of data to be mined has increased, algorithms have been devised
for parallel rule mining, both for machines with distributed memory [11–14]
(“shared-nothing” machines), and, more recently, for machines with shared mem-
ory [15]. These algorithms have introduced more complex data representations
to try to speed up the algorithms, reduce I/O and use less memory. Due to the
size and nature of this type of data mining, it is often the case that even just
keeping the candidate associations in memory is too much and they need to be
swapped out to disk, or recalculated every time on the fly. The number of I/O
passes through the database that the algorithm has to make can take a sub-
stantial proportion of the running time of the algorithm if the database is large.
Parallel rule mining also raises issues about the best ways to partition the work.

This type of rule mining is of interest to us because we have a Beowulf cluster
of machines, which can be used to speed up our processing time. This cluster
is a network of around 60 shared-nothing machines each with its own processor
and between 256M and 1G memory per machine, with one machine acting as
scheduler to farm out portions of work to the others.

2.5 Distributed first order association mining

The version of WARMR that was available at the time was unable to handle the
quantity of data that we had, so we needed to develop a WARMR-like algorithm
that would deal with an arbitrarily large database.

The program should count associations in relational data, progressing in a
levelwise fashion, and making use of the parallel capabilities of our Beowulf
cluster. We use Datalog? as the language to represent the database. When the
database is represented as a flat file of Datalog facts in plain uncompressed
text, each gene has on average 150K of data associated with it (not including
background knowledge). This is in total approximately 1G for the whole yeast
genome when represented in this way. Scaling is a desirable feature of any such
algorithm - it should scale up to genomes that are larger than yeast, it should
be able to make use of additional processors if they are added to the Beowulf
cluster in the future, and indeed should not rely on any particular number of
processors being available.
? Datalog [16] is the language of function free and negation free Horn clauses (Prolog

without functions) and as a database query language it has been extensively studied.
Datalog and SQL are incomparable in terms of expressiveness. Recursive queries are
not possible in SQL, and Datalog needs the addition of negation to be more powerful
than SQL



The two main options for parallelisation considered by most association min-
ing algorithms are partitioning the associations or partitioning the database.

Partitioning the candidate associations In this case, it is difficult to find a
partition of the candidate associations that optimally uses all available nodes
of the Beowulf cluster without duplication of work. Many candidates share
substantial numbers of literals, and it makes sense to count these common
literals only once, rather than repeatedly. Keeping together candidates that
share literals makes it difficult to produce a fair split for the Beowulf nodes.

Partitioning the database The database is more amenable to partitioning,
since we have more than 6000 genes, each with their own separate data.
Division of the database can take advantage of many Beowulf nodes. Data
can be partitioned into pieces that are small enough to entirely fit in memory
of a node, and these partitions can be farmed out amongst the nodes, with
nodes receiving extra partitions of work when they finish. Partitioning the
database means that we can use the levelwise algorithm, which requires just
d passes through the database to produce associations of length d. In this
application we expect the size of the database to be more of an issue than
the size of the candidates.

Although a distributed algorithm necessarily will do extra work to commu-
nicate the counts, candidates or data between the machines, the investment in
this distributed architecture pays off as the number of machines is increased.

3 The solution

The system would serve two purposes:

1. To provide a immediate solution to mine the homology and structure data.
2. To become a platform for future research into incorporating more knowledge

of biology and chemistry into this type of data mining (for example, specific
biological constraints and hierarchies).

3.1 Associations

The patterns to be discovered are first order associations. An association is a
conjunction of literals (actually existentially quantified, but written without the
quantifier where it is clear from the context). Examples of associations are:

pizza(X) ∧ buys(bill,X) ∧ likes(sam,X)

gene(X) ∧ similar(X,Y ) ∧ keyword(Y, transmembrane)

Associations are constructed in a levelwise manner. At each level, new, candidate
associations are generated by specialisation of associations from the previous
level under θ-subsumption.



Definition 4. An association a1 θ-subsumes an association a2 if and only if
there exists a substitution θ such that a1θ ⊆ a2.

This specialisation is achieved by extension of each of the previous associ-
ations by each of the literals in the language that are allowed by the language
bias. Candidate associations are counted against the database, and pruned away
if their support does not meet the minimum support threshold (θ-subsumption
is monotonic with respect to frequency). The surviving candidates become the
frequent association set for that level and are used to generate the next level.
The algorithm can be used to generate all possible frequent associations, or to
generate associations up to a certain length (level).

3.2 Farmer, Worker and Merger

The system we developed is called PolyFARM (Poly-machine First-order Asso-
ciation Rule Miner). To the best of our knowledge PolyFARM is the first system
to do distributed first order association mining. There are three main parts to
the PolyFARM system:

Farmer Reporting of results so far, and candidate association generation for
the next level

Worker Candidate frequency counting on a subset of the database
Merger Collation and compaction of Worker results to save filespace

The candidate associations are generated once, centrally, by the Farmer pro-
cess, using the language bias and the frequent associations from the previous
level. The generation process also checks candidates against a list of infrequent
associations from the previous level, to ensure that no part of an association is
already known to be infrequent.

The database is partitioned and each Worker process reads in all the can-
didates, its own database partition and the common background knowledge.
Candidates are evaluated (counted) against the database partition, and the re-
sults are saved to file (the Beowulf has no shared memory, and we do not rely
on any PVM-like architectures). When all Workers have completed, the Farmer
collects in the files of counts produced by the Workers. It prunes away the in-
frequent associations (saving them for future reference), and displays the results
so far. Then the Farmer generates the next level of candidates, and the cycle
begins again.

A single Worker represents counting of a single partition of a database. On
the Beowulf cluster, each node will be given a Worker program to run. When
the node has completed, and the results have been saved to a file, the node can
run another Worker program. In this way, even if there are more partitions of
the database than nodes in the Beowulf cluster, all partitions can be counted
within the memory available.

In generating a file of counts from each Worker (each database partition),
so many files can be generated that filespace could become an issue. So we
introduce the third step - Merger. Merger collates together many Worker files



into one single file, saving space. Merger can be run at any time, when filespace
needs compacting. Finally, Farmer will simply read in the results from Merger,
rather than collating Workers’ results itself. A diagram of how the three steps
interact is given in Figure 3.

Worker Worker Worker Worker

Farmer

Merger

associations have been counted 
over whole database

candidate associations sent to every Worker

separate counts
are merged

Fig. 3. Farmer, Worker and Merger

This solution addresses 2 aspects of scaling:

– Memory: Partitioning data for the Workers means that no Worker need
handle more data than can fit in its main memory, no matter how large the
database becomes.

– Filespace: Merger means that the buildup of intermediate results is not a
filespace issue.

3.3 Association trees

New candidates are generated by extending associations from the previous level.
Any literals from the language can be added, as long as they agree with the
modes, types and constraints of the language bias, and the whole association
does not contain any part that is known to be infrequent. As each previous
association can usually be extended by several literals, this leads naturally to a
tree-like structure of associations, where literals are nodes in the tree and children
of a node are the possible extensions of the association up to that point. Each
level in the tree corresponds to a level in the levelwise algorithm (or the length



of an association). At the root of the tree is a single literal, which all associations
must contain.

Allowing common parts of associations to be collected up into a tree structure
in this way provides several advantages, and was suggested in Luc Dehapse’s
PhD thesis [17] (p104) as an improvement that could be made to WARMR.
Not only is it a compact way of representing associations, but it means that
counting can be done efficiently, since common subparts are counted just once.
As the associations are first order, some thought is required to make sure that the
various possibilities for variable bindings are consistent within an association.

4 Why Haskell?

Why choose a language such as Haskell for an application such as data mining?
Haskell was considered because in previous smaller applications it had proved to
be an excellent tool for quickly prototying ideas. Initial concerns about choosing
Haskell as a language for this project were

– Would it be fast enough?
– Would the resource usage be reasonable?
– Would there be enough help and support if problems occurred?

Our application does not need to run in real time, and is not time critical,
though a reasonable running speed is required. We have complex data and wish
to extract complex information. We are searching through large amounts of
genomic information, and algorithm correctness is important, because the results
can have biological significance and debugging rare or special cases that show
up in large amounts of data is extremely time consuming.

Like many other software projects this required many of the techniques at
which Haskell excels:

– Complex algorithms and clarity of code
– Data structures and abstraction
– Parsers and pretty printing
– Modularity and fast prototyping
– Good programming support through language features and on-line help

Whilst all of these are arguably available in any programming language if
code is written well, high level declarative languages such as Haskell provide
more support for the programmer. Since the application uses data expressed in
Datalog and methods such as θ-subsumption, we considered using Prolog as an
implementation language. However we were reluctant to give up features such as
higher order functions, strong typing and profiling tools, and given the knowledge
that our input data would consist of ground terms only, we would not be needing
full Prolog to deal with it.



5 Disadvantages of using Haskell

Execution time did not turn out to be a major problem. The run time is adequate
for our purposes. Time profiling was used to tune the system, and it became
apparent that testing for θ-subsumption accounted for most of the time taken.
This is due to both the number of subsumption tests required, and the relatively
expensive nature of this test. This time was then substantially alleviated and
reduced by restricting the database literals to be tested - firstly to those with
the correct predicate symbol, and secondly to those whose constant arguments
match exactly with the constants in the literal of the association.

The main disadvantage that was faced was dealing with unwanted laziness.
In a data mining environment, where all data needs to be read and counted,
and all calculations will be used, laziness provides few advantages, and usually
takes up huge amounts of heap space while delaying all computation until the
last minute. At every step of the coding process it was found that code was easy
to get right, but then difficult to get working in practice without running out of
memory.

5.1 Reading data

Much of the memory was being used by lazy reading of data. When data was
lazily held in string form, it would consist of repetitions of literals and constants,
and occupy far more memory than the compiled form that the program actually
used.

If Haskell is to be used in earnest for real-world programs it needs to have
to have good methods of reading and writing persistent data. Using the built-in
read function for large amounts of user data or complex data structures (for
example large trees of associations) is not appropriate. Apart from being slow,
it is also difficult to force code using read to be strict. Using a parser generator
tool such as Happy (http://haskell.cs.yale.edu/happy/) to generate spe-
cialist parsers helps by giving an enormous speed increase, and some memory
reduction too. The disadvantages were the difficulty in tracking down the source
of type errors in generated code (Happy itself provides little in the way of error
checking, and type errors come to light only when using the generated Haskell),
and the fact that Happy currently doesn’t return anything until the whole input
is parsed, and then it returns a tree of thunks. However, in the latest version of
Happy, there is now a --strict flag to make all the productions strict. We used
Happy generated parsers for all user-generated data (knowledge base, settings,
and background knowledge).

Malcolm Wallace and Colin Runciman’s Binary library ([18]) (http://www.
cs.york.ac.uk/fp/nhc98/libs/Binary.html) was considered. Currently only
available for the nhc98 compiler, this provides binary data reading and writing.
Data can be read and written to file or to memory, and due to the compression
used, the amount of data stored will generally be an order of magnitude smaller
than if it were stored as text. This also means an order of magnitude saving in
memory costs too, as there are no strings to remain on the heap, because the



data is read in directly. The single disadvantage of Binary at the moment is that
it is not Standard Haskell, so is not portable between the compilers, and the
only compiler providing support for this is nhc98.

The final solution we chose for reading and writing the counted associations
that were to be communicated between Beowulf nodes was a simple strict IO
class? providing operations fromSeq and toSeq that read and wrote data from/to
a file handle. Instances of this class were written so that seq was applied at every
stage, and data was then read and written strictly. This provided a Standard
Haskell solution.

5.2 Strictness annotations

Laziness elsewhere in the code was also a problem. Several approaches were used
to enforce stricter execution and reduce heap usage. The Haskell language pro-
vides support for strictness annotations to data and functions. The seq function
is provided in Haskell to enforce evaluation. x ‘seq‘ y will evaluate x, enough
to check that x is not bottom, then discard the result and return y. This means
that x is guaranteed to be evaluated before y is considered. However, seq forces
evaluation only of the top level construct, so its argument is reduced only to weak
head normal form. This was often not enough to remove the laziness. Haskell
also allows user-defined data types to contain strictness annotations, specifying
that each annotated argument to a data constructor will evaluated when the
constructor is applied. This evaluation will also be to weak head normal form
only. Careful use of the combination of strictness annotations on data types and
seq should be enough to force complete evaluation.

DeepSeq is a module that provides the deepSeq function, which forces com-
plete evaluation rather than the partial evaluation of seq. DeepSeq is not part
of the standard libraries, but has been requested many times by users, so is easy
to access on the Internet.

However, all such ways of enforcing evaluation and strictness are the pro-
grammer’s responsibility, and in practice, their use is not obvious to the average
programmer. DeepSeq is not yet automatically derivable, and instances must
be written for all our datatypes. Finding the correct places in the code to use
seq or deepSeq after the code has been written is not always obvious, and code
can still be lazy if any necessary places are overlooked. deepSeq can also be
an additional time overhead: if a computation is repeatedly carried out on an
ever-growing datastructure, then it may be necessary to re-deepSeq the whole
structure each iteration, even though most of it will have already been evaluated
the previous time. Sometimes it can be difficult to find a place to put the seq
or deepSeq functions and extra code needs to be written.

5.3 CPS

Use of Continuation Passing Style (CPS) was another technique we used to
enforce evaluation order. By converting parts of the program into CPS some
? We would like to thank Julian Seward for this solution



control could be gained over the order of evaluation. CPS gives the programmer
a handle on the continuation computation, the computation that comes next,
and so this computation can be moved over a part of the code that will force
execution, such as a conditional, case expression or a pattern match. CPS is
a purely functional style of coding, and fits elegantly into Haskell’s character.
However, encoding parts of the evaluation order in this manner tends to make
the code less readable (and occasionally unintelligible!), which negates one of
the main reasons for using Haskell. We look forward to the day when automatic
code refactoring tools are available that can analyse laziness and automatically
reorganise code in a readable manner.

6 Advantages of using Haskell

6.1 Laziness as an advantage?

The main place in the program where laziness was an advantage was in matching
associations to the data (testing for subsumption).

A tree structure of associations makes counting efficient since subparts are
not repeatedly counted. For example, the associations

gene(X) ∧ similar(X,Y ) ∧mol weight(Y, heavy)

gene(X) ∧ similar(X,Y ) ∧mol weight(Y, light)
gene(X) ∧ seq length(X, long)

gene(X) ∧ seq length(X, short)

would be stored in the natural tree structure shown in Figure 4.

gene(X)

similar(X,Y)

mol_weight(Y,heavy) mol_weight(Y,light)

seq_length(X,long) seq_length(X,short)

Fig. 4. Associations stored in a tree structure

As we test the associations to see whether or not they match the data for
a particular gene in our database, we are aware that individual literals within
the association may match the database with more than one possible binding
of its variables. The variable bindings must be consistent along a path from
root to leaf of the tree. The WARMR system, on which this work is based, was



written in Prolog. In order to efficiently make use of both this tree structure
and Prolog’s built-in query subsumption test without repeatedly backtracking
and redoing the variable bindings, the authors of WARMR devised the concept
of “query packs” [19], requiring an extension to the standard Prolog system.
In Haskell, calculating a lazy list of possible variable bindings at each node in
the tree ensures that no unnecessary computation is needed. When a complete
match is found the alternative possible bindings are no longer required but do
not need pruning, since they will never be evaluated due to laziness.

6.2 Algorithm expression

Haskell makes algorithm expression elegant, clear and simple. It simplifies the
process of debugging by allowing each function to be tested independently and
modified without side effects to other code. Higher order functions and poly-
morphic types can allow generalisations that make code shorter. We frequently
used the predefined higher order functions, such as “map”, “fold”, “filter” and
“any”. However, we seldom defined our own, which indicates that we are still
not using the full power of Haskell. Pattern matching on datatypes allows com-
plex problems to be broken down into manageable parts. In this code there
are algorithms for pruning infrequent associations, generating new extensions
to associations given the modes and types supplied by the user for the predi-
cates, testing for θ-subsumption, and various other non-trivial tasks. Haskell is
a very clean and concise language, allowing the program to be easily expressed
and almost self documenting. We illustrate some of the elegance of Haskell by
demonstrating the makeCombs function in Figure 5.

makeCombs is the function that is responsible for constructing all the pos-
sible sets of correct arguments for a new literal that is to be added, given the
type constraints and mode constraints for this literal. We work through a list of
arguments, each of which has a mode (Plus, Minus, PlusMinus or ConstList).
Prolog variables will be represented by Ints, and constants by PackedStrings.
We wish to construct all possible combinations of the results, and remember
the maximum variable number used in each combination of arguments. Each
case can be clearly identified. List comprehensions give a concise way to con-
struct all possible combinations of results without generating many intermediate
data structures, and they also allow us to test for constraints such as our type
constraints.

6.3 Data structures

The associations are stored in a tree structure to make best use of their common
subparts and hence much of the program is based on handling tree-structured
data (merging, searching, pruning and path-finding). We also allow hierarchically
structured values for the arguments within a literal, and support counts must be
propagated through these hierarchies. Haskell provides good support for trees
with variable branching factors. In many other parts of the code variable length
lists are ideal, since we rarely know in advance how many possible elements



makeCombs :: PredID -> [(ArgPosition,Mode)] -> MaxVarNum -> [Pred]

-> Type -> [(VarCount, [Arg])]

-- When we reach the end of the argument list, just note the

-- maximum variable number used so far

makeCombs predID [] maxVar preds typenums = [(maxVar,[])]

-- if the mode is Plus then this argument must be a variable or constant of

-- the correct type which already exists in the association

makeCombs predID ((n,Plus):otherArgModes) maxVar preds types =

let otherArgCombs = makeCombs predID otherArgModes maxVar preds types in

[ (v, (Var i) : alist) | i <- [1..maxVar] ,

correctVarType i n predID types preds,

(v, alist) <- otherArgCombs]

++ [ (v, a : alist) | a <- correctAtomicTypes n predID types preds,

(v, alist) <- otherArgCombs]

-- if the mode is Minus then we need to create a new variable, which is

-- numbered 1 greater than the current maximum variable number for this

-- association

makeCombs predID ((n,Minus):otherArgModes) maxVar preds types =

let otherArgCombs = makeCombs predID otherArgModes maxVar preds types in

[ (newMaxVar+1, (Var (newMaxVar+1)) : alist) |

(newMaxVar,alist) <- otherArgCombs]

-- if the mode is PlusMinus, we want both options, Plus and Minus

makeCombs predID ((n,PlusMinus):otherArgModes) maxVar preds types =

makeCombs predID ((n,Plus):otherArgModes) maxVar preds types

++ makeCombs predID ((n,Minus):otherArgModes) maxVar preds types

-- if the argument is to be a constant, we generate all possible constants

makeCombs predID ((n,ConstList cs):otherArgModes) maxVar preds types =

let otherArgCombs = makeCombs predID otherArgModes maxVar preds types in

[ (v, (Atomic (packString c)) : alist) | c <- cs ,

(v,alist) <- otherArgCombs]

Fig. 5. The makeCombs function is responsible for constructing all the possible sets of
correct arguments for a new literal that is to be added, given type and mode constraints.



will be needed. We had little use for random access arrays since in data mining
we usually have to test or count all elements. Lists of lists and other nested
structures have been invaluable. We make use of partially indexed lists when the
search space can be reduced. Easily definable groupings of data into new data
types greatly enhanced code readability and understanding. Haskell has many
more useful features that we did not use, such as parameterised data structures.
However, we used many of the pre-defined parameterised data structures such
as lists and FiniteMap.

6.4 Parsers and pretty printing

Various parsers are needed to read in the knowledge base (a Datalog file), a
user settings file describing the language bias and several other parameters, a
background knowledge file including hierarchical data, and data which is to be
exchanged by nodes of the Beowulf cluster during distributed processing. We
also need pretty printing of results.

6.5 Modularity and fast prototyping

Modularity is very important for future experimentation, additions, redesign and
modification. Abstraction allowed data types to be changed easily, to give faster
execution via a different data structure. Lack of side effects in Haskell means that
any changes to code are guaranteed not to interfere with any existing code. When
developing this application there were many instances where an algorithm could
be achieved via a number of different methods and there were several decisions to
be made. The ability to prototype quickly allowed experimentation with research
ideas, and this made the project less prone to retention of bad design due to the
time invested in writing it, or the time to redesign it.

6.6 Good programming support

In spite of the lack of available books on the language, the wealth of friendly, free
and expert advice available from the Haskell community, the various mailing lists
and on-line Internet documentation is tremendous. Other good support comes
from the tools available, such as time and heap profiling, make-tools, interpreters
for easy testing, and features of the language itself such as strong static typing
and referential transparency meaning that the compilers can catch most errors.

7 Conclusions

PolyFARM is a data mining application written entirely in Standard Haskell. It
is currently in use for analysing computational biology data from the genome
of the yeast S. cerevisiae. We hope to apply this to the 25,000 genes of the
plant genome A. thaliana next, and to other genomes in future. This application
is not limited to computational biology data, but can be used to mine frequent



associations in any relational data expressed as Datalog. In future we also hope to
extend the interface to connect directly to data in standard relational databases,
as an additional alternative to using the Datalog format inherited from the field
of ILP. We plan to further develop this application for future research in the
field of data mining of biological data.

The use of Haskell was a success for this project. A prototype was correctly
working within a remarkably short time frame (3 man-weeks), which encouraged
us to continue using Haskell. However, we encountered problems with unexpected
laziness frequently filling up the heap space. A further 2 months were needed to
obtain reasonable resource usage. The heap problems were resolvable with the
aid of the excellent profiling tools available, but profiling took time, and solutions
required tricks and intuition that are not obvious. Finding all the correct places
to use seq after the code has been written was difficult. Transforming code into
CPS style can make code obscure, and tax the programmer. We would like to
see more support for refactoring code to control heap usage.

Haskell was an excellent language for coding the application due to many
features, including clear expression of complex algorithms, good support for data
structures, abstraction, modularity and generalisation leading to fast prototyping
and code reuse, parsing tools, profiling tools, language features such as strong
typing and referential transparency which allowed for easy modification of code,
and the helpful support of an enthusiastic Haskell community.

PolyFARM is freely available for non-commercial use at http://www.aber.
ac.uk/compsci/Research/bio/dss/polyfarm/.
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